钻井工艺

VertiTrak 垂直钻井技术在高陡构造 天东 004 - X3 井的应用

刘文忠¹,易炳刚¹,范 宇¹,濮 强¹,肖金裕² (1西南油气田分公司 2 川庆钻探工程公司川东钻探公司)

刘文忠等. VertiTrak 垂直钻井技术在高陡构造天东 004 - X3 井的应用. 钻采工艺, 2010, 33(6): 36 - 39

摘 要: 天东 004 - X3 井属川东地区山前典型高陡构造井,地表实测地层倾角高达 80 度,相邻沙坪场构造井,在采取 8~12 kN 钻压吊打情况下,井斜仍达到了 6.3°~10.3°,且平均机械钻速仅 1.15 m/h。天东 004 - X3 井在采用美国贝克休斯的 VertiTrak 垂直钻井技术后,取得了平均机械钻速 3.63 m/h、全试验井段井斜角控制在 1°以内的"防斜与提速"双重效果。文中重点介绍垂直钻井系统在天东 004 - X3 井的应用情况,并对比分析所取得的综合经济效果和应用前景。

关键词: VTK 垂直钻井技术; 高陡构造; 应用; 井斜控制

中图分类号: TE 249 文献标识码: A DOI:10.3969/j. issn. 1006 - 768X. 2010. 06. 000

在川东地区的钻井中,如何有效实现高陡地层 的防斜打快,一直是一个普遍存在、亟待解决的技术 难题。目前大多采用了牺牲钻压,以降低机械钻速 为代价,但获得的控斜效果仍然很差,如沙坪场构造 井,其地层倾角 50°~80°,在采取 8~12 kN 钻压吊 打措施下,井斜仍达到了 6.3°~10.3°,且平均机械 钻速仅为 1.15 m/h,且给后续钻完井带来了诸多事 故复杂并造成极大损失。这些因素严重制约了川东 地区高陡构造的安全快速钻井,为此,西南油气田公 司与川庆钻探工程有限公司在2010年3月的《川东 地区大斜度水平井钻井研讨会》上,联合确定了引 进垂直钻井系统在川东地区选井进行试验,重庆气 矿根据会议要求精选了属高陡构造高倾角的天东 004 - X3 井, 开展 VertiTrak 垂直钻井系统试验(简 称 VTK 工具),取得平均机械钻速 3.63 m/h、全试 验井段井斜角控制在1°以内的"防斜与提速"双重 效果,为钻完井及固井质量的提高创造好的条件。

一、VTK 垂直钻井技术防斜打直的基本原理

VertiTrak 垂直钻井系统主要由 MWD 系统、高性能马达以及肋板三部分组成,它综合了 AUTO

TRAK(闭环旋转导向系统)、高性能 X - TREME 马 达、可靠的 MWD 三种技术开发出来的一种闭环自 动垂直钻井系统(图1)。其工作模式有两种:钻进 工作模式(滑动钻井模式),有1个或2个肋板在液 压的作用下伸出;划眼工作模式(复合钻进模式):3 个肋板全部收回。两种工作模式可以很方便地通过 开、停泵后的排量控制来进行设定。钻进时当 MWD 检测到有井斜趋势时,即可启动液压部件,通过1~ 2个肋板向井壁施加的反向作用力实现纠斜,同时 MWD实时传送井斜角数据到地面系统以便跟踪和 监测。当井眼完全垂直时,三个肋板全部收回,将钻 头始终保持居中,使井眼按垂直方向钻进,这一过程 自动完成,不需要人为干预,其最大降斜能力可以达 到1.5°/30 m,也可通过选择欠尺寸扶正器安装在 钻具组合中不同位置,预置降斜率的大小(1.5°~ 0.8°)/30 m,在钻进时通过调整钻压、排量等技术 参数也可以对降斜率做适当的微调。

