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Risk assessment of coal mine water 
inrush based on PCA‑DBN
Ye Zhang, Shoufeng Tang* & Ke Shi

To provide an effective risk assessment of water inrush for coal mine safety production, a BP neural 
network prediction method for water inrush based on principal component analysis and deep 
confidence network optimization was proposed. Because deep belief network (DBN) is disadvantaged 
by a long training time when establishing a high-dimensional data classification model, the principal 
component analysis (PCA) method is used to reduce the dimensionality of many factors affecting 
the water inrush of the coal seam floor, thus reducing the number of variables of the research object, 
redundancy and the difficulty of feature extraction and shortening the training time of the model. 
Then, a DBN network was used to extract secondary features from the processed nonlinear data, 
and a more abstract high-level representation was formed by combining low-level features to find 
the expression of the nonlinear relationship between the characteristics of water in bursts. Finally, 
a prediction model was established to predict the water inrush in coal mines. The superiority of this 
method was verified by comparing the prediction of the actual working face with the actual situation 
in typical mining areas of North China. The prediction accuracy of coal mine water inrush obtained 
by this algorithm is 94%, while the prediction accuracy of traditional BP algorithm is 70%, and the 
prediction accuracy of SVM algorithm is 88%.

Deep mining of the Carboniferous Taiyuan Formation system is carried out in most North China-type coal 
mines. Because of its proximity to Ordovician limestone, water inrush accidents often occur. Therefore, the 
prediction of coal mine water inrush is a necessary part of coal mine safety production. The research and develop-
ment of coal mine water inrush prediction are based on research on the mechanism of coal seam water inrush. 
Through this research on the mechanism of water inrush, many scholars in China and abroad have determined an 
index system for water inrush and defined the related influencing factors of water inrush. Regression  analysis1–4, 
classification  technology5, geographic information  systems6, support vector  machines7–10, neural  networks11, 
extreme learning  machine12,13 and other data analysis algorithms are applied to the prediction of coal mine water 
inrush, and the probability of water inrush accidents is analysed and evaluated, which provides data support for 
coal mine safety production. The law of influencing factors of coal mine water inrush accident is discrete and 
nonlinear. Multivariate discriminant analysis is a linear discriminant analysis model, such as Fisher model, and 
the accuracy rate may be very low when learning samples are inappropriate. BP neural and SVM have problems 
of slow convergence speed and local minimum point. When the latter is solving m-order matrix, large scale 
storage and calculation will consume machine memory and calculation time.

This paper proposes a coal mine water inrush prediction method based on the combination of PCA and DBN. 
PCA can effectively reduce the complexity of deep learning neural network diagnosis model, while DBN neural 
network not only has strong learning ability, but also has strong data feature extraction and feature transforma-
tion ability. This method has the advantages of strong anti-interference ability and high accuracy of prediction.

Analysis of the influencing factors of water inrush
The occurrence of water inrush accidents in coal mines is the result of the joint action of many influencing 
factors. The interactions between the influencing factors that contribute to the water inrush accidents form a 
nonlinear system, which cannot be accurately expressed by the classic mathematical model. In China, the study 
of water inrush law began in the 1960s. The water inrush coefficient method was proposed by the Ministry of 
Coal, and the empirical formula of the water inrush coefficient was  established14. Professor Jing Zigang of Shan-
dong University of Science and Technology proposed the theory of "the next three belts"15. Dr. Liu Tianquan 
and Zhang Jincai of the General Institute of Coal Mine proposed the "two-zone" model, which considered that 
floor rock masses were composed of mining-induced water-conducting fissure zones and floor water-isolating 
 zones16. In the twenty-first century, Professor Shi Longqing of Shandong University of Science and Technology 
put forward the theory of the "Lower Four Belts" based on the theory of "Lower Three. Belts"17. The Institute of 
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Geology, Chinese Academy of Sciences, put forward the theory of a "strong seepage channel" in the 1990s, which 
believes that the presence of a water inrush channel is the key to the occurrence of water  inrush2. Qian Minggao, 
an academician at the China University of Mining and Technology, proposed the KS theory of key strata of stope 
floor rock according to the layered structure characteristics of floor  rock18. But most of these prediction methods 
for coal mine water inrush are limited to the evaluation of a key control factor, which is based on the calculation 
method of geological theory. The nonlinear dynamic characteristics of the occurrence process of water inrush 
and a va Main controlling factors of water inrush from coal seam floor.

