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This study is a contribution to an ongoing research to develop a thermal-reflectance

imaging system (TRIS) for detecting water stress in Sunagoke moss (Rhacomitrium

canescens). The correlation between visual and thermal water stress symptoms in a sample

of Sunagoke moss as a function of time and water content was evaluated. Visible light

imaging was used to report changes in the surface structure and reflectance. Infrared (IR)

thermal imaging was used to monitor transpiration patterns and the crop water stress

index (CWSI) was used to quantify those changes. Grey-level concurrence matrix (GLCM)

texture features were used to quantify changes in the sample surface structure while the

RGB colour ratios were used to detect changes in its reflectance. The sample exhibited

water-related stress at water contents below 1.5 g g�1 and above 3.0 g g�1 (grams of water

per gram of dry sample). The maximum possible total uncertainty of IR temperatures for

the sample was 70.50 1C at 17 1C, ambient temperature. The maximum uncertainty of its

visible light data was 77.65 grey level attributed to the red bandwidth. The results showed

a clear correlation between the water status of the sample and its CWSI, GLCM texture and

RGB colour ratios. These results demonstrate the possibility of detecting both drought and

flood water stress in Sunagoke moss by combining thermal and visible light imaging.

Although Sunagoke moss was used in this study, this method is novel and could be

extended to both biotic and abiotic stress detection in other plants.

& 2008 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Plant stress is defined as an external factor that exerts a

disadvantageous influence on plants (Taiz and Zeiger, 2002).

Plant water stress is caused by water deficit or excess. The

response of a plant to water stress is expressed at genetic

(DNA), cellular, organ and whole plant levels. This is reflected

in its surface structure and transpiration patterns as the top

projected canopy area (TPCA) and canopy temperature or
Published by Elsevier Ltd
u-u.ac.jp (S. Ondimu).
multispectral reflectance. Imaging techniques can monitor

changes in water status, photosynthetic efficiency, accumu-

lation of secondary metabolites or structural modifications.

This makes the real-time analysis of physiological changes in

plants, often characterised by numerous dynamics and non-

linearity (Hall and Lima, 2001), possible. Imaging techniques

that have been used to detect signs of stress in plants include

fluorescence, bioluminescence, thermal, magnetic resonance

and reflectance imaging (Chaerle and Van Der Straeten, 2001).
. All rights reserved.
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Nomenclature

a intercept of a linear fit of the ratio between

determined standard deviation and the expected

standard deviation (were the errors to follow a

normal distribution)

b Wein’s displacement constant (2.897768575.1�

10�9 W K)

c speed of light in m s�1

dT plant surface-ambient temperature difference, 1C

dTl plant surface-ambient temperature difference of

a well-watered plant (lower limit), 1C

dTu plant surface-ambient temperature difference of

a non-transpiring plant (upper limit), 1C

E radiation energy, J

eref emissivity of the reference emitter

ems emissivity of the Sunagoke moss sample

m slope of a linear fit of the ratio between the

determined standard deviation and the expected

standard deviation (were the errors to follow a

normal distribution)

h Plank’s constant (6.69�10�34 J Hz�1)

N number of temperature data points evaluated

n number of hours over which thermographic

frames are averaged

q radiation energy, W m�2 K�4

T obsolute temperature of a black

body, K

TDC,ref direct contact temperature of the reference

emitter, 1C

Te ¼ 1,ms equivalent black body infrared temperature of the

Sunagoke moss sample, 1C

Te ¼ 1,ref equivalent black body infrared temperature of the

reference emitter, 1C

TF,ms final infrared temperature of the Sunagoke moss

sample, 1C

TIR,ms apparent infrared temperature of the Sunagoke

moss sample, 1C

TIR,ref apparent infrared temperature of the reference

emitter, 1C

Tm spatial mean of the measured temperature, 1C

Tp temperature data points, 1C

n frequency, Hz

a absorptivity

dT maximum total uncertainty, 1C

dTDC,A uncertainty of direct contact ambient tempera-

ture, 1C

dTDC,ref uncertainty of the reference emitter’s direct

contact temperature, 1C

dTF,ms uncertainty of Sunagoke moss sample thermo-

graphic data, 1C

dTIR,FOV uncertainty resulting from the thermal imager’s

field of view, 1C

dTIR,ms uncertainty of the apparent infrared temperature

of the Sunagoke moss sample, 1C

dTIR,ref uncertainty of the apparent infrared temperature

of the reference emitter, 1C

dTp,ran random error, 1C

e emissivity

l radiation wavelength, m

lmax peak wavelength, m

sp standard deviation of temperature data points, 1C

sTFOV standard deviation of thermographic data in the

thermal imager’s field of view, 1C
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A combination of infrared (IR) thermal and visible light

imaging for detecting water-related stress in Sunagoke

(Rhacomitrium canescens) moss is reported in this paper.

