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Abstract
Feline leukemia virus (FeLV), which is subclassified into three subgroups of A, B and C, is a pathogenic retrovirus in cats. FeLV-

A is minimally pathogenic, FeLV-C can cause pure red cell aplasia, and FeLV-B is associated with a variety of pathogenic properties

such as lymphoma, leukemia and anemia. FeLV-induced neoplasms are caused, at least in part, by somatically acquired insertional

mutagenesis in which the integrated provirus may activate a proto-oncogene or disrupt a tumor suppressor gene. The common

integration sites for FeLV have been identified in six loci with feline lymphomas: c-myc, flvi-1, flvi-2 (contains bmi-1), fit-1, pim-1

and flit-1. Oncogenic association of the loci includes that c-myc is known as a proto-oncogene, bmi-1 and pim-1 have been

recognized as myc-collaborators, fit-1 appears to be closely linked to myb, and flit-1 insertion is shown to be associated with over-

expression of a cellular gene, e.g. ACVRL1. Thus, identification of common integration sites for FeLV is a tenable model to clarify

oncogenesis. Recent advances in molecular biology and cytogenetics have developed to rapidly detect numbers of retroviral

integration sites by genome-wide large-scale analyses. Especially, polymerase chain reaction (PCR)-based strategies and

chromosome analyses with fluorescence in situ hybridization (FISH) will be applicable for studies on FeLV.
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Feline leukemia virus (FeLV) is a type-C retrovirus

horizontally transmitted among outbred domestic cat

populations in natural conditions. FeLV is subclassified

into three receptor interference subgroups of A, B and

C, which have been defined by genetic sequence

variation in the surface glycoprotein unit (SU) of

envelope gene (env) including the receptor binding

domain (RBD) (Neil et al., 1991; Roy-Burman, 1995;

Chen et al., 1998; Ramsey et al., 1998). FeLV-B, and

probably FeLV-C also, can be formed in vivo by

recombination of FeLV-A env sequences with corre-
* Corresponding author. Tel.: +81 3 5841 5413;

fax: +81 3 5841 8178.

E-mail address: afujino@mail.ecc.u-tokyo.ac.jp (Y. Fujino).

0165-2427/$ – see front matter # 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.vetimm.2008.01.019
sponding, but varied endogenous FeLV-like elements.

Due to the variation of env, FeLV-B and FeLV-C exhibit

a polytropic host range, being able to infect cells of

homologous as well as certain heterologous species,

whereas FeLV-A is an ecotropic virus, whose host range

is practically restricted to cat cells. Recent studies

suggest that each subgroup of FeLV uses different kinds

of transporter proteins as a receptor (Boomer et al.,

1997; Tailor et al., 1999; Quigley et al., 2000; Mendoza

et al., 2006). Persistent infection of FeLV is associated

with induction of various degenerative and proliferative

diseases in the hematopoietic cell lineages in cats

(Linenberger and Abkowitz, 1995; Roy-Burman, 1995;

Rohn et al., 1996). FeLV-A is minimally pathogenic in

the absence of other variants. One of the variants, which

is replication defective due to a mutation in the env
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gene, can induce immunodeficiency syndrome (Mullins

et al., 1986; Overbaugh et al., 1988). FeLV-C can be

uniquely associated with the development of pure red

cell aplasia (PRCA). FeLV-B isolates appear to be

associated with a variety of pathogenic properties. The

predominant form is thymic form lymphoma, but

non-regenerative anemia and varieties of lymphoid

neoplasms and acute myeloid leukemias are also

recognized in the clinics.

1. The concept of retroviral insertional

mutagenesis

To understand the tumorigenesis by retroviruses,

insertional mutagenesis can be considered as one of the

most tenable models. As depicted in Fig. 1, if the

retrovirus has been integrated near (either upstream or

downstream) a certain cellular gene (e.g. proto-

oncogene), transcription of the gene can be upregulated

by the promoter and enhancer function of the retroviral

long terminal repeat (LTR). On the other hand, if it has

been integrated inside the gene (e.g. tumor suppressor

gene), the transcript can be altered or disrupted. And

then, the cell acquires growth advantage. From the

systems of murine retrovirus-induced tumors, chromo-

somal regions containing the loci of proto-oncogenes

and some other genes have been found as proviral

common integration sites (CISs) in the tumor cells.