5 major factors influence coal seam water inducing: confined aquifer, coalfield geological structure, Water 
barrier condition, aquifer performance and mine pressure failure development zone.

Aquifer conditions. An aquifer conditions provides water and power for water inrush. The main influenc-
ing factors of a confined aquifer are aquifer water pressure, working face distance and aquifer thickness.

Coal seam condition. The dip Angle of coal seam is the main factor affecting the depth of mining failure. 
The decrease of mining failure depth can effectively strengthen the thickness of waterproof layer. When the 
thickness of the coal seam is thick, it needs to be mined in layers, and each layer will destroy the integrity of the 
floor and reduce the waterproof performance.

Structure condition. The geological structure provides water-inrush passages for water inrush, and main 
factors influencing water inrush accidents is faults. The main impacts of faults are, groundwater passage will be 
formed due to the stress damage caused by the fractured rock stratum and coal mining. And the mechanical 
strength of the fault zone rock is greatly reduced because of the tectonic stress.

Water barrier condition. The coal seam aquifer is a water-repellent layer between the seam floor and the 
aquifer, which has an inhibitory effect on coal water inrush. The combination of lithology influenced the water 
barrier performance of the aquifer . Stratigraphic lithology indicate the mechanical strength of the rock layer or 
its ability to resist water pressure.

Mining condition. The original pressure balance of the mine is destroyed by the mine excavation works, 
and the resulting changes in the geological and hydrological conditions of the coal seam will induce water-inrush 
accidents. The main influencing factors of confined water pressure are mining area, strike length and mining 
height. The Influencing factors of coal seam water inrush as shown in Table 1.

The theory of methods
PCA. PCA is a dimension reduction algorithm. The principle is that the use of multiple indicators through 
linear transformation converts the comprehensive indicators of several unrelated indicators to each other, and 
according to certain rules to classify the integration of the comprehensive index, never reduces the dimension of 
the original data, extracts the main information in the original data, and minimizes the information loss in the 
process of the dimension reduction algorithm.

There is information overlap among the variables influencing the occurrence of water inrush, which will 
increase the cost and time of the classification prediction algorithm and reduce the success rate of its prediction. 
PCA is used to carry out dimensionality reduction processing on the original feature data, eliminate redundant 
information within the acceptable loss range, save the key evaluation index factors, and realize the dimensionality 
reduction of the evaluation  index19.

Table 1.  Influencing factors of coal seam water inrush.

Aquifer conditions

Aquifer water pressure

Working face distance

Aquifer thickness

Water barrier condition

Thickness of argillaceous rock

Thickness of Sandy Rock

Thickness of limestone section

Coal seam condition
Coal seam thickness

Coal seam dip angle

Structure condition Fault fall

Mining condition

Mining area

Strike length

Mining height
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DBN. DBN is composed of a stack of several Restricted Boltzmann machine (RBM) and a classification or 
regression layer at the top. Through forward learning combined with the reverse fine-tuning mechanism of gra-
dient descent, more accurate model training accuracy can be achieved.

RBM. RBM is a probabilistic abrupt model that can be explained by a stochastic neural network. In the clas-
sic RBM structure, neurons located in the same layer have no correlation with each other. This structure is 
developed on the basis of a Boltzmann machine (BM), which solves the shortcoming of the unacceptably slow 
training speed of traditional RM and improves the training speed of the  network20.

RBM is composed of two layers of neurons as shown in Fig. 1. There is undirected full connection between 
different neurons, and there is no connection between neurons in the same layer. Data are input by the visual 
layer and output by the hidden layer after training by neurons and weight matrix.