Many studies have reported the use of IR thermography and

visible light imaging to detect stress in plants. Hashimoto

et al. (1984) used thermal imaging to show that water stress in

sunflower plants first develops at leaf margins, accompanied

by stomatal closure and an increase in leaf surface tempera-

ture. Zandonadi et al. (2005) achieved an 81.6% efficiency in

identifying maize attacked by lesser cornstalk borer using IR

imaging. Al-Fara et al. (2000) used IR to obtain the canopy

temperature, irradiance and vapour pressure of tall fescue

(Festuca arundinacea) as inputs to Laplace transform models to

illustrate the complex nature of plant feedback mechanisms

when anticipating moisture stress. In another study, Wanjura

and Upchurch (2000) showed that the theoretical crop water

stress index (CWSI-T) was more accurate than an empirical

canopy temperature water stress index (CWSI-TC) in char-

acterising deficit water stress in corn (maize) and cotton.

Kacira et al. (2002a) suggested the feasibility of using IR

thermometry for pre-visual and non-contact detection of

plant water stress. Other researches (Clarke, 1997; Jensen

et al., 1990; Jackson, 1982; Pieters, 1975) also reported the use

of plant surface temperature to quantify water stress in

plants. Foucher et al. (2004) reported use of morphological
features obtained by visible light imaging to detect water

stress in potted forsythia. An investigation by Sena et al.

(2003) achieved 94.72% efficiency in classifying army worm

damage in maize using visible light imaging. In another study,

Kacira et al. (2002b) showed that TPCA extracted from plant

images can be used to quantify water stress.

These studies show that plant water status can be detected

by thermal and visible light imaging. However, no study has

reported the use of either of these techniques for stress

detection in Sunagoke moss. In addition, although mainly

deficit water stress has been highlighted so far, stress in

plants can also be caused by excess water. In this paper IR

thermal and visible light imaging were used to detect water

stress in Sunagoke moss (Class: Musci and Division: Bryophyta).

This plant is being investigated as a possible bio-roof and bio-

wall ‘‘greening’’ material for urban heat island mitigation

(Ondimu and Murase, 2006; Ushada and Murase, 2006). The

plant has many unique qualities: it is resilient with minimum

maintenance, is not susceptible to pests and diseases,

requires no soil growing media, and retains its dark green

colour even at temperatures as low as �30 1C or as high as

40 1C. In addition, it has a high level of desiccation tolerance

(Aro et al., 1981; Bowen, 1933; Valanne, 1984) because it

suspends its photosynthesis and transpiration when dry only

to resume biological activity when later exposed to moisture.
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However, optimum rates of net fixation are achieved only

at certain water states, below which it is incapable of

photosynthesis and above which photosynthetic activity

declines. Thus, water stress is the main factor limiting its

production.

This paper is a contribution towards an ongoing research to

develop a thermal-reflectance imaging system (TRIS) for

water stress diagnosis and monitoring in a Sunagoke moss

production system. The investigation is based on the

assumption that changes in surface structure, reflectance

and transpiration patterns are expressions of internal phy-

siological changes in plants. We hypothesise that simulta-

neous changes in colour, texture and temperature in

Sunagoke moss canopy are direct indicators of its physiolo-

gical stress state. The main objective of this study was to use

thermal and visible light image analysis to evaluate the

correlation between visual and thermal water stress symp-

toms in Sunagoke moss as a function of time. The study

involved: (1) the evaluation of the crop water stress index

(CWSI) using IR-measured surface temperatures, (2) evalua-

tion of grey-level co-occurrence matrix (GLCM) textural

features and RGB colour ratios of Sunagoke moss sample

images and (3) evaluation of the correlation between CWSI

values, texture and RGB colour ratios of the sample at

different water states.
2. Materials and methods

2.1. Basic theory

2.1.1. Thermal imaging
Modifications in the water status of a plant caused by adverse

conditions lead to changes in leaf transpiration due to the

active regulation of the stomatal aperture. The associated

changes in leaf cooling patterns can be monitored instantly

and non-destructively by IR thermal imaging. Since, in

general, metabolism has a negligible influence on plant

temperature (Chaerle and Van Der Straeten, 2001) IR thermo-

graphy can be used for stress detection in plants.

