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As a part of a project concerned with detecting bruises on ‘Golden Delicious’ and ‘Jonagold’ apples, a
hyperspectral imaging system was used for separating stem-end/calyx regions from true bruises. Based on
principal component analysis (PCA) of the hyperspectral images, multiple effective wavebands were selected.
Afterwards, PCA and image-processing techniques were applied to the multispectral images. The stem-end/
calyx regions were identified and distinguished from the cheek surfaces by analysing the contour features of
the first principal component score images. None of the sound tissue was misclassified as a stem-end or calyx
region for both cultivars apples. In the investigated samples, all of the stem-end/calyx presented in the images
were correctly recognised for the ‘Golden Delicious’ apples and 98�33% for ‘Jonagold’ apples. Less than 3%
of bruises were misclassified as stem-end/calyx regions for both cultivars apples.
r 2006 IAgrE. All rights reserved
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1. Introduction

Appearance is an important quality index of apples to
consumers (Röhr et al., 2005). It is important to
separate the damaged fruits from the sound ones. This
not only increases the marketability but also enhances
or maintains the shelf life of the products. For example,
the presence of mechanical damage accelerates spoilage
of harvested products. Effective removal of damaged
products may maintain the quality of the entire lot until
it reaches the consumers. Machine vision systems have
received much attention for sorting apples into different
categories according to size and colour; however, they
still have some limitations in surface defect detection
(Lu, 2003; Leemans & Destain, 2004). In the images,
normally, the defective surface has a lower reflection
than healthy tissue on the uniform colour apple such as
‘Golden Delicious’. Since the stem-end or calyx regions
also have less reflection compared to the cheek surfaces,
they might be misrecognised as defects as a consequence.
The situation is more complicated in ‘Jonagold’ apples,
on which the blushed healthy tissue could have even
lower reflection than the bruises on the green cheeks.
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The natural colour variation makes the sorting more
difficult.

Therefore, the identification of the stem-end/calyx
from the true defects became a part of our project
concerning bruise detection on apples. Bennedsen and
Peterson (2005) configured a machine vision system to
detect the surface defects on apples. In their system the
first step was to determine the orientation of the apples.
The image of apple would be processed only when the
stem-end-calyx axis is perpendicular to the imaging
camera. With respect to the detection of the stems on
fruits, Wolfe and Sandler (1985) developed an algorithm
based on syntactic analysis of angle patterns in the stem.
However, this method would be inefficient if the stem
does not appear as a protrusion in the images. Ying
et al. (2003) proposed an algorithm to detect the stem
and shape of pears. The stem was also assumed as a
protrusion of the sphere fruits. These efforts were made
mainly for detecting the length of stems instead of the
confusion between stem-end regions and defects. In
order to separate the stem-end and calyx regions from
the true defects on apple, Yang (1993) established a
structured lighting arrangement. Through the analysis
r 2006 IAgrE. All rights reserved
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of the laser line pattern it is possible to determine
whether the suspected region is a true defect. Wen and
Tao (2000) distinguished the true defects from the stem-
end/calyx of fruit by using dual-camera (near infrared
and mid-infrared) images. The bruised area and stem-
end/calyx have different responses to the cameras, so
that the stem-end/calyx is able to be distinguished from
the surface defects by simple comparison of two images.
Cheng et al. (2003) used the same arrangement for on-
line stem-end/calyx recognition. They pointed out that
the inspection accuracy might be affected by the
temperature distribution on the surface of the test
samples. In Leemans et al. (2002), the calyx and stem-
end, which appeared on an image as defects, were
detected using a correlation pattern recognition techni-
que. Prior to using this technique, a library had to be
created. Kavdir and Guyer (2004) used texture features
of apple images to distinguish the difference between the
defective and good apples. Confusion between the stem-
end/calyx was considered. Good results were obtained
for some varieties of apples.