With given a cell node (v, h), the energy function of RBM is

Based on the energy function, the following probability distribution under the condition Θ = (wn×m, a, b) 
can be obtained:

Z is the normalized coefficient.
The activation probabilities of h and v are obtained after the activation function sigmoid:

The core formula of the RBM algorithm is the activation formula of h and v. Data are input from the visual 
layer, and the characteristic index is mapped from the visual layer to the neurons of the hidden layer through 
Eq. (5). Then, the output value obtained is reconstructed to the visual layer v through Eq. (6), and the error 
between the reconstructed data in the original data domain is calculated. The weight parameters between the 
visible and hidden layers are adjusted by the error minimization rule so that the reconstructed data can represent 
the original input data to the maximum and achieve the goal of feature extraction. In fact, the goal of the training 
process of the RBM algorithm is to solve the Markov maximum likelihood estimation problem; that is, under 
the condition of fixed data input, the PΘ(v) value is maximized by adjusting the internal parameters of the RBM.

DBN network structure. A DBN is composed of multiple stacked RBMs, which construct a typical DBN 
network model. Compared with the shallow neural network, this kind of stacked DBN structure has a deeper 
network level and better model generalization ability. Traditional neural networks rely on the selection of data 
features, while DBN can extract hidden features from input data by setting multiple hidden  layers21.
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Figure 1.  RBM structure diagram.
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The DBN is composed of a cascading RBM and a back propagation algorithm adopted in the top layer as 
shown in Fig. 2. The algorithm training process is divided into two parts: pretraining and parameter fine-tuning. 
Pretraining means that the input data are trained layer by layer unsupervised by the bottom RBM, and the output 
of the previous layer will be used as the input data of the upper-layer RBM. This structure can effectively screen 
out the feature information. The parameter fine-tuning process involves overall tuning and supervised training. 
The error between the expected data in the output data domain is propagated back layer by layer to fine-tune 
the parameters of the entire  network22. The original data is shown in Table 2.

The DBN prediction model. The coal mine water inrush accident data presents non-linear, high-dimen-
sional characteristics, and there are complex interrelationships among various water inrush accident-related fac-
tors. Most of the current prediction and evaluation methods cannot effectively extract a large number of hidden 
features in the data, resulting in a more partial water inrush accident model, which affects the prediction accu-
racy and cannot provide effective support for safely mining in coal mines. Therefore, there are two main aspects 
of model design ideas in this paper: converting high-dimensional influencing factors into low-dimensional, 
easy-to-train data and more complete extraction of features in the  data23.

The PCA data dimensionality reduction. The PCA algorithm is used to perform nonlinear dimension-
ality reduction on the main control factors of coal mine water inrush and to standardize the data proof of the 
coal mine’s actual sampling. SPSS software is used to perform principal component analysis on the correspond-
ing measured data. The selection criterion of principal components is that the cumulative variance contribution 
rate must exceed 80%. Since the cvcp value of the first to the sixth principal component is approximately 83%, 
these six components contain most of the information required for water inrush prediction, and thus, the first 6 
components are used for floor water inrush evaluation. The contribution rate and cumulative contribution rate 
of principal components are shown in Table 3.

input data

output data errorExpected output data

Unsupervised pretreatment

Parameter tuning

RBM

RBM

RBM ...

...

...

...

...

Figure 2.  DBN model.

Table 2.  Original data.