Thermal imaging is a non-invasive technique for mea-

suring surface temperatures by observing IR radiation

emitted from the surface. IR radiation impacting on a given

surface is absorbed, reflected or transmitted. Of the absorbed

radiation a proportion is re-emitted and another part is

reflected internally. At thermal equilibrium bodies emit all

the absorbed energy as described by Kirchoff’s law of

emission:

a ¼ � (1)

where a and e are the absorptivity and emissivity at a given

wavelength, respectively. The relationship between radiation

energy, temperature and spectral emissivity is given by

Plank’s law:

E ¼ hv (2)

where E is the radiation energy in joules (J), h is Planks

constant and v is the frequency in Hz given by c/l (c is the

speed of light in m s�1 and l is the radiation wavelength in m).

The wavelength at which maximum emission occurs is given
by Wein’s displacement law:

lmax ¼
b
T

(3)

where lmax is the peak wavelength in metres (m), T is the

absolute temperature of a blackbody in Kelvin (K) and b is

Wien’s displacement constant. Eqs. (1)–(3) are combined in

the Stephan–Boltzmann Law:

q ¼ dT4 (4)

where q is the radiation energy flux in W m�2, d is the

Stefan–Boltzmann constant and T is the absolute temperature

of a black body in K. Eqs. (1)–(4) apply for black bodies and

should include emissivity (e) for real surfaces. The IR sensor

used in this study used Eq. (4) to compute the temperature of

the Sunagoke moss sample. Values of CWSI, determined by

Eq. (5), were used to relate surface temperature to water stress

in the plant (González-Dugo et al., 2006; Jackson, 1982;

Jackson et al., 1981).

CWSI ¼
dT� dTl

dTu � dTl
(5)

where dT is the measured plant surface–air temperature

difference, dTu is the plant surface–air temperature difference

of a non-transpiring plant (upper limit) and dTl is the plant

surface–air temperature difference of a well-watered plant

(lower limit).

2.1.2. Visible reflectance imaging
Stress in plants induces changes on the surface and the

internal leaf structure (Peñuelas and Filella, 1998). Structural

alterations modify reflection of light from plant leaves or

canopies. These changes can be visualised by reflectance

imaging in the visible light spectrum (400–700 nm) or near-IR

spectrum (0.7–1.3mm). In visible light spectrum, an image is a

spatial 2D-light intensity function which can be described by:

f ðx; yÞ ¼ iðx; yÞrðx; yÞ (6)

0oiðx; yÞo1 (7)

0orðx; yÞo1 (8)

where i(x,y) is the illumination (amount of light incident on

the scene of object being viewed) and r(x,y) is the reflectance

(amount of lighted reflected by the objects in the scene being

viewed). The value of r(x,y) can be described by the dichro-

matic reflection model (Shafer, 1985):

rðx; yÞ ¼ Lsurf þ Lbody (9)

where Lsurf is the surface reflection (light reflected at the

material surface) and Lbody is the light body reflection (light

reflected from the material body). The body reflection

provides the characteristic object colour (Klinker, 1993). Thus,

the visible image of a plant is a description of its light

reflection characteristics. Factors leading to a decrease in

light absorption automatically increase reflection and vice

versa. The pattern of light emission from plant leaves or

canopy as depicted by the subtle changes in the colour or the

surface structure of its images can be used to quantify its

physiological changes. In this study, RGB ratios, given by

Eqs. (10)–(12), and GLCM texture features shown in Table 1,

were used to quantify plant colour and surface structure
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Table 1 – GLCM textural features as defined by Haralick et
al. (1973)

Feature Formula Description

Entropy
�
PM

j

PN
i

P½a;b� log P½a; b�
Measures the

randomness of grey

distribution

Energy PM
i

PN
j

P2½a;b�
Measures the number

of repeated pairs

Contrast PM
i

PN
j

ða� bÞ2P½a;b�
Measures the local

contrast of an image

Correlation PM
i

PN
j

ða�mÞðb�mÞP½a;b�
s2

Provides the

correlation between

two pixels in a pair

Homogeneity PM
i

PN
j

1
1þða�bÞ2

P½a; b�
Measures local

homogeneity of a pixel

pair

Notation: P[a,b] is the (a,b)th element of a normalised co-occurrence

matrix; m and s are the mean and standard deviation of the pixel

elements given by the following relations:

Pða;bÞ ¼
Nða; bÞ

M

m ¼
XM

i

a
XN

j

P½a; b�

s ¼
XM

i

ða� mÞ2
XN

j

P½a;b�

where N(a,b) ¼ number of counts in the image with pixel intensity

a followed by pixel intensity b at one pixel displacement to the left

and M is the total number of pixels.