Recently, hyperspectral imaging system has been
developed for the food quality and safety control (Kim
et al., 2001; Chao et al., 2002; Park et al., 2002; Ma &
Tao, 2005). The inspection speed is one main constraints
for applying it in an on-line system. Therefore, in most
of the cases, multispectral imaging is preferred where
only a limited number of wavebands are inspected. Most
of the research on apples focuses on detecting the
surface contamination on cheeks (Lu, 2003; Mehl et al.,
2004; Xing et al., 2005). Using a hyperspectral imaging
system, many more images at different wavebands can
be recorded than with the conventional camera; also
because of the possibility of combining chemometrics
with image-processing techniques, it has the potential to
identify the stem-end/calyx regions from the cheek
surfaces of apples by analyzing hyperspectral or multi-
spectral images.

Therefore, the objectives of this research are:
(a)
 to construct a hyperspectral imaging system, and
subsequently build a multispectral imaging system
and
(b)
 to develop an algorithm to identify the stem-end/
calyx and distinguish it from the cheek surfaces,
whether damaged or intact.
2. Materials and methods

2.1. Sample preparation

In this study, 94 ‘Golden Delicious’ and 187
‘Jonagold’ apples were purchased from a local super-
market. In the laboratory, they were separated into non-
bruised and bruised group by thorough visual inspec-
tion. Most of the existing bruises could be found on the
cheeks and showed the typical browning symptoms. For
research purposes, more bruises were induced by a
pendulum on the cheeks along the equator as well as on
the surfaces around calyx or stem-end regions. The
impact energy used to bruise the apples was about
0�15 J. The images were taken 1 day after bruising. The
apples used for stem-end/calyx imaging were picked up
randomly from the apples under investigation (52 from
‘Golden Delicious’ apples and 60 from ‘Jonagold’
apples).
2.2. Hyperspectral imaging system

The developed hyperspectral imaging system [Fig. 1(a)]
is composed of four sections: a sample transportation
plate, two 150 W halogen lamps, an ImSpec V10
spectrograph (spectral Imaging Ltd., Oulu, Finland)
coupled with a standard C-mount zoom lens (Cosmicar
H6Z810), and a Hitachi KP-F120 monochrome camera.
The wavelength region the system can sense is between
400 and 1000nm.The camera and spectrograph were used
to scan the apples line-by-line as the transportation plate
moved the apples through the field of view of the optical
system (as illustrated in [Fig. 1(b)]). A hyperspectral
image can be recorded for each scan. The resolution of
the image acquisition system was 800 by 1040 pixels by 10
bits (800 in the spatial and 1040 in the spectral
directions), which corresponds to a spatial resolution
of 0�15mm and a spectral resolution of 0�7nm. The step
size of the precise linear motion table was set as 0�5mm.
After finishing scanning for an entire fruit, a data cube
can be obtained.

For the hyperspectral imaging system, the wavelength
calibration equation used is

lp ¼ 0�6306pþ 340�55 (1)

where p is the pixel position in the image and lp is the
wavelength in nm corresponding to the pixel position p

of the image.
Reflectance R is calibrated using equation

R ¼
I im � Idark

Iref � Idark

(2)

where: Iim is the intensity of an image; Iref is the
intensity of the standard 99% reference (Spectralon,
Labsphere Inc.); and Idark is the intensity of the dark
image, which was measured by closing the chamber,
turning off all light sources and covering the lens with a
black cap.
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Fig. 1. Schematic of hyper-spectral imaging system (a) and its
working principle (b)
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2.3. Data processing and analysis

The image capture program was written in Labview
v7.1 (National Instrument Corporation, Austin, USA)
while the processing program was developed in Matlab
v6.5 (The MathWorks Inc., Natick, USA).
In the first step, to reduce the noise and amount of

data for calculation, the spatial-spectral data from each
scan were decreased to 160 by 104 by averaging the
neighbouring pixels.
In a hyperspectral image, each pixel on apple surface

corresponds to a reflectance spectrum in the range of
400–1000 nm. To avoid low signal to noise ratio, only
wavelength range from 500 to 900 nm was used in this
investigation. In order to summarise the information
contained in the spectra, principal component analysis
(PCA) was used. The purpose of this technique is to
obtain an overview of all the information in the data set.
It summarises data by forming new variables, which are
uncorrelated and linear combinations of the original
variables. A few of these new variables (principal
components) represent the larger part of the common
variations to all the data. By only considering several
principal components, the high-dimensional spectral
data can be reduced to a lower dimensionality with a
minimal loss of information. A score is the estimated
value for a principal component (PC). Each spectrum
has a score along each PC. In this study, PCA image
scores were not only used to aid in visualising the
hyperspectral data, but also to select optimal wavebands
for multispectral imaging. Principal component analysis
was performed on the dataset after reflectance calibra-
tion. Only the spectra corresponding to the pixels on an
apple were investigated.
3. Results and discussion