Water 
pressure Distance

Aquifer 
thickness

Argillaceous 
rock Sandy Rock

Limestone 
section Coal seam Dip angle Fault fall Mining area Strike length

Mining 
height

15 12.31 3.4 88.871 7.067 4.062 0 25 10 746 22 1.4

23.1 39.66 5.75 0 0 0 0 9.25 5 14,130 122 1.45

17.85 31.58 5.79 0 0 0 0 15 4 13,304 100 1.45

8.48 32 5.5 0 0 0 0 10 1 1000 20 1.7

21.6 30.53 5.99 67.9 12.643 13.528 5.929 13.5 1.6 346.5 15 1.55

17.29 43.45 5.39 0 0 0 0 10.5 1.5 7284 136 1.65

18.08 40 4.16 40.275 40.375 14.85 4.5 7.5 1.3 16,160 162 1.55

… … … … … … … … … … … …

8.1 16.1 4.49 97.205 0 2.795 0 12 1.5 1040 31 1.5

24 45.11 6.17 0 0 0 0 10 11 21,857 258 1.45

25.12 41.11 5.297 34.374 62.659 1.095 1.873 7 5 972 63 1.4
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DBN model training. Use SMOTE algorithm to expand 100 sets of data into 300 sets of water inrush 
datasets, and the PCA is used to reduce dimensionality. The reduced-dimensional data is input into the DBN for 
pretraining. The pretraining first initializes the weight matrix between each layer, traverses the input vector and 
the hidden layer neuron nodes, and then outputs the neuron parameters after the first RBM is trained. As the 
input vector of the second RBM, it is finally passed layer-by-layer to the highest layer. According to the results 
of the pretraining output layer, the error between it and the expected output backpropagation from each output 
layer to the hidden layer updates the parameters of each  layer16.

The advantage of the model lies in the use of DBN abstraction to extract output data features and a neural 
network as the top-level unit of DBN to predict water inrush after extracting new features. The model prediction 
process is shown in Fig. 3.

A 4-layer RBM network is established, the number of input layer nodes is determined by the data dimension, 
and the number of hidden layer nodes is obtained by the ‘trial and error method.

The unlabeled training data is input into the DBN network, the RBM parameters are pretrained layer-by-layer, 
and we optimize the RBM parameters locally.

The labeled training data is input, the error back is propagated layer-by-layer, and the gradient descent method 
is used to update the weights of the DBN network until convergence.

All data is input into the network for feature learning, and the output reconstructed feature data is extracted.
The feature data is divided into test and training data, the labeled training data is input into the BP neural 

network for training, and the trained network is used to predict the test set. The predicted water inrush situation 
is compared with the actual situation and the prediction result is evaluated.

Algorithm verification. The proposed method is used to test the water inrush data of the measured work-
ing face in a typical mining area in North China, and the water inrush situation is predicted and compared by 
DBN, SVM, BP and other classic algorithms. The three types of modeling use the same number of samples, 
which are all data after oversampling. After the original data is processed by the PCA, the dimensionality of the 
feature values is reduced to 6. The algorithm is written in Python.

Table 3.  Contribution rate and cumulative contribution rate of principal components.

Element vcp (%) cvcp (%)

1 32.38 32.38

2 15.67 48.05

3 13.52 61.57

4 10.01 71.58

5 6.02 77.6

6 5.82 83.4

Data set of factors related to 
coal mine water inrush

PCA data dimensionality 
reduction

Improve the SMOTE algorithm 
to expand the data set

Build a DBN model

Extract the training feature 
set

BP classification prediction 
algorithm

Water inrush forecast

Extract test feature set

Training data set Test data set

Divide the data set into training set 
and test set

Feature extraction

Figure 3.  Algorithm flow chart.
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The data in Table 4 is entered into the DBN model, and the results are shown in Table 5, Figs. 4 and 5. There 
are three incorrect predictions, which means that the correct rate is 94%. The reason for the incorrect predic-
tion sample may be the result of an insufficient sample size and missing features in dimensionality reduction. In 
the training process, better dimensionality reduction methods can improve the accuracy of the algorithm. The 
correct rate of the BP neural network using oversampling data is 80%, the correct rate of the water burst coef-
ficient method is 60%, and the SVM algorithm using the SMOTE oversampling data is 88%, and the accuracy 
rate of the DBN algorithm trained with the unexpanded data training set is 85%. It can be seen from Table 6 that 
the accuracy rates of the water inrush risk prediction models proposed in this paper are better than the rates of 
these method.