Fig. 1 – Sunagoke moss sample used in this study.
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changes, respectively,

r ¼
R

Rþ Gþ B
(10)

g ¼
G

Rþ Gþ B
(11)

b ¼
B

Rþ Gþ B
(12)

where r, g and b are the red, green and blue ratios,

respectively, and R, G and B are the pixel intensities of the

red, green and blue band widths, respectively.

2.2. Sunagoke moss sample

Fig. 1 shows the Sunagoke moss sample used in this study.

The sample was grown on glass wool media in a rectangular

glass dish of dimensions, 150�100�20 mm. It was subjected

to different water states as a means of manipulating its

physiological status. Water state is defined here as the

amount of water available to the sample at the beginning of

each day of data acquisition in grams of water per gram of

sample initial dry weight. Water content and water state are

used interchangeably in this paper. Six water states were

considered, i.e. 5, 4, 3, 1.5, 0.5 and 0 g g�1. No nutrition was

provided to the sample. It is worth noting here that
preliminary experiments have shown that Sunagoke moss

can absorb up to eight times its own weight of water.
2.3. Experimental data acquisition system

The set-up of the data acquisition system used in the study is

shown in Fig. 2. It comprised of an imager (ii-1064, Horiba

Ltd., Japan), with IR and RGB image sensors, mounted on a

stand to view the sample at approximately 901. The IR sensor

comprised of a 64-element thermopile array arranged in an

8�8 matrix of 0.5 mm�2. It output single temperature read-

ings in 1C (resolution ¼70.1 1C/1 1C) averaged over its in-

stantaneous field of view (IFOV). Its precision was 72 1C for

the conditions of this experiment. The visible light imager

comprised a CMOS colour image sensor and had a resolution

of 320�240 pixels. The distance between the imager and the

sample was 270 mm giving an IFOV of 12�12 mm2 for the IR

image sensor. Ignoring parallax effects, the field of view (FOV)

was the same for both sensors. A reference emitter was made

from a standard black tape, whose emissivity was 0.95

(Horiba, Japan), and located level with the surface of the

sample within the FOV of both sensors. A background

radiation mirror made of an aluminium foil was fitted directly

in front of the sample when it was deployed. Thermistors

(203AT), with a measurement accuracy of 70.3 (�20 to 80 1C),

connected to digital data loggers (Thermo recorder, TR-71U,

T&D Corp., Japan), were used to measure the direct contact

temperature of the reference emitter and the ambient

conditions of the growth chamber. The experiment was

conducted in a growth chamber (Biotron NC 350, NK-system,

Japan) under conditions of 15 1C, temperature, 60%, relative

humidity and 12-h light and dark periods. The average light

intensity inside the growth chamber (measured by Li-250A-

light meter; Li-COR, USA) was 86.54mmol s�1 m�2 or 7.21 Klux

(400–700 nm). All data were processed using a laptop compu-

ter (Toshiba Satellite; Toshiba, Japan).

2.4. Determination of the surface emittance of
Sunagoke moss

The first part of the study involved determination of the

surface emittance of the sample. With the background mirror
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Fig. 2 – Experimental set-up of the thermal-reflectance imaging system used in the study.
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deployed and the emissivity of the IR sensor set to 1, thermal

data were acquired at 15-min intervals for 24 h. Meanwhile,

five times its own dry weight of water was applied to the

sample which remained in the growth chamber for 1 day. On

the second day, the background mirror was removed and

thermal data from the sample and the reference emitter

were acquired at 15-min intervals over 6 days. At the start

of each day the water state of the sample was computed

and replenished to reach the target for the day. Using the

thermal data obtained, the emittance of the sample was

determined by

ems ¼
ðT4

e¼1;ms � T4
backÞ

ðT4
e¼1;ref � T4

backÞ
eref (13)

where ems is the emissivity of the moss surface, Te ¼ 1,ms and

Te ¼ 1,ref are the equivalent black body moss surface and

reference emitter IR temperatures, respectively, Tback is the

background temperature measured by the background mirror

and eref is the emissivity of the reference emitter.
2.5. Determination of the crop water stress index

