文章编号:1673-2812(2010)02-0279-05

稀土 Gd 对热压烧结 Bi₂Te₃ 基材料热电性能的影响

任 攀^{1,2},吴荣归^{1,2},张艳华^{1,2,3},徐桂英^{1,2}

(1.北京科技大学特种陶瓷与粉末冶金研究所,北京 100083;2.北京新能源材料重点实验室,北京 100083;3.装备指挥技术学院士官系,北京 102249)

【摘 要】 稀土元素对 Bi₂ Te₃ 基材料热电性能的影响一直是 Bi₂ Te₃ 基热电材料研究的热点。本 文研究了不同 Gd 掺杂量 Bi₂ Te₃ 基热电材料的热压烧结工艺参数,运用 XRD,SEM 方法对材料的物相 成分和形貌进行了表征,研究了 20MPa 下不同 Gd 掺杂对 Bi₂ Te₃ 基材料的载流子浓度、电导率、 Seebeck 系数的影响。研究结果表明,Gd 掺杂没有明显改变 Bi₂ Te₃ 基材料的晶体结构,适量的 Gd 掺 杂有利于减小载流子浓度、提高 Bi₂ Te₃ 基材料的热电性能。

【关键词】 Bi₂ Te₃ 基材料;热压烧结;Gd 掺杂;热电性能 中图分类号:O472.⁺7 **文献标识码:**A

Effects of Gd on Thermoelectric Properties of Bi₂Te₃ Based Materials

REN Pan^{1,2}, WU Rong-gui^{1,2}, ZHANG Yan-hua^{1,2,3}, XU Gui-ying^{1,2*}

(1. Institute of Special Ceramics and Powder Metallurgy, Beijing University of Science and Technology, Beijing 100083, China;

2. Beijing Key Laboratory of New Energy Materials, Beijing 100083, China;

3. Equipment Command and Technology Institute, Beijing 102249, China)

[Abstract] The effects of rare earth elements on thermoelectric performances of $Bi_2 Te_3$ -based thermoelectric materials have always been hot topics. Here the hot-pressure sintering parameters versus different Gd dopants into $Bi_2 Te_3$ -based thermoelectric materials were studied. The composition and morphology were characterized by XRD and SEM analysis. The influences of different amounts of Gd dopants on the carrier concentration, electrical conductivity, and seebeck coefficient of $Bi_2 Te_3$ -based materials were studied. The results show that, Gd-dopant do not change the crystal structure of $Bi_2 Te_3$ -based materials evidently. An appropriate amount of Gd dopant is conducive to reducing the carrier concentration and improving the thermoelectric properties of $Bi_2 Te_3$ -based materials.

[Key words] Bi₂Te₃-based materials; hot-pressure sintering process; Gd doping; thermoelectric properties

1 前 言

热电材料是一种利用热电效应实现热能和电能直 接转换的功能材料。它们在发电和制冷、恒温控制与 温度测量等领域都有重要的应用。材料的热电性能主 要由无量纲性能指数,即热电性能优值 ZT 进行表征 $(ZT = \alpha^2 \sigma T/\kappa, 其中 \alpha 是塞贝克系数, \sigma 是电导率, κ 是$ 热导率,T是绝对温度)。20世纪 50 至 60 年代,相继 发现了热电性能较好的固溶体合金材料,如 Bi₂Te₃, PbTe,SiGe等。迄今为止,Bi₂Te₃ 基合金仍是在室温 附近性能最佳的热电材料,已在各种致冷和温控技术 中获得广泛应用,相应的热电器件不需要运动部件,具 有体积小、无噪声、寿命长、不释放有害物质,对环境友 好、反应灵敏,精度高、能在任意角度安装运行等优点, 因此热电材料已经成为人们研究的重要功能材料。目

