第 34 卷第 2 期	无损探伤	Vol. 34No. 2
2010年4月	N D T	April. 2010

X射线在钢板中的衰减规津试验研究

黄冬琴 邬冠华 敖 波

(南昌航空大学无损检测技术教育部重点实验室,江西南昌 330063)

摘 要:在管电压和管电流不同的条件下,测量穿透不同厚度钢板后的剂量率,并利用 original 软件来 对不同情况下测得的结果进行曲线拟合。试验结果表明:X 射线在穿过物体过程中的衰减规律符合连续谱 射线在物体中的衰减规律;管电压相同,随着管电流的增大各块钢板中的平均线衰减系数几乎不变;管电流 相同,随着管电压的增大各块钢板中的平均线衰减系数减小;穿透相同钢板厚度时,随着管电流或管电压增 大剂量率也增大;散射射线在 X 射线没有穿透物体时对剂量率的影响比较明显。

关键词:X射线检测;平均线衰减系数;剂量

中图分类号:TG115.28 文献标识码:A 文章编号:1671-4423(2010)02-031-04

在钢的提炼、热处理、锻造中和钢制品的使用中 可能产生种类繁多、方向各异的缺陷。为保证钢制 品的质量,必须对其进行多方位的 X 射线检测。随 着技术的进步,数字射线检测技术是未来的发展趋 势,常用的数字射线照相技术包括 DR(Digital Radiography)、CR(Computed Radiography)和工业 CT(Industrial Computed Tomography)。数字射线 检测中的数字成像与胶片相比对射线能量比较敏 感,特别是射线 CR 技术。为保证数字射线检测的 质量,选择合适的透照管电压和管电流就显得尤为 重要。管电压、管电流的选择与 X 射线在钢中的衰 减规律有关。因此,对 X 射线在钢板中的衰减规律 的研究是非常必要的。

在实际工业射线检测中应用的 X 射线一般是 宽束、连续谱射线其穿透物体时强度的衰减规律为: $I = (1+n)I_0e^{-uT}$ (1)

式中 n 一散射比,散射线强度与一次射线强度之比;

μ一射线在工件中的线衰减系数,其值在射线 穿过一定厚度物体的过程中是不断变化的,因此,在 计算中常引入平均线衰减系数。

由于实验条件所限,强度和散射线的测量比较 困难。剂量和强度都是能量,只是表示形式不同。 因此,用剂量代替强度。试验中把散射线和一次射 线看成一个整体进行研究。笔者通过测量穿透不同 厚度冷轧钢板后的剂量,来研究 X 射线在冷轧钢板 中的衰减规律。

1 X射线穿过冷轧钢板中衰减规律试验

1.1 试验设备

(1) CD-300BX 型固定式工业 CT 射线机一台。

(2)TL3000A 剂量仪一台用于测量和读取剂量 数据,读数精度为 0.01cGy。

(3)钢板固定与准直装置一套。

1.2 试验对象

选用 10 块均质的冷轧长方体钢板。其尺寸为 200mm×200mm×1mm。

1.3 试验方法

试验过程中曝光时间为 1min;管电压分别为 100kV、120kV、140kV、160kV、180kV、190kV;管电流分 别为 0.5mA、1.0mA、1.5mA、2.0mA、2.5mA、3.0mA、 3.5mA、4.0mA、4.5mA、5.0mA、5.5mA。对于每一台 X射线机的最大功率是固定的(即 $P_{max} = UI = K$, 其中 K 为一个固定的常数),因此,管电压越大管电 流达到的最大值就越小。

步骤:

(1)固定管电压100kV,板厚0mm,管电流从
0.5mA开始,按上面管电流增大至射线机达到的最
大值,每换一次电流记录一次穿透钢板后的剂量;

(2)按上面列出的电压值增加管电压值,重复第(1)步;