Five times its own initial dry weight of water was applied to

the sample and it was allowed to acclimatise in the growth

chamber for 1 day. Thermal and visible light images of the

sample and reference emitter were then simultaneously

acquired every 15 min for 6 days. At the start of each day,
the water state of the sample was determined and replen-

ished to reach the target for the day. The emissivity of the

thermal imager was kept at 1. Thermo recorders were set to

record the temperature simultaneously with image acquisi-

tion. Using thermal data obtained at each IFOV, apparent

temperatures of the sample and reference emitter were

computed by Eqs. (14) and (15), respectively:

TIR;ms ¼
T4

e¼1;ms � ð1� emsÞT
4
back

ems

 !1=4

(14)

TIR;ref ¼
T4

e¼1;ref � ð1� eref ÞT
4
back

eref

 !1=4

(15)

where TIR,ms and TIR,ref are the apparent IR surface tempera-

tures of the sample and the reference emitter, respectively.

Each value obtained by Eq. (14) was corrected using Eq. (15) to

obtain the final temperature values:

TF;ms ¼ TIR;ms � ðTIR;ref � TDC;ref Þ (16)

where TF,ms is the final temperature of the sample in 1C and

TDC,ref is the direct contact temperature of the reference

emitter in 1C. The daily average temperature values obtained

by Eq. (16) and the daily average ambient temperature inside

the growth chamber were used to calculate the daily CWSI

using Eq. (5).
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Table 2 – Range of uncertainties for temperature data
obtained in the study

Uncertainty Ranges in 1C

Light period Dark period 24-h period

dTlR,ms 0.14–0.45 0.18–0.78 0.16–0.70

dTlR,ref 0.09–0.14 0.15–0.28 0.33–0.57

dTDC,ref 0.10–0.19 0.12–0.22 0.24–0.67

dTA 0.11–0.23 0.09–0.20 0.10–0.32

Notation: dTlR,ms ¼ uncertainty of each of the sample’s apparent

temperature datum; dTlR,ref ¼ uncertainty of each reference emit-

ter’s apparent temperature datum; dTDC,ref ¼ uncertainty of refer-

ence emitter’s directly measured temperature; and

dTA ¼ uncertainty of each ambient temperature datum.

Table 3 – Uncertainty of thermal and visible light imaging
data for Sunagoke moss sample

Day Maximum possible uncertainty

Thermal data (1C) Visible light data in grey
levels

R G B

1 0.37 7.65 7.34 6.48

2 0.32 7.25 7.13 7.33

3 0.29 6.22 5.77 7.19

4 0.37 6.54 6.91 7.27

5 0.30 4.97 5.13 4.89

6 0.50 4.77 5.04 5.18
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2.6. Determination of RGB ratios and textural features

Visual images of the sample were processed using ImageJ

software (National Institute of Health (NIH), USA) to give daily

average r, g and b ratios and GLCM textural features. Prior to

determination of these features, the images were pre-

processed by selecting a region of interest (ROI), cropping,

resizing to 120�96 pixels and carrying out histogram equal-

isation. The ROI was selected as the area of the image lying

within the canopy of the sample. ROI sub images were created

by cropping and resizing and then arranged into stacks for

faster analysis. To improve contrast, histogram equalisation

was performed to redistribute image pixel intensities.

The RGB ratios were computed using Eqs. (9)–(11). The

textural features were determined using the relations shown

in Table 1.

2.7. Error analysis

Thermal data obtained in this study were subject to random

errors, compensation for emittance and background radiation

errors, FOV systematic errors and direct contact temperature

measurement errors. The basic level of random error was

described by:

sp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

p¼1

ðTp � TmÞ
2

vuut (17)

where sp is the standard deviation, Tp is the temperature data

point, Tm is the spatial mean of all temperatures and N is the

number of temperature data points evaluated. Because of

random errors, the uncertainty of individual temperature

data depends on the number of frames averaged over time.