The model proposed in this paper can be directly applied to the prediction of water inrush from coal fields 
in North China. The prediction results show that DBN can effectively extract features. DBN has good perfor-
mance for nonlinear and interrelated data, such as water inrush influencing factors. The preprocessing function 
can effectively improve the prediction effect of the BP neural network. In summary, the DBN prediction model 

Table 4.  Part of the data after PCA dimensionality reduction.

No s1 s2 s3 s4 s5 s6 Result

1 0.117647 0.435 0 0.23 0 0.4307 0

2 0.647059 0.675 0 0 0 0.779434 1

3 0.235294 0.495 0.590164 0.17 0 0.38152 0

4 0.352941 0.48 0 0 0 0.353204 0

5 0.117647 0.555 0.491803 0 0 0.390462 0

6 0.705882 0.53 0.655738 0 0 0.351714 0

7 0.176471 0.435 0.491803 0.18 0 0.324888 0

8 0.294118 0.615 0.606557 0.4 0.091017 0.508197 0

9 0.117647 0.45 0.491803 0 0 0.350224 0

10 0.470588 0.545 0.622951 0.39 0.134752 0.415797 1

11 0.176471 0.56 0.606557 0.3 0 0.470939 1

12 0.058824 0.665 0.836066 0.28 0.165485 0.488823 1

… … … … … … … …

247 0.411765 0.905 0.688525 0.21 0.22695 0.535022 1

248 0.352941 0.97 0.639344 0 0 0.350224 1

249 0 0.755 0.737705 0.46 0 0.627422 0

250 0.529412 0.725 0.655738 0.46 0.153664 0.564829 1

Table 5.  Comparison of model results and actual results.

Water inrush instance number Forecast result Actual results Whether it meets the measured results

251 0 0 Y

252 0 0 Y

253 0 0 Y

254 0 0 Y

255 1 1 Y

256 0 0 Y

257 0 0 Y

258 0 1 N

259 0 0 Y

260 0 0 Y

261 1 1 Y

262 0 0 Y

263 1 0 N

264 0 0 Y

… … … …

297 0 1 N

298 0 0 Y

299 1 1 Y

300 0 0 Y
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Figure 4.  Ablation experiment.
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1.2  Forecast result
 Actual results

Figure 5.  The prediction results.

Table 6.  Comparison of prediction results of different models.

Methods

Time/s Accuracy rate/%

Training set Test set Training set Test set

BP 0.5822 0.0154 84.98 80

SVM 0.0057 0.0032 85.23 88

DBN 0.0062 0.0031 86 85

PCA-ELM 0.0024 000,012 85.51 90.80

LLE-SVM 0.0034 0.0016 84.35 90

PCA-DBN 0.0022 0.0009 87.17 94
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based on PCA has a good predictive effect on water inrush data. It can also make a more accurate water inrush 
risk assessment for coal mine safety production.

Conclusion
There are many risk factors affecting coal floor water inbursts, and some data are redundant. Principal component 
analysis reduces the data dimension without damaging the integrity of the data and saves the cost of the training 
algorithm. By training relative to the original features of PCA and BP, the PCA-DBN model is more effective for 
extracting the characteristics of water inrush that influence the original data, improving the training accuracy 
and generalizing the performance of the model. As a result, the PCA-DBN model can eliminate the defects of 
traditional algorithms for feature selection, extract implicit characteristics in complex hydrogeological informa-
tion, and effectively filter the missing and noise data to establish a more reliable evaluation model for water inrush 
accidents. The case analysis shows that the predicted value of the model is consistent with the actual situation of 
water inrush in coal mines, and the following conclusions are drawn:

(1) The multidimensional redundant input data will complicate the structure of the DBN. PCA is used to reduce 
the dimensionality of the data, extract the nonlinear features of the high-dimensional data, and input them 
into the deep confidence network, which can simplify the network structure and improve the accuracy of 
the model.

(2) Compared with the traditional BP network, the PCA-BP network model and the water inburst coefficient 
method, the PCA-DBN model proposed in this paper has the highest prediction accuracy. In subsequent 
research, the network model can be optimized from the structure of the DBN network itself, and other 
algorithms can be integrated to further improve the model’s  accuracy24–26.
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