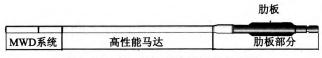


图1 VertiTrak垂直钻井工具示意图

收稿日期: 2010-09-02

作者简介: 刘文忠(1963 -)高级工程师,硕士,1990 年毕业于西南石油学院油气井工程专业,长期从事钻井与科研管理工作,现任西南油气田分公司重庆气矿副总工程师。地址:(400021)重庆市江北区南桥寺龙山路 542 号西南油气田分公司重庆气矿,电话:023 - 67312146, E - mail:liuwenzhong@ petrochina.com.cn

二、VTK 垂直钻井技术在天东 004 - X3 应用情况

天东 004 - X3 是四川盆地大天池气田龙门区块的一口开发井,地处重庆梁平县明达镇长久村镇5组,井口附近测得地层产状及倾角为135° ∠80°,地表出露为侏罗系统沙溪庙组地层,属典型的山前高陡构造,地层极易发生井斜、垮塌和井漏。该井于2010 年7月18日用 Ø444.5mm 钻头开钻,采取吊打的方式钻进(钻压不超过12 kN)至井深400 m一开完钻,在井深116.57 m、235.6 m、351.5 m测得井斜分别为1.4°、2.7°、3.0°。根据设计从二开开始于8月3日实施垂直钻井技术试验,按设计打完珍珠冲后于8月27日结束垂直钻井技术试验。垂直钻井作业井段415~1672.66 m,累计进尺1257.66 m,共8趟起下钻,累计作业时间559.5 h,其中纯钻时间343.5 h,占作业时间的61.4%,主要原因为该井设备较旧,维修时间较多,辅助时间占13.5%。

VTK 垂直钻井系统入井钻具组合: Ø311.2mm HA537G + VTK 工具 + Ø240mm 单向阀 + Ø240mm 滤网短节 + Ø305mm 扶正器 + Ø228.6mm 减震器 + Ø228.6mm 钻铤 + Ø202.3mm 钻铤 + Ø202.3mm 随 钻震击器 + Ø177.8mm 钻铤 + Ø127mm 加重钻杆 + Ø127mm 钻杆。主要钻井参数:钻压 200~250 kN, 转速 30 r/min(复合钻进模式),泵压 12~18 MPa, 排量 45~48 L/s。第 1 趟钻在 446.61 m 处将井斜 降为 0.98°, 后续钻井过程中井斜均控制在 1°内, 前 5 趟钻井液密度 1.15~1.25 g/cm3,平均机械钻速 5.3 m/h。在进入珍珠冲后由于井壁有轻微掉块出 现,及时将钻井液密度 1.30 g/cm3提高至 1.36 g/ cm³恢复正常,提密度后 3 趟机械钻速降至 2.1 m/ h。该井平均机械钻速 3.63 m/h。其中,同比 400~ 415 m、1440.38~1442.78 m 常规钻具方式钻进,机 械钻速分别提高了4.32倍和2.79倍。并保持井斜 在1°以内,垂直钻进井段统计对比情况见表1。

秋· 至且用近月校元月初的旧龙林										
钻进	T: 44 H FA	结束井段		进尺	机械钻速		钻井	参数		井斜
方式	开始井段	垣米井 枝	地层	近八	机燃油速	钻压	转速	泵压	排量	カが /(°)
刀式	/m	/m		/m	/m·h ⁻¹	/kN	∕r•min ⁻¹	/MPa	/L•s ⁻¹	/()
常规	400.00	415.00	沙溪庙	15.00	0.84	100	65	10	45	2.5~2.7
	415.00	572.61	沙溪庙	157.61	6. 15	200 ~ 250	螺杆	11 ~ 12	46	2.5~0.2
	572.61	767.48		194.87	5.57	200 ~ 250	螺杆	12 ~ 13	46	0.5~0.3
VTK	767.48	971.40		203.91	5. 10	200 ~ 250	螺杆	13 ~ 14	46	0.5~0.2
	971.40	1207.29	珍珠冲	235.89	4.81	200 ~ 250	螺杆	14 ~ 15	46	0.3~0.2
	1207. 29	1440.38		233.09	4.95	200 ~ 250	螺杆	15 ~ 16	46	0.6~0.2
常规	1440.38	1442.78	珍珠冲	2.40	1.30	250	60	17	46	0.5~0.4
	1442.78	1533.35	珍珠冲	90.57	2.06	200 ~ 250	螺杆	16 ~ 17	46	0.5~0.3
VTK	1533.35	1615.7	~	82.35	1.61	200 ~ 250	螺杆	16 ~ 18	46	0.5~0.2
	1615.70	1672.66	须家河	56.96	1.07	200 ~ 250	螺杆	16 ~ 18	46	0.3~0.1