The average basic random errors computed for every four

frames were averaged over 1 h, and Eq. (18) was used to

calculate the corresponding uncertainty:

dTp;ran ¼
spffiffiffi

n
p ðmn� aÞ (18)

where dTp,ran is the random error uncertainty, n is the number

of hours over which frames are averaged and m and a are,

respectively, the gradient and intercept of a linear regression

of the ratio between the determined standard deviation and

the expected standard deviation (assuming the errors follow a

normal distribution). The uncertainties of the apparent

thermal data of reference emitter, dTIR,ref, and the apparent

IR temperature of the sample, dTIR,ms, were evaluated using

the same procedure. Uncertainties of the ambient direct

contact temperature,dTA, and the reference emitter direct

contact temperature, dTDC,ref, were estimated using Eq. (17).

The most probable total uncertainty, dT, of the thermal data

was then estimated by:

dT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2TIR;ms þ d2TIR;ref þ d2TDC;ref þ d2TA

q
(19)

A copper plate of dimensions 3�200�300 mm was used to

evaluate the uncertainty arising from the performance of the

IR thermal imager across its FOV, dTFOV. Because the plate was

kept overnight in the growth chamber, it was assumed to be

isothermal. Twenty-one images of the plate were acquired

over the entire FOV of the imager. Every thermal data point on
the plate was then evaluated for deviation from the mean of

all temperatures within each frame and dTFOV was deter-

mined using the procedure outlined above.

The visible light image data were also subject to errors

stemming from the level of noise in the imaging system,

image acquisition, pre-processing, and the feature extraction

processes. The uncertainty arising from these errors was

estimated from the average standard deviations of grey levels

of the RGB channels in the sample images.
3. Results

3.1. Accuracy of measurements

Table 2 summarises the range of different errors for the

thermal data obtained in the study. The results show that the

thermal data acquired during the dark period generally had a

higher uncertainty than that acquired during the light period.

The results in Table 3 show that the maximum total

uncertainty of the IR-measured temperature was 70.5 1C,

compared to a theoretical value of 72.0 1C for the IR sensor.

The maximum uncertainty of the visible light data was 77.65
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pixel intensity level attributed to the red channel of the RGB

images.
3.2. Surface emissivity of Sunagoke moss

From Table 4 the surface emissivity of the sample, ems, ranged

between 0.79 and 1.0 at 0 and 5.0 g g�1 water contents,

respectively. An average value of 0.93 was used for all

temperature calculations. The results show that the emissi-

vity of the sample generally increased with the water content

but remained constant at water contents between 1.5

and 3.0 g g�1.
3.3. Change of the crop water stress index (CWSI)
with time

The daily average values of the water content of the

sample, its surface temperature, and its CWSI are also shown

in Table 4. The surface temperature and CWSI increased

inversely with water content. Fig. 3 shows the hourly
Table 4 – Average water content, surface temperature and
crop water stress index of the sample

Day Sunagoke
moss water
state (g g�1)

Surface
temp.
(1C)

Ambient
temp.
(1C)

Emissivity

1 5.0 12.41 17.58 0.79

2 4.0 12.40 17.51 0.87

3 3.0 12.39 17.45 0.96

4 1.5 12.42 17.57 0.97

5 0.5 15.49 17.35 0.97

6 0.1 17.32 17.61 1.00
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Fig. 3 – Hourly variation of Sunagoke moss sample surface temp

crop water stress index (CWSI) for the 3rd, 4th and 5th days. +–

m–m, crop water stress index.
variation, surface temperature and CWSI of the sample for

the last three days of the experiment. No significant changes

in these parameters were observed during the first 3 days of

the experiment. The CWSI generally increased with surface

temperature. However, there were some deviations attributed

to variations in the physiological changes of the sample

during the light and dark periods. The ambient temperature

of the growth chamber remained fairly constant during the

experiment.

3.4. Variation of canopy CWSI, colour and texture with
water status

Table 5 shows the daily average GLCM textural features and

RGB colour ratios of the sample. All the textural features

showed a critical point on the third day. This was a maximum

for energy, correlation and homogeneity, and a minimum for

inertia and entropy. The features showed minimal change

between the 3rd and the 4th day. Energy, correlation and

homogeneity showed a decrease after the 4th day while

inertia and entropy increased. Similarly, all colour ratios

showed a critical point on the 3rd day. Ratios r and g increased

up to the 3rd day after which they decreased. This was

reversed for the b ratio.

Fig. 4a shows that ratios r and g increased with the

water content up to 1.5 g g�1, remained fairly constant

between 1.5 and 3.0 g g�1 after which the ratios decreased.