(3)增加1块钢板,重复第(1)、(2)步,增加钢板 厚度至10mm为止。试验示意图如图1所示,图中 从X射线机发出的射线为一束射线;剂量率D₀、 D₁、…、D₁₀为穿透每块冷轧钢板所测得的剂量率,

2 结果与讨论

2.1 管电压、管电流与剂量率的关系

以两组数据为例,分别研究管电压和管电流与 剂量率的关系。管电流 0.5 mA,不同管电压下透 过不同厚度钢板测量的剂量率数据如表 1 所示。管 电压为 100kV,不同管电流下透过不同厚度钢板所

测量的剂量率数据如表2所示。

表1 管电流 I = 0.5 mA 时测得的透过剂量率

钢板个数	不同管电压下的透过剂量率(cGy•min ⁻¹)							
	$100 \mathbf{kV}$	120 k V	140 k V	160 kV	180 k V	190kV		
0	1.25	1.58	2,32	3.1333	3.97	4.3933		
1	0.37	0.6433	1.007	1.5	2.03	2.43		
2	0.1867	0.3667	0.64	1.007	1.4333	1.72		
3	0.11	0.22	0.453	0.74	1.08	1.3		
4	0.07333	0.16	0.32	0.57	0.8433	1.003		
5	0.05	0.12	0.24	0.46	0.6867	0.8333		
6	0.04	0.09	0.19	0.35	0.53	0.69		
7	0.03	0.07	0.16	0,28	0.48	0.5733		
8	0.02	0.06	0.12	0.23	0.38	0.4767		
9	0.02	0.04	0.1	0.1867	0.35	0.44		
10	0.01	0.04	0.087	0.16	0.3	0.38		

注:各钢板尺寸和密度均相同

表 2 电压 U = 100kV 时测得的透过剂量率

·····································	不同管电流(mA)下的透过剂量率(cGy•min ⁻¹)										
	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5
0	1.25	2.307	3.407	4.627	5.753	6.907	8.057	9.2	10.327	11.437	12.6
1	0.37	0.653	1	1.31	1.6	1.9	2,26	2.57	2.91	3.19	3.53
2	0.187	0.34	0.49	0.64	0.8	0.96	1.12	1.29	1.443	1,607	1.76
. 3	0.11	0.193	0.283	0.373	0.47	0.55	0.65	0.74	0.82	0.91	1.01
4	0.073	0.13	0.18	0.24	0.29	0.34	0.4	0.45	0.503	0.56	0.62
5	0.05	0.09	0.13	0.17	0.2	0.23	0.27	0.3	0.34	0.37	0.4
6	0.04	0.06	0.09	0.113	0.14	0.16	0.18	0.2	0.22	0.25	0.28
7	0.03	0.05	0.07	0.08	0.09	0.11	0.12	0.14	0.15	0.17	0.18
8	0.02	0.03	0.05	0.06	0.07	0.08	0.09	0.1	0.11	0.12	0.13
9	0.02	0.03	0.04	0.05	0.05	0.06	0.07	0.08	0.08	0.09	0.1
10	0.01	0.02	0.027	0.03	0.04	0.04	0.05	0.05	0.06	0.07	0.07

管电流为 0.5 mA 时,剂量与管电压关系数据 拟合曲线如图 2 所示。

管电压为 100kV 时,剂量与管电流的关系数据

拟合曲线如图 3 所示。

从表1和图2中可以看出,管电流和钢板厚度 相同时,剂量率随着管电压的增大而增大,且成二次 线性关系。管电压增大相当于增大了 X 射线的能 量,而剂量率是一种能量的表示。从图 2 中还可以 看出,X射线经过1mm冷轧钢板衰减后,三次拟合 曲线和二次拟合曲线效果相同,且与原始曲线几乎 相同。从表2和图3中可以看出,管电压和钢板厚 度相同时,剂量率随着管电流的增大而增大且成一 次线性关系。这与石成英、王玉玲等研究射线(包括 X 射线和 γ 射线) 在炸药柱中衰减规律, 得出的剂量 与管电流成二次线性关系的结论不太一样,也许是 仪器或测量方法的不同所造成的。管电流的增大相 当于增多了连续谱的光子数,光子数的增多,意味着 单位时间、单位体积内总能量增大,从而导致剂量率 的增大。从表1和表2中都可以看出,管电流和管 电压相同时,剂量率随着板厚的增大而减少,但减少 量越来越少直至 0(即 X 射线没有穿透钢板)。根据 上面的拟合曲线,可以计算出在某一管电流下,得到 某一剂量所需的管电压。或在管电压固定的情况 下,计算出得到某一剂量所需的管电流。