表 1 垂直钻进井段统计对比情况表

三、VTK 垂直钻井技术试验中的 配套保障技术

1. 高陡构造高倾角防塌技术

为了更好地抑制井壁应力和水化膨胀垮塌,该 井在使用 VTK 垂直钻井技术井段使用了强包被、强 封堵、强抑制、超低渗透钾钙沥青质聚合物钻井液, 并对流变性做了特殊要求。该体系钻井液通过引入 K⁺、Ca²⁺等无机阳离子,提高体系滤液矿化度和抑 制能力,增强体系抗黏土水化分散的能力。加入降 滤失剂,降低钻井液滤失量,减少钻井液由于压差作 用而导致的大量滤液进入易塌地层,引起黏土矿物 水化膨胀、分散、剥落等,减少井塌的可能性。加入 大分子主聚物,以增强体系的包被、絮凝、防塌能力。加入沥青类处理剂,利用其变形和胶结特性,提高体系的封堵和胶结能力,实现封堵泥页岩等易塌地层中微裂缝、胶结破碎岩石的目的,达到减少体系中滤液渗透入地层中、提高易塌地层坍塌压力的目的,从而提高体系防止应力垮塌的能力。

2. 防 MWD 仪器堵塞技术措施

由于 MWD 系统由重力传感器、控制电路、涡轮 发电机、脉冲发生器等组成,要求保持钻井液清洁, 预防堵塞仪器。因此,该井下钻前,一是对有钻具、 接头水眼进行了检查清洗,二是安装钻杆滤子。每 次接单根,记得取、放钻杆滤子,并及时清洁。遇到 井漏需要添加堵漏材料时,需视漏速大小及时与贝 克现场工程师协商后添加。必要时,将 VTK 起出地面,下光钻杆堵漏。

3. 防 VTK 工具托压技术措施

由于 VTK 垂直钻进时转盘不转动,是滑动钻进。上返岩屑易在扶正器处堆积,造成钻压加不到钻头上的现象,这不仅影响钻速,也给井下的判断带来难度。为此,在钻进过程中,如地层无明显变化,钻头不在使用后期,发现钻时变慢,可判断为托压。此时可采取上下活动钻具,加大排量或转换为复合钻进模式。在天东 004 - X3 井垂直钻井技术试验中,托压现象在每钻进 2~3 根单根偶尔会出现,转为复合钻进模式后立即就解除、钻速明显提高。

4. 及时调整密度加大排量确保井下工具安全

自流井组是川东地区上部极易垮塌地层,主要 分为大安寨、马鞍山、东岳庙、珍珠冲。尤其是东岳 庙、珍珠冲段最易垮塌,东岳庙段以灰黑色页岩为 主,夹薄层灰岩及灰质砂岩;珍珠冲段岩性为浅灰带 绿色、深灰带绿色粉砂质泥岩及泥质粉砂岩为主,夹 杂色泥岩及灰白色、灰绿色粉砂岩。为了更好的防 止井下出现垮塌,在揭开该地层之前,及时采取调整 密度、加大排量以及高黏携砂等措施,虽该井井壁在 应力失稳期内,出现了一些小的掉块和憋转盘现象, 但均保证了正常的起下钻,确保 VTK 垂直钻井技术 试验成功和工具安全。