This was reversed for the b ratio. CWSI generally varied

inversely with the water content. A linear regression between

the CWSI and water content gave a coefficient of determina-

tion, R2
¼ 0.85. Regressing the data as a quadratic polynomial

gave R2
¼ 0.99. Thus, there was a high correlation between

CWSI and water content in the sample. Fig. 4b shows that the

energy feature increased with the water content up to 1.5 g g�1

but decreased after 3.0 g g�1. This was reversed for entropy. It
118
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Table 5 – Sunagoke moss sample surface daily average textural features and RGB grey-level ratios

Day Average textural features Average RGB ratios

Energy Inertia Correlation Homogeneity Entropy r g b

1 0.000146 878 0.000443 0.0535 9.12 0.35 0.34 0.31

2 0.000137 835 0.000454 0.0529 9.13 0.35 0.34 0.31

3 0.000151 714 0.000531 0.0579 9.03 0.38 0.38 0.24

4 0.000154 759 0.000530 0.0560 9.01 0.39 0.39 0.22

5 0.000123 1930 0.000246 0.0358 9.32 0.37 0.34 0.29

6 0.000125 1890 0.000260 0.0358 9.30 0.37 0.34 0.29
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Fig. 4 – Variation of infrared thermal and visible light

imaging features with water content in Sunagoke moss: (a)

crop water stress index (CWSI) and RGB ratios (b) texture

features: E–E, r ratio; ’–’, g ratio; m–m, b ratio; � –� ,

CWSI; B–B, energy; &–&, entropy.
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Fig. 5 – Visible light imaging features of Sunagoke moss

sample as quadratic polynomial functions of crop water

stress index (CWSI): (a) RGB colour ratios; (b) texture

features. E–E, r ratio, y ¼ �0.0045x2+0.0278x+0.337,

R2
¼ 0.71; ’–’, g ratio, y ¼ �0.0064x2+0.047x+0.296,

R2
¼ 0.56; m–m, b ratio, y ¼ 0.0109x2

�0.0725x+0.367,

R2
¼ 0.62; B–B, energy, y ¼ �3E�06x2

�2E�05x+0.0001,

R2
¼ 0.65; &–&, entropy, y ¼ 0.269x2

�0.148x+0.9.2595,

R2
¼ 0.67.
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can therefore be deduced that the sample exhibited some

water-related stress at water contents below 1.5 g g�1 and

above 3.0 g g�1.
3.5. Correlation between colour and texture features
and CWSI

Fig. 5 shows RGB ratios and texture features as quadratic

polynomial functions of CWSI for the sample used in this

study. The coefficient of determination, R2, of r, g and b was

0.71, 0.56 and 0.62, respectively, and 0.67 and 0.65 for energy

and entropy, respectively. Thus, there was a significant

correlation between the colour and texture of the sample

and its CWSI.
4. Discussion

The main assumption underlying this study was that

changes in the canopy transpiration patterns, reflectance

and surface structure of a plant are external manifestations

of its internal physiological states. Visible light imaging was

used to report changes in the surface structure and reflec-

tance and IR thermal imaging was used to report changes in

transpiration patterns in the Sunagoke moss sample. CWSI

was used to quantify changes in its transpiration patterns.

The texture features given in Table 1 were used to depict

changes in the sample surface structure while the colour
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ratios determined by Eqs. (10)–(12) were used to depict

changes in its reflectance.

The results in Table 4 and Figs. 3 and 4 show that CWSI is a

good indicator of drought water stress in Suagoke moss. This

agrees with a number of studies (González-Dugo et al., 2006;

Jackson, 1982; Jackson et al., 1981; Wanjura and Upchurch,

2000) and is in line with the expected biophysical behaviour of

plants. As the water content decreases, transpiration cooling

of the surface of a plant decreases leading to an increased

surface temperature which consequently increases the CWSI.

The significant correlation between the colour ratios and

texture of the sample and its CWSI in Fig. 5 implies that these

features can also be used to detect water stress in the plant.

The results in Table 5 show that the sample was under some

water-related physiological stress between the 1st and the 3rd

day and between the 4th and the 6th day of the experiment.

However, the effects of such stress were minimal between the

3rd and the 4th day which corresponded to 3.0 and 1.5 g g�1

water contents, respectively. From Fig. 4 it can be deduced

that CWSI is only effective in detecting drought water stress

in Sunagoke moss. However, texture and colour can be good

biophysical indicators of both excess and deficit water stress-

related physiological changes in the plant.