收稿日期:2009-10-22;修订日期:2009-12-12

作者简介:任 攀(1985-),男,硕士研究生。通讯作者:徐桂英,E-mail:xugy@mater.ustb.edu.cn。

前,热电材料已经成功运用到人造卫星、太空飞船、高 性能接收器和传感器等领域[1-4]。面对巨大的应用前 景,提高 Bi₂ Te₃ 基热电材料的性能成为每位科研工作 者主要的研究方向和目标。目前提高 Bi₂ Te₃ 基热电 材料 ZT 值的方法主要有:① 通过低维化改善 Bi₂ Te₃ 基材料的输运性能,如将该材料做成量子阱超晶格、在 微孔中平行生长量子线、量子点等[5-6]。②通过梯度 化扩大Bi2Te3 基材料的使用温区,提高热电输出功 率^[8]。③通过掺杂修饰 Bi₂ Te₃ 基材料的能带结构, 使材料的带隙和费米能级附近状态密度增大[8-10],如 当向基热电材料中掺入半金属物质 Sb、Se、Pb 等,特 别是引入稀土原子,因为稀土元素所特有的f层电子 能带具有较大的有效质量,有助于提高材料的热电功 率因子,同时f层电子与其它元素的d电子之间的杂 化效应可以形成一种中间价态的复杂能带结构,从而 可能获得高优值的热电材料。Gd 作为一种重要的稀 土元素,也是一种非常重要的热电元素,其原子量大, 原子、离子及共价半径较小,有利于掺杂以提高声子散 射,进而提高材料的赛贝克系数优化材料的性能。因 此,对 Gd 掺杂的 Bi₂ Te₃ 基热电材料的性能进行研究 有着一定的实际意义。

2 实 验

利用纯度为 99.99%的 Bi, Te, Se, 99.9%的 Gd 和 SbI₃ 的粉料为原料,材料的化学比为 Bi_{1.5} Sb_{0.5} (Te_{0.9}Se_{0.1})₃+SbI₃+xwt%Gd,其中 x(质量百分比) 分别为 0.095, 0.115, 0.125 和 0.145。利用粉末冶金 法制备碲化铋基晶体材料,对所获得的晶体材料进行 粉碎与过筛,选取粒度小于 180 目的粉体材料作为原 料,然后在 Ar 气保护气氛中利用热压烧结技术进行 块体材料的制备。热压烧结参数,先以 5K/min 的速 度升温至 350℃并保温 90min,所加的压力为 20MPa, 然后随炉气氛冷却至室温。

电导率 σ用标准四探针法,在真空下测定。在 5 ~10℃的温差△T下,测定试样的温差热电动势△E, 根据△E-△T作图得到的斜率确定塞贝克系数。试 样的比热容(Cp)和热扩散系数 λ 用激光微扰法于真 空下测定,热导率 κ 根据实测的比热容 Cp,热扩散系 数 λ 及密度 d,用公式 κ =Cpλd 计算得到。

3 结果分析与讨论

图 1 是热压烧结后不同 Gd 含量的块体材料的 XRD 图谱。由图谱可以看出各组样品主相均为 Bi₂ Te₃,而且晶化程度较高。图中标出了 Bi₂ Te₃ 基化 合物的主要衍射峰的晶面指数,它们所对应的 20 角与 JCPDS 标准卡 85-0349 给出的二元 Bi₂ Te₃ 化合物衍 衍射角基本重合,说明名义成分为 Gd_xBi_{2-x} Te_{3-y} Sey (x = 0.095, 0.115, 0.125, 0.145)的热压合成产物属 于六方晶格点阵晶系 R $\overline{3}$ M 空间群^[11]。XRD 谱线中 没有发现稀土元素 Gd 及其他 Gd 的化合物的衍射峰, 也没有发现元素 Se 及其他 Se 化合物的衍射峰,但有 关 Gd 和 Se 原子在 Bi₂ Te₃ 相晶格中的具体占位特征 还有待于对化合物的精细结构做进一步分析研究。

Fig. 1 XRD patterns of samples with different contents of Gd

3.1 SEM 和能谱(EDS)分析

图 2 是掺杂 Gd 的含量为 0.115wt%的 SEM 照 片,可以看到样品表面散落着镶嵌晶片,由于表面的侵 蚀不足,基体的晶界纹路不清晰未能看清晶体截面金 相。散落的晶片和晶棒取向较为一致,说明材料的取 向明显,这对材料的热电性能很有益处^[12]。对散落晶 片的成分进行能谱分析,如表 1 所示。可见各成分含 量较符合材料配比,只是成分中氧含量较高(其中主要 原因来源于 EDX 能谱分析的误差),很可能与 Te 或 Gd 结合降低了掺杂效果,这也可能是各组分材料整体 性能偏低的重要原因,证实这一因素需要进一步的研 究。再者,从 SEM 图片上可以看出材料表面存在些 许气孔状的暗坑,说明材料制备压力、温度以及时间仍 需优化,使材料烧结致密以进一步提高材料的性能。