四、VTK 垂直钻井技术应用的 经济技术效果评估

天东 004 - X3 井首次引进垂直钻井技术进行试验,取得了较好的防斜打快的效果,选取与同均属于大天池气田、相邻的沙坪场高陡构造、地表倾角在50°~80°的天东80 井、天东81 井、天东82 井、天东87 井及天东88 井进行对比分析。见表2。

1. 大幅度提高机械钻速

天东 004 - X3 井在沙溪庙 ~ 珍珠冲井段使用 VTK 垂直钻井后,总进尺 1257.66 m,纯钻 346.5 h,取得了平均机械钻速 3.63 m/h,行程钻速 49.08 m/d。而沙坪场高陡构造的天东 80 井等 5 口在此井段平均机械钻速只有 1.15 m/h,行程钻速只有 19.06 m/d,最高的天东 81 井机械钻速也只有 2.05 m/h,行程钻速只有 33.77 m/d(见表 3),对比得出,其机械钻速提高了 1.75 ~ 4.56 倍,平均机械钻速提高 2.1 倍;行程钻速提高了 1.45 ~ 3.6 倍,以此进行计算可节约钻井周期 14 ~ 97 d,平均节约钻井周期 53.6 d。

	T	III. El les de	AL En	ж п	Cata talanda da d	H. J. 121	±4.44.n4	4-101 ELVE
井号	层位	地层倾角	井段	进尺	纯钻时间	钻井周期	机械钻速	行程钻速
<u> </u>		/(°)	/m	/m	∕h	/d	/m•h ⁻¹	/ m·d ⁻¹
天东 004 - X3 井	沙溪庙~珍珠冲	80	415 ~ 1672.66	1227	340.5	25	3.60	49.08
天东 81 井		73	300 ~ 1617	1317	640.6	39	2.05	33.77
天东 80 井		80	260 ~ 1452	1192	721.4	45	1.65	26.49
天东 82 井		50	194 ~ 2050	1856	1366.2	78	1.35	23.79
天东 87 井		73	237 ~ 1860	1623	1877.5	122	0.86	13.30
天东 88 井	, 'T	80	292 ~ 1794	1502	1896.9	109	0.79	13.77

表 2 机械钻速与行程钻速对比表

表 3 高陡构造井沙溪庙~珍珠冲井段井斜统计对比

井号	井段	地表倾角	最大井斜	同比节约
л ⁻ 5	/m	/(°)	/(°)	进尺/m
天东 004	415 ~	80	0.6	
- X3	1672.66	80	0.6	_
天东 81	300 ~ 1617	73	8.5	8
天东 80	260 ~ 1452	80	8.5	12
天东 82	194 ~ 2050	50	10.3	14
天东 87	237 ~ 1860	73	6.3	9
天东 88	292 ~ 1794	80	8.9	11

2. 不仅井斜得到有效控制,而且也起到了减少钻井进尺的作用

天东 004 - X3 井在使用 VTK 垂直钻井技术之前,井斜角一度在井深 351.5 m 逐渐增大至 3°,而在使用垂直钻进的 415 ~ 1 672.66 井段,其井斜角降低到 1°以内,且得到了有效控制(图 2)。而相邻构造沙坪场高陡构造的天东 80 井等 5 口,在采用低压吊打的情况下,井斜仍然较大,最大井斜天东 82 井达到了 10.3°,最小井斜天东 87 井也有 6.3°(表4)。以此井斜进行测算,天东 004 - X3 井可节约钻井进尺 8~14 m。

3. 提高井身质量为钻完井创造条件

虽然减少井斜、提高井身轨迹质量,对后续的钻 完井控制、甚至减少事故复杂没有直接的因果关系, 但有一点是可以肯定的,它将为后续钻完井创造了较好的条件,也对事故复杂的减少起到了不可忽视的作用。这里仅以天东004-X3使用 VTK 垂直钻井技术的井段与邻构造沙坪场的天东80井等5口井同井段(表4)比较,天东80井等5口均出现了复杂情况,而天东004-X3在使用 VTK 垂直钻井技术的井段未造成遇阻划眼复杂损失。