Over a hundred CISs have been identified from murine

leukemia virus (MuLV)-induced neoplasms so far, and a

number of the affected genes are related with human

malignancies (Joosten et al., 2002; Lund et al., 2002;

Erkeland et al., 2004; Uren et al., 2005). One of the most

representative cellular proto-oncogenes is c-myc which

has been identified as an insertional target of MuLV
Fig. 1. Concepts of retroviral insertional mutagenesis. The provirus contains

three regions: U3, R and U5. U3 contains the enhancer and promoter sequenc

pol and env encode the viral components required for the assembly of viral pa

lead to each event described.
(Corcoran et al., 1984) as well as avian leukosis virus

(ALV) (Hayward et al., 1981). For transcriptional

activation of genes by the proviruses, the U3 portion of

LTR contains transcriptional promoter and enhancer

elements necessary for viral gene expression, having

potentials to regulate the transcription of adjacent

cellular genes in the appropriate target cells (Uren et al.,

2005).

2. Insertional mutagenesis in FeLV

The number of identified CISs in the FeLV systems is

much smaller than that in the MuLV systems. So far, six

CISs have been identified in FeLV-related feline

lymphomas (Table 1). The first discovery of CISs in

the FeLV systems is on c-myc gene. Insertional

mutagenesis of c-myc proto-oncogene has been

detected in both spontaneously and experimentally

induced FeLV associated T-cell lymphomas (Neil et al.,

1984; Forrest et al., 1987; Miura et al., 1987; Miura

et al., 1989; Levy et al., 1993b; Tsatsanis et al., 1994).

The myc proto-oncogene is upregulated by the

insertional mutagenesis near c-myc as well as transduc-

tion by myc-containing FeLV as v-myc (Levy et al.,

1984, 1988; Mullins et al., 1984; Neil et al., 1984, 1987;

Braun et al., 1985; Stewart et al., 1986; Bonham et al.,

1987; Forrest et al., 1987; Fulton et al., 1987, 1996;

Miura et al., 1987; Onions et al., 1987; Doggett et al.,

1989; Levy and Lobelle-Rich, 1992; Terry et al., 1992;

Tsujimoto et al., 1993; Tsatsanis et al., 1994). FeLV

proviral insertions at flvi-2, which contains a gene

encoding feline homolog of bmi-1, and pim-1 have been

observed in spontaneously and experimentally induced

T-cell lymphomas (Levy and Lobelle-Rich, 1992; Levy

et al., 1993a,b; Tsatsanis et al., 1994). The loci of bmi-1
long terminal repeats (LTRs) at both ends. LTRs can be subdivided into

es that drive viral as well as cellular gene transcription. Retroviral gag,

rticles. The provirus inserted into a certain region of cellular DNA can
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Table 1

Common integration sites identified in FeLV-associated neoplasms

Locus Tumor type Frequency References

c-myc T-cell lymphoid tumor (mainly thymic lymphoma) 34/106 (32%) Neil et al. (1984), Forrest et al. (1987), Miura et al. (1987).

Levy et al. (1993a,b) and Tsatsanis et al. (1994)

flvi-1 Non-T-cell lymphoid tumor (splenic lymphoma) 4/7 (57%) Levesque et al. (1990)

flvi-2 T-cell lymphoid tumor (mainly thymic lymphoma) 27/95 (28%) Levy and Lobelle-Rich (1992), Levy et al. (1993a,b)

and Tsatsanis et al. (1994)

fit-1 T-cell lymphoid tumor (mainly thymic lymphoma) 13/72 (18%) Tsujimoto et al. (1993) and Tsatsanis et al. (1994)

pim-1 T-cell lymphoid tumor (mainly thymic lymphoma) 3/63 (5%) Tsatsanis et al. (1994)

flit-1 T-cell lymphoid tumor (thymic lymphoma) 5/25 (20%) Fujino et al. (under review)
and pim-1, which have been recognized as myc-

collaborating genes, have been also identified as

common proviral insertion sites in lymphomas induced

by MuLV (Haupt et al., 1991; van Lohuizen et al., 1991;

Uren et al., 2005). Additional unique common

integration sites for FeLV have been identified as flvi-

1 in non-T-cell lymphomas (Levesque et al., 1990,

1991) and fit-1 in T-cell lymphomas, and the latter has

been shown to be closely linked to myb (Tsujimoto

et al., 1993; Tsatsanis et al., 1994; Barr et al., 1999;

Hanlon et al., 2003). Recently, a novel common proviral

integration site for FeLV in T-cell lymphomas has been

discovered as flit-1 (Fujino et al., under review), and the

insertion has been shown to be associated with over-

expression of a cellular gene, e.g. activin A receptor

type II-like 1 (ACVRL1) gene which encodes a cell-

surface receptor for the transforming growth factor

(TGF)-beta superfamily.