3.2 载流子浓度

对厚度为 1mm 样品测定其霍尔系数 R_H^[13],根据 公式 n=1/R_He 计算出载流子浓度,如表 2 所示。

从表 2 可以看出载流子浓度随 Gd 掺杂量的增加 而减小,说明稀土 Gd 是 P 型掺杂。据前面性能测试 结果分析,Gd 掺量为 0.115wt%的样品性能较好说明 其载流子浓度 2.045×10¹⁹/cm³比较合适,而 Gd 掺量 为0.145wt%的样品载流子浓度较低,影响了其热电

图 2 SEM 形貌和能谱分析结果 Fig. 2 SEM morphology and EDS analysis results

表 1 能谱图中对应的元素含	量
----------------	---

Table 1	Element	contents	measured	by	EDS	analysis	
---------	---------	----------	----------	----	-----	----------	--

Element	Atomic/at%
ОК	28.14
Se L	4.40
TeL	40.27
Gd L	0.5
Bi M	26.68
Total	100.00

表 2 室温下各样品载流子浓度(n)

 Table 2
 Carrier concentration of the samples at room temperature

Gd 含量/wt%	0.095	0.115	0.125	0.145
$n/ imes 10^{19}cm^{-3}$	-4.549	-4.232	-2.045	-1.290

性能。与已报道文献^[14]相比,我们所测载流子浓度较高,因此 N 型 Bi-Sb-Te-Se 系列的最优载流子浓度还 有待于进一步研究。

3.3 热电性能

3.1.1 电导率和 seebeck 系数 图 3(a),(b)和(c) 分别给出了不同成分样品的电导率,Seebeck 系数和 功率因子随温度的变化规律。从图 3(a)可以看到当 Gd 含量为 0.095-0.125wt%时随着温度升高,电导率 随之降低,符合一般碲化铋材料的电导率变化特性,当 Gd 含量为 0.125wt%时材料的电导率最高,但 Gd 含 量继续升高到 0.145wt% 时数值骤降,并且表现为随 温度升高缓慢略有升高,即表现为半导体特征,说明 Gd 掺量过度使载流子浓度明显降低,从而大大降低了 材料的电导率。从图 3(b)可见各个样品的 Seebeck 系数均为负值,显示出 N 型 Bi₂Te₃ 的特征。同时可 以看到其表现出与电导率相应的变化规律,即当 Gd 含量为 0.095-0.125wt% 时随着温度的升高, Seebeck 系数随着增大,掺量为 0.115wt%的样品 Seebeck 系 数较高,且随温度的变化不明显,但掺量为 0.145wt% 的样品 Seebeck 系数反常地减小,并表现为随温度升 高而下降,即也表现为半导体特征。由电导率和 Seebeck系数算出样品的功率因子如图 3(c)所示,可 以看出 Gd 含量为 0.115wt % 样品的功率因子在材料 实际使用温度范围内较其他样品要高,说明该掺量对 材料来说是比较合适的,功率因子最高达到 3.21 mW/mK^2

图 3 样品性能参数随温度变化(a)电导率(b)Seebeck 系数(c)功率因子 Fig. 3 Performance parameters versus temperature, (a) electrical conductivity, (b)Seebeck coefficient and (c) thermal conductivity.

3.1.2 热导率 化合物热导率 K 主要由 3 部分组成,即载流子热导率(K_e)、声子热导率(K_{ph})以及由于 双极扩散而引起的热导率 K_{am}。K=K_e+K_{ph}+K_{am}。 如果忽略双极扩散的影响,则化合物热导率主要受电子热导与声子热导影响,即,

$$K = K_e + K_{ph} \tag{1}$$

根据 Wiedemanmn-Franz 定律,电子热导率 K。 可表示为:

$$K_e = L\sigma T \tag{2}$$

其中 L 称之为 Franz 常数。对于强简并体系,L= 2.45×10⁻⁸ W Ω K⁻²。将 Gd 掺杂量为 0.115%的样品 在不同温度下的电导率带入(2)式,则求出相应各温度 下的电子热导 K_e,再由(1)求出各相应温度的声子热 导 K_{th}。