2.2 钢板的平均线衰减系数与管电压、管电流的 关系

将散射线和一次射线看成整体,X射线穿过每 一块钢板时将 X射线看成是单色窄束射线,将测量 的剂量率代入公式(1),算出 X射线穿过每块钢板 的平均线衰减系数。以 X射线穿过第一块为例,如 图 4 所示。

图 4 X 射线在第一块板中的平均线衰减系数与管电压的 关系

从图 4 可以看出 X 射线在第一块钢板中的平 均线衰减系数随着管电压的增大而减少,但平均线 衰减系数的减少速率逐渐降低。随着管电压的增 大,X射线中波长较长的射线所占比例逐渐减小,而 射线在冷轧钢板中的衰减主要是冷轧钢板对射线中 较长波长的吸收衰减,因此,在每块钢板中的平均线 衰减系数随着管电压的增大而减小。随着管电压的 增大,射线能量逐渐趋于单色射线能量(即衰减系数 逐渐趋于一个固定值),因此,每块钢板中的平均线 衰减系数减少速率逐渐降低直至 0。X射线在一块 冷轧钢板中的平均线衰减系数随着管电流的增大几 乎不变。管电流只影响 X射线中的光子数,与 X射 线的波长没有关系。因此,管电流的变化对冷轧钢 板中的平均线衰减系数没有影响。

2.3 剂量率与每块钢板平均线衰减系数关系

由 2.2 结论可知,随着管电流的增大每块钢板 中的平均线衰减系数几乎不变。因此,以管电流不 变,改变管电压,研究穿过每块钢板前的剂量率与每 块钢板衰减系数关系。以 I = 0.5mA 为例,如图 5 所示。图中 $\mu_1 \cdot \mu_2 \cdots \cdot \mu_{10}$ 表示每块钢板中的平均线 衰减系数,其中下标表示穿过的第几块冷轧钢板,且 与图中每条线上的点相对应。

图 5 X 射线穿过每块钢板前的剂量率与每块钢板中的平 均线衰减系数的关系

从图 5 可以看出,随着厚度的增大,穿过每块钢 板前的剂量率(即穿过前一块钢板后的剂量率)不断 减小,同时,X 射线在每块钢板中的平均线衰减系数 也不断减小。两者的减小量都在不断降低。图 5 中 X 射线穿过每块钢板前的剂量率与 X 射线在每块 钢板中的衰减系数的关系与连续谱穿过物体后强度 分布的变化相一致。在连续谱穿过物体后强度分布 的变化中,随着穿透厚度的增加,X 射线强度不断减 小,同时,射线的波长也不断减小。这也证明了,可 以用测量剂量代替测量射线强度。X 射线在物质中 的平均线衰减系数随着射线波长的减小而减小。 随着穿透厚度的增大,射线的等效能量提高,射 线发生"硬化",衰减系数减小,衰减系数的减小量越 来越小,衰减系数逐渐趋向于一个定值。连续谱线 近似成为单色射线。由于衰减系数的减少,穿透的 剂量率的减少量也不断减少。如果不考虑散射线和 剂量仪灵敏度的影响,随着厚度的不断增加剂量率 最后为零。