3.1. Principal component analysis on the full wavelength

region

Principal component scores images were constructed
by replacing the intensity or reflectance value of the
pixels in images with the score value of each principal
component (Xing et al., 2005). As it is well known, the
first PC gives the grey-level information of the sample.
Due to the construction of the light source used in this
arrangement, it seems that the first principal component
(PC1) scores image also demonstrates the uneven
illumination conditions (shown in the second row of
Fig. 2). It may be caused by the different distances from
the apple surface to the light source. There are no
significant characteristics related to the presence/ab-
sence of bruises on the apple, nor to the skin colour
information. This can be clearly seen from the example
of ‘Jonagold’ apple. The images in the first row of Fig. 2

are the pseudocolour images of the example ‘Golden
Delicious’ and ‘Jonagold’ apple. Apparently, there are
two skin colours on the ‘Jonagold’ apple. However, the
effect of skin colour on the PC1 scores image is not
observable. The second principal component (PC2) may
display more information related to the skin colour.

For the ‘Golden Delicious’ apples, PC2 or PC3 (the
third principal component) scores images are more
related to the presence or absence of bruises on apple.
Since PC2 may represent the information associated
with skin colour, it is assumed that the PC2 scores image
displays the browning symptom of the bruised tissue.
The PC3 scores image might account for the other
features of bruised tissue on ‘Golden Delicious’ apples.
For example, when the tissue was severely damaged, the
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Fig. 2. Principal component analysis (PCA) scores images for the full wavelength range and selected wavebands; PC1,PC2, PC3
and PC4 is the 1st, 2nd, 3rd and 4th principal component, respectively
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bruised area would be very likely detectable in the PC2
scores image because of the significant discoloration;
otherwise, it might be evident in the PC3 scores images.
For the ‘Jonagold’ apple, more principal components
are necessary for determining the presence/absence of
bruises due to the natural skin colour variations.
Normally, the bruises can be indicated in one of
the first six PC scores images. However, it is difficult
to find interpretations for the third–sixth principal
components.
3.2. Principal components analysis on the multiple

wavebands

Since the main aim of the research is bruise detection,
the effective wavebands were chosen according to the
analysis of the images for bruised apples. According to
the loading plots, four wavebands for ‘Golden Deli-
cious’ apples were identified. They are centred at 558,
678, 728 and 892 nm, respectively (Xing et al., 2005).
Similarly, six wavebands for ‘Jonagold’ apples were
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selected: 571, 608, 671, 709 798 and 867 nm (shown in
Fig. 3).

Principal component analysis procedure was then
repeated on the selected multiple optimal wavebands
instead of the full wavelength range. As can be seen in
the third row of Fig. 2, the PCA images obtained from
the multiple wavebands give very similar results as from
the full wavelength region. Therefore, the later image
processing was for the PCA image scores obtained from
the selected wavebands.
3.3. Stem-end/calyx regions identification

As noticed, the PC1 scores image reveals the distance
of sample surface to the light source, which means it
might be good for studying the geometric information of
sample surfaces. It is an obvious advantage for recognis-
ing the stem-end/calyx regions since they introduce
concavities in the overall convex shape of apples.
Moreover, the PC1 scores images are independent of
Stem-end Calyx 
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Table 1

Classification results

Feature Class

Stem-end/calyx Not stem-end/calyx

‘Golden Delicious’ apples:
Healthy (n ¼ 48) 0 48 (100%)
Bruises (n ¼ 46) 1 45(97�83%)
Calyx (n ¼ 28) 28 (100%) 0
Stem-end (n ¼ 24) 24 (100%) 0

‘Jonagold’ apples
Healthy (n ¼ 65) 0 65 (100%)
Bruises (n ¼ 122) 3 119(97�54%)
Calyx (n ¼ 30) 30 (100%) 0
Stem-end (n ¼ 30) 29 (96�67%) 1

n, number of samples.
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skin colour of an apple. It implies that it is not necessary
to take the skin colour into account while developing a
classification algorithm. The skin colour variation is a
typical problem for working with bicoloured apples such
as ‘Jonagold’ using machine vision.