图 4 是 Gd 含量为 0.115wt%的样品不同温度下 的总热导率 K、电子热导 K。和声子热导 Koh。显然室 温下的总热导率较高,当温度升高后其数值急剧下降, 在100℃附近降到最低,而后略有升高,即表现出随温 度升高先缓慢下降再缓慢升高的变化规律,这与未掺 杂Gd的一般Bi-Sb-Te基热电材料的热导率随温度的 变化规律是极不相同的。因为一般 Bi₂ Te₃ 基材料的 热导率随温度的升高都先升高后缓慢下降或不下降。 通过图 4 还可以看到电子热导表现为先升高后下降的 变化规律,而声子热导表现出与总热导类似的变化规 律。说明在100℃之前以电子热导为主,而高于100℃ 后以声子热导为主。同时还可看出电子与声子热导很 相近,二者对总热导的贡献几乎相等,说明材料热导率 的下降是主要由声子热导下降产生的,即稀土 Gd 的 加入极大地降低了 Bi₂ Te₃ 基材料的声子热导,而达到 提高其热电性能的目的。

Fig. 4 Thermal conductivity versus temperature

3.1.3 ZT值 图 5 是 Gd 含量为 0.125wt%的样品不同温度下的 ZT 值随温度变化的曲线。可见由于热导率随温度升高后其数值急剧下降,在 100℃附近降到最低,因此计算出该处(100℃)ZT 最大为 0.93。

采用粉末冶金加热压的方法,成功制备出不同 Gd 掺量的纯相 Bi₂ Te₃ 基热电材料。通过对各掺杂量样 品的热电性能的测定和分析,得到 Gd 掺杂量在 0.125wt%时的样品 ZT 值达到最大为 0.93,但仍然 比较低,未能超过 1.0 的水平。霍尔效应测试结果表 明最高 ZT 值样品的载流子浓度为 2.045×10¹⁹/cm³, 较一般文献报道的值较高。经过 SEM,EDX 以及一 系列测试分析,得出导致性能较低的主要原因是制备 过程中材料氧化程度较高,再者材料表面气孔较多,材 料不致密。因此在以后的研究中需对制备条件以及原 料的氧化进行优化和防护,以期获得性能更佳的 Bi₂ Te₃ 基热电材料。

- [1] Ni H L, Zhu T J, Zhao X B. Thermoelectric properties of hydrothermally synthesized and hot pressed n-type Bi₂ Te₃ alloys with different contents of Te [J]. Mater Sci Eng B, 2005, 117: 119.
- [2] Su Taichao, Zhu Pinwen, Ma Hongan, et al. Electrical transport and thermoelectric properties of PbTe doped with Sb₂Te₃ prepared by high-pressure and high-temperature [J]. Alloys Comp, 2006, 422:328.
- [3] Hugh W Hillhouse, Mark T Tuominen. Modeling the thermoelectric transport properties of nanowires embedded in oriented microporous and mesoporous [J]. Microp Mesop Mater, 2001, 47:59.
- [4] Dauscher A, Lenoir B, Boffoue O, et al. Thermoelectricfilms prepared by pulsed laser deposition [C]. AL T01 international conference on advanced laser technologies. Proceedings of SPIE, 2002, 4762:52.
- [5] Broido D A, Reinecke T L. Thermoelectric transport in quantum well superlattices [J]. Appl Phys Lett, 1997, 70: 2834.
 (下转第 316 页)

the chemical compositions to the current $In_{10} Sb_{10} Ge$ based alloys, in order to further increase the Seebeck coefficient without sacrificing the electrical conductivities, a significant improvement of the TE property of this ternary alloy can be expected.