3 结论

1)将物体在射线穿透方向上的厚度分割成几块 厚度的叠加,散射线和一次射线看成整体,利用单 色、窄束射线穿透物体时强度的衰减规律研究宽束、 连续谱射线在物体中的衰减规律,其结果与理论上 宽束、连续谱在物质中的一般衰减规律相一致。

2)在管电压和管电流不变的情况下,宽束、连续 谱射线在冷轧钢板中的平均线衰减系数随穿透厚度

(上接第 30 页)

检测的情况来看,没有发现裂纹缺陷;焊缝表面根据 ASME标准第八卷附录八进行评定,热处理前主要 检查焊接缺陷,热处理后主要检查有无裂纹缺陷。 下面就缺陷的种类及处理方法做以介绍;

焊缝表面在热处理前的主要缺陷痕迹:

(1)未熔合:层间未熔合和边缘未熔合,直线状的红色显示。一般为 5mm~10mm 长;

(2) 气孔:大于 4.8mm 的单个气孔,圆形的红 色显示,气孔大于 3mm 时,有时没有红色显示,肉 眼可见。

(3)磨削裂纹:焊缝表面用砂轮机打磨,磨削量 过大时,会产生磨削裂纹,比较浅,其方向基本上垂 直磨削方向,并沿晶界分布或呈网状,渗透探伤时缺 陷痕迹呈红色断续条纹或网状条纹;

(4)密集气孔:气体保护不好时产生,在一个区 域内,有数个小气孔组成,肉眼可见,渗透探伤时,呈 间距小于 1.6mm 数个圆形显示;

(5)咬边:焊接时,由于电流过大,在焊缝边缘处 产生,渗透探伤时,断续地、直线状的红色显示,有时 肉眼可见。

对于上面缺陷进行打磨处理,直到把缺陷清除 干净,进行 PT 探伤确认,缺陷清除进行焊接、打磨, 的增加而不断减小且减小量逐渐减少。最后平均线 衰减系数为一个定值。这时的连续谱射线近似成为 单色射线。

3)在管电流和板厚相同的情况下,X射线在冷 轧钢板中的平均线衰减系数随着管电压的增大而不 断减小,最后衰减系数近似为一定值。在管电压和 板厚相同的情况下,X射线在冷轧钢板中的平均线 衰减系数随着管电流的增大几乎不变。

4)在板厚不变的情况下,穿透钢板所测得剂量 率随着管电压或管电流的增大而增大。

根据上述规律,我们可以通过更进一步的曲线 拟合和计算,选出穿透一定厚度冷轧钢材所需的管 电压和管电流。还可以根据各种金属材料之间的等 效系数,计算出穿透一定厚度的其他金属材料所需 的管电压和管电流。

参考文献(略)

再进行 PT 探伤,直到合格。

焊缝表面在热处理后的主要缺陷痕迹:横向裂 纹,这是焊缝热处理后的主要缺陷,是由于焊缝厚薄 不均,纵向收缩力大造成的。缺陷痕迹为红色的垂 直于焊缝的线性显示,当裂纹深度大时,渗透液会溢 出。这种缺陷处理不能完全靠打磨来消除,如果缺 陷深时,是打磨不掉的。处理的过程是:对于所发现 的横向裂纹,进行超声波探伤,确定缺陷的深度,深 度在 20mm 以内时,进行打磨处理;深度超过 20mm 时,要用碳弧气刨清除缺陷,打磨后进行 PT 探伤确 认。缺陷清除后,严格按照工艺要求进行焊接,打磨 后,进行 UT、PT 探伤。

5 结论

由于水轮机转轮结构的原因,渗透探伤是控制 水轮机转轮表面质量的主要方法,每次渗透探伤的 面积为 150m² 左右,采用水洗型着色渗透探伤方 法,灵敏度虽然较低,但通过选用好的探伤材料,严 格遵守和不断完善检测规程,可以弥补水洗型渗透 探伤方法的不足。通过 10 台水轮机转轮的探伤证 明,采用的检测工艺是正确的,探伤灵敏度能够满足 标准要求。