As shown in the other retroviruses, the U3 region of

FeLV-LTR has potentials to enhance the transcription of

adjacent cellular genes (Ghosh and Faller, 1999; Ghosh

et al., 2000). Moreover, tandem repeats of enhancer

motifs in the U3 region have been found in the FeLV

proviruses integrated in the genomes of feline lymphoid

neoplasms and myeloid leukemias (Miura et al., 1989;

Matsumoto et al., 1992; Athas et al., 1995a,b; Rohn and

Overbaugh, 1995; Nishigaki et al., 1997; Starkey et al.,

1998; Prabhu et al., 1999; Nishigaki et al., 2002;

Chandhasin et al., 2004). So that, the enhanced

expression of the genes adjacent to the integrated

proviral genome is considered to be associated with the

oncogenesis.

3. Advances to hunt up retroviral insertions

Until lately, the screening of retroviral integration

sites has been a laborious procedure. Recent advances in

molecular biology and molecular cytogenetics have

developed to rapidly detect numbers of retroviral

integration sites by genome-wide large-scale analyses.
In the technique of molecular biology, strategies of

polymerase chain reaction (PCR)-based genome walk-

ing have been applied to detect integration sites for

kinds of retroviruses such as MuLV, ALV and human

immunodeficiency virus (HIV) (Bushman et al., 2005;

Uren et al., 2005). One of them, inverse PCR, has been

established early. A lot of different insertions can be

amplified within the same reaction, however, the

products of the inverse PCR are limited because

the size of fragments should be short enough to be

efficiently amplified but long enough to efficiently

circularize. Although dilution of the template before

ligation to circularize is required for the inverse PCR, it

can also result in inefficient amplification. Another

strategy, linker-mediated PCRs, can avoid the use of

diluted and circularized template DNA by instead using

linkers ligated to the ends of digested DNA. Recently,

numbers of variants on this method have been

developed using different linkers to raise specificity

of amplification. Once the sequences of retroviral

integration regions have been obtained by the PCRs,

chromosome loci and surrounding genes will be found

by searching application to the genome database of

mouse as well as human. Though the PCR-based

strategies will be applicable to the analysis of FeLV

insertions, it will be difficult to identify the chromo-

some loci and adjacent genes until the sequencing

project of the whole cat genome is completed (O’Brien

et al., 2002).

Recent advances in molecular cytogenetics have

made it possible to detect chromosomal proviral

insertions of retroviruses such as MuLV (Acar et al.,

2000), human T-cell lymphotropic virus (HTLV), HIV

(Deichmann et al., 1997; Uemura et al., 1997; Ohshima

et al., 1998; Glukhova et al., 1999; Richardson et al.,

2001; Zucker-Franklin et al., 2003) as well as FeLV

(Fujino et al., 2003) by using fluorescence in situ

hybridization (FISH). It can be enumerated the

integrated proviruses, mapped the loci of the retroviral

insertions, and also detected chromosomal aberrations
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at the same time. Progresses on feline cytogenetics have

established the high-resolution G- and Q-band karyo-

typing (Cho et al., 1997d), regional chromosome

assignment of some tumor-associated genes by FISH

(Cho et al., 1997a,b,c, 1998; Okuda et al., 1997; Lee and

Cho, 1999; Fujino et al., 2001a,b), and extensive

radiation hybrid chromosome map (Murphy et al.,

2000). Considering about extensive conserved synteny

among human, mouse and cat chromosomes (O’Brien

et al., 1999; Murphy et al., 2000; O’Brien et al., 2002),

the chromosomal FeLV integration sites can be

compared with the map positions in human and mouse

chromosomes, and can apply to predict the related

adjacent genes. Moreover, some reports have also

showed chromosomal aberrations in cats with hema-

topoietic and lymphoid malignancies (Grindem and

Buoen, 1989; Gulino, 1992; Wu et al., 1995; Mayr et al.,

1996; Fujino et al., 2004). The analyses of chromosomal

FeLV insertions and abnormalities in feline neoplasms

can provide valuable information on oncogenesis.

Studies on the retroviral insertional mutagenesis

including the analyses of CISs can be very powerful

tools for identifying candidate genes involved in

oncogenesis as well as normal development. Although

the number of identified CISs for FeLV has been smaller

than that for MuLV or ALV, the analysis of insertional

mutagenesis in FeLV-associated neoplasms has poten-

tial for contribution to clarify oncogenesis in cats as

well as in humans. Recently developed techniques for

detection of CISs will be applicable to analyses on

FeLV, and hold promise on the theme.
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