Fig. 6 Relationship between temperature and the thermoelectric figure of merit (ZT) in 320-708 K for the alloy In_{10} Sb₁₀ Ge prepared by spark plasma sintering

4 Conclusions

A Ge-added ternary alloy In_{10} Sb₁₀ Ge was prepared using spark plasma sintering and its TE properties were evaluated in the temperature range from 320 K to 708 K. An analysis reveals that the microstructure is composed of two phases, with one phase being insoluble Ge that is embedded in the matrix, and another being InSb. The Seebeck coefficients are almost the same as those of Ge free InSb, but the lattice thermal conductivities are very low and the highest ZT value of 0. 18 is obtained at 708 K. A big improvement of TE property can be

(上接第 282 页)

- [6] Harman T C, Taylor P J, Walsh M P, et al. quantum dot superlattice thermoelectric materials and devices [J]. Science, 2002, 297:2229.
- [7] Xu Guiying, Gao Yanping, Ge Changchun, et al. Thermoelectric properties of p-type (Bi_{0.15} Sb_{0.85})₂ Te₃-PbTe graded thermoelectric materials with different barriers [J]. University Sci. Techn. Beijing, 2005, 12:347.
- [8] Youn S L, Freeman T L. First principles electronic structure and its relation to thermoelectric properties of Bi₂ Te₃ [J]. Phys 'Rev B, 2001, 63:085112.
- [9] Chaput L, Pecheur P, Tobola J, et al. Transport in doped skutterudites: Ab initio electronic structure calculations [J].

expected if an optimization of the chemical compositions to the current In_{10} Sb₁₀ Ge based alloys would be made.

References

- [1] D. L. Rode. [J]. Phys. Rev. B, 1971, 3:3287.
- [2] S. Yamaguchi, Y. Nagawa, N. Kaiwa, A. Yamamoto. [J]. Appl. Phys. Lett., 2005, 86: 153504.
- [3] A. G. Briggs, L. J. Challis, F. W. Sheard, [J]. J. Phys. C, 1970, 3:687.
- [4] W. Nakwaski. [J]. J. Appl. Phys., 1988, 64:159.
- [5] S. Yamaguchi, T. Matsumoto, J. Yamazaki, N. Kaiwa, A. Yamamoto, [J]. Appl. Phys. Lett., 2005, 87:201902.
- [6] N. Mingo. [J]. Appl. Phys. Lett., 2004, 84:2652.
- [7] Y. Z. Pei, D. T. Morelli. [J]. Appl. Phys. Lett., 2009, 94: 122112.
- [8] J. Callaway, H. C. von Baeyer. [J]. Phys. Rev., 1960, 120: 1149.
- [9] B. Abeles. [J]. Phys. Rev., 1963, 131:1906.
- [10] R. M. Biefeld, B. T. Cunningham, S. R. Kurtz, J. R. Wendt, [J]. Mater. Res. Soc. Symp. Proc., 1991, 216:175.
- [11] H. Ehsani, I. Bhat, R. Gutmann, G. Charache. [J]. Appl. Phys. Lett., 1996, 69 :3863.
- [12] B. Poudel, Q. Hao, Y. Ma, et al. [J]. Science, 2008, 320: 634.
- [13] K. Ahn, C. P. Li, C. Uher, M. G. Kanatzidis. [J]. Chem. Mater, 2009, 21:1361.
- [14] B. L. Pedersen, H. Birkedal, E. Nishibori, et al. [J]. Chem. Mater, 2007, 19:6304.
- [15] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn.[J]. Nature, 2001, 413 ;597.
- [16] J. L. Cui, H. Fu, X. L. Liu, D. Y. Chen, W. Yang. [J]. Curr. Appl. Phys., 2009, 9:1170.
- [17] J. L. Cui, X. L. Liu, W. Yang, D. Y. Chen, Hong Fu, P. Z. Ying. [J]. J. Appl. Phys., 2009, 105 :063703.

Phys Rev B, 2005, 72:085126.

- [10] Di Salvo F J. thermoelectric cooling and power generation [J]. Science, 1999, 285:703.
- [11] 张艳华. 稀土置换型纳米 BiTe 基热电材料的溶剂热合成[D] 硕 士学位论文,杭州:浙江大学,2005.
- [12] 陈柔刚. n型Bi₂Te₃ 系热电材料成型与性能研究[D]. 硕士学位 论文, 武汉:华中科技大学, 2005
- [13] 高敏,张景韶. 温差电转换及其应用[M]. 北京:兵器工业出版 社,1996,127~128.
- [14] 蒋俊, 许高杰, 崔平, 陈立东. Tel, 掺杂量对 n型 Bi₂Te₃ 基烧 结材料热电性能的影响[J]. 物理学报, 2006, 55(9):4849-05.