Since the apple has a nearly spherical surface, on the
smooth intact cheeks, the contour lines should be
approximately in parallel. The presence of bruises or
stem-end/calyx may make the shapes of contour lines
irregular. This is one of the hypotheses for developing
the classification algorithm. The first row of Fig. 4 shows
the filled contour images of four apples: healthy, bruises
on cheek, stem-end, and calyx with a bruise nearby. The
filled contour images were created by using ‘contourfill’
command in MatLab. The colour in the image indicates
the intensity value not the colour of the skin. The region
of each contour level has a nearly regular and circular
shape on the cheek of healthy apple, but this does not
hold true for the images with bruise or stem-end/calyx.
For the images with a calyx or stem-end region, the
lowest contour regions can be observed in the middle
area of the image. Moreover, in most of the situations,
the stem-end or calyx region is surrounded by regions
with higher intensities, which was hardly observed in the
images of bruises or healthy cheeks. This is the second
hypothesis for developing the identification algorithm.

Figure 4 shows photographically the procedures to
identify stem-end/calyx regions. In the first step the filled
contour images were prepared for later processing. The
number of the contour levels was defined as 8. In step 2,
mask images were created. The masks were formed by
using morphological methods to the regions, which cover
the first four highest contour levels of each apple (second
row of Fig. 4). In step 3, the regions, which cover the two
lowest contour levels of each apple, were identified (shown
in the third row of Fig. 4). Finally, an ‘and’ operation was
applied to the pictures obtained in steps 2 and 3 (shown in
the bottom row of Fig. 4). A ‘clean’ morphological
operation was carried out to remove small areas, which
may be the noise from the optics, or from the pigments on
the apple surface. If there is a big area retained in the
resulting image, it, most probably, is an image with a
calyx or stem-end region. Otherwise, it is an image of
apple cheek, whether bruised or not.

The total recognition rates for stem-end and calyxes
are shown in Table 1. For ‘Golden Delicious’ apples, all
of the stem-end/calyx regions were correctly identified.
A 100% of classification accuracy was achieved for the
calyxes of ‘Jonagold’ apples too. Only one image with
presence of stem-end region was misclassified for
‘Jonagold’ apple. In the error case, the stem-end region
was at the edge of the image and the mask cut off part of
the surrounding areas. Less than 3% bruised cheeks
from both cultivars apples were misclassified as calyx or
stem-end regions. No error was observed between the
healthy cheeks and stem-end/calyx regions. Concerning
the separation between the sound and bruised tissue on
apple cheeks, please refer to Xing et al. (2005).
4. Conclusions

A hyperspectral imaging system has been built for
studying the surface quality of apples. The main goal of
the project is to efficiently detect bruises on apples. Based
on the analysis of the hyperspectral images in the full
wavelength region (500–900nm), four and six effective
wavebands were chosen for detecting bruises on ‘Golden
Delicious’ and ‘Jonagold’ apples, respectively. After that,
these selected wavebands were also expected to be useful
for recognising the stem-end/calyx from the cheek surface.
Principal component analysis (PCA) was considered to
summarise the multispectral information. The algorithm
to identify the stem-end/ calyx on apples was developed
on the basis of the contour features in the PCA image
scores. Test results show that the system can effectively
identify stem-end/calyx regions and distinguish them from
bruised regions on ‘Jonagold’ and ‘Golden Delicious’
apples. Further enhancement of classification results and
robustness can be achieved by improving the mask
formation and using a more sophisticated strategy for
discrimination. Future work also includes integration the
algorithm of detecting bruises on apple cheeks with the
identification of the stem-end/calyx.
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