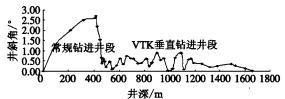


图2 天东004-X3井常规方式钻进与VTK垂直钻进井斜对比

五、结论及建议

- (1)在川东地区高陡构造的高倾角井,使用 VTK 垂直钻井技术,能有效地实现防斜打快,取得 "防斜与提速"双重效果,其综合经济效果突出,在 高陡构造的高倾角井具有很大推广应用价值,也能 给后续钻井创造较好井身质量。
- (2)该井采用的钾钙沥青质聚合物防塌钻井液体系;及时调整密度、加大排量以及高黏携砂措施以及防 VTK 工具托压措施等确保了井下安全,达到 VTK 垂直钻井技术试验不卡钻、不埋试验工具的目的。

表 4 与邻构造高倾角井复杂情况统计对比表

#8	E A	井段	钻井液	最高钻井液密度	复杂损失时间	复杂时率	
井号	层位	/m 类型 /g·cm ⁻³		∕h	支 乐可华		
天东 004 - X3 井		415 ~ 1672. 66	钾钙沥青质	1.36	0	0%	
天东 81	沙溪庙	300 ~ 1617	聚合物	1.32	104.11	12.10%	
天东 80 井	庙	260 ~ 1470	钾钙沥青质	1.70	189.09	15.15%	
天东 82 井	珍	194 ~ 2050	钾钙沥青质	1.60	100.96	5.39%	
天东 87 井	珍珠冲	237 ~ 1860	钾钙沥青质	1.75	428.58	14.63%	
天东 88 井	ויי	292 ~ 1794	钾钙沥青质	1.64	9.38	0.35%	

- (3)恰当的钻头选型和正确判断钻头磨损情况,对充分发挥垂直钻井技术的提速效果非常重要。不仅有利于提高机械钻速,也可以延长钻头钻进时间,减少起下钻,提高钻井时效。本井前三只钻头因担心钻头严重磨损后牙轮掉井,均未使用到位,取出来的新度均有70%,从后续使用HAT537G钻头在自流井以及须家河顶部钻进情况看,钻头使用时间在45h以上,起出钻头效果非常理想,该井若前3只钻头均使用到位,还会进一步提高提速效果。
- (4)建议应用 VTK 垂直钻井技术时,考虑使用 顶驱,可以节约接单跟和转换钻井模式时间,另外在 钻井设备的配套安排上,应尽考虑设备状况较好的 队伍,以利于充分发挥 VTK 垂直钻井技术提速效果,减少组停时间。

参考文献

[1] 丁红,陈杰,陈志学,等. 垂直钻井技术在青探1井的

- 应用[J]. 石油钻探技术,2007,35(3):30-32.
- [2] 杨春旭,韩来聚,步玉环,等. 现代垂直钻井技术的新发展及发展方向[J]. 石油钻探技术,2007,35(1):16-19.
- [3] 张绍槐. 深井、超深井和复杂井结构井垂直钻井技术 [J]. 石油钻采技术,2005,33(5);11-15.
- [4] 王希勇,熊继有. 川东北钻井新工艺应用与效果[J]. 钻采工艺,2008,31(1):125-128.
- [5] 刘以明,蔡文军,王平,等. Power V 和机械式随钻测斜仪在黑池 1 井的应用[J]. 石油钻探技术,2006,34(1):71-73.
- [6] 刘磊,刘志坤,高晓荣. 垂直钻井系统在塔里木油田应用效果及对比分析[J]. 西安石油大学学报(自然科学版),2007,22(1):79-81.
- [7] 刘以明,瞿建明,邓榜枢,等. Power V 垂直钻井技术在 黑池 1 井的应用[J]. 南方油气,2005,18(2):51-53.

(编辑:黄晓川)