Thus, simultaneous changes in colour, texture and tem-

perature in Sunagoke moss canopy are direct indicators of its

physiological state. Sunagoke moss is highly resilient and

exhibits a high level of desiccation tolerance (i.e. the ability to

function while dehydrated). This is a desirable quality for a

biological roof greening material as it ensures the aesthetic

soundness of the roof even when the material is dry.

The results in Table 5 and Fig. 4 show that this quality

does not affect the correlation between the water content of

the sample and its colour and texture. It can be generally

deduced that the sample was ‘relaxed’ biophysically, at water

states between 1.5 and 3.0 g g�1. This implies that the

optimum amount of water to apply to Sunagoke moss is

1.5–3.0 times its dry weight. This will cause the plant to

experience insignificant water-related stress and optimise

water utilisation.

4.1. Uncertainty of the results

Canopy temperature is affected by the surface emittance of

the plant, ambient temperature, background thermal radia-

tion and humidity. Consequently, three factors introduce

error into measurement of plant surface temperature by IR

thermal imaging: the incorrect determination of plant

emissivity and background radiation, the inaccuracy of the

imager itself and its basic system noise including optics,

scanning, electronics, and the emission and detection of IR

radiation. The error caused by the incorrect estimation of the

emissivity and background radiation varies with the wave-

length utilised by the imager but is similar for all thermal

imagers. The emissivity of the sample used in this study

varied between 0.78 and 1.0 for 0 g g�1 and 5.0 g g�1 water

contents, respectively. An average emissivity of 0.93 was used

for temperature calculations. The uncertainty for this average

value was 70.06. However, this uncertainty is negligible due

to averaging of the thermal data across many spatial and time

frames. Furthermore, plants, as with other biological systems,
are characterised by many natural dynamics and non-

linearity and some uncertainty in their emissivity is likely.

The maximum possible uncertainty of each temperature

datum within the FOV (dTFOV) of the thermal imager was

71.06 1C against 72.0 1C quoted for the IR sensor for the

conditions of the experiment. Thus, by averaging the thermal

data across many time frames, the accuracy of the imager

was improved by about 50%. However, the maximum

standard deviation of the temperature data within the FOV

of the imager was 4.31 1C. This was attributed to errors

introduced by the use of a copper plate to evaluate this value.

Although it was assumed to be isothermal, the thickness of

the plate was only 3 mm and there was no system to ensure

that it was uniformly cooled. However, the standard deviation

of 86% data points falling within the FOV of the imager was

less than 2.0 1C. The third source of error was random noise

from various sources in thermal image and thermal data

analysis. The accuracy of thermal data depends on the

characteristics of the imaging system and the techniques

used to record and process the thermographic data. The

results in Table 2 suggest that the thermal data of the sample

had a higher uncertainty in the dark period than in the light

period. This could possibly be attributed to some net heat

from the light source in the growth chamber. The maximum

possible total uncertainty for the IR-measured thermal data

for the sample was 70.50 1C. However, the value of uncer-

tainty was very low considering the controls used and the

number of multiple frames averaged.

Errors stemming from imaging system noise level, image

acquisition, pre-processing and the feature extraction pro-

cesses affected the certainty of the visible light imaging data.

However, errors attributed to image acquisition and imager

optics noise were assumed to form the bulk of the uncertainty

of the visible light image data used in the study. The ii-1064

imager was capable of both IR thermal and visible light

imaging. Thus, its efficiency was divided between these two

imaging modes. This affected the clarity with which the RGB

images were acquired. The inherent optics noise also

contributed to the acquisition errors. Maintaining controlled

conditions in the growth chamber involved spraying of

atomised water at regular intervals. This reduced the light

intensity in the chamber and impaired the optical lens of the

imaging sensor from time to time and caused some error in

image acquisition. The uncertainty arising from these errors

was estimated by average standard deviations of grey levels of

the RGB channels. This was found to be a maximum of 77.65

pixel intensity and attributed to red channel.
5. Conclusions

In this study, CWSI, RGB colour ratios and GLCM texture were

used to detect water stress in a Sunagoke moss sample. The

results showed a clear correlation between the CWSI, RGB

colour ratios and GLCM textural features of the sample and its

water content. The sample was found to exhibit water-related

physiological stress at water contents below 1.5 g g�1 and

above 3.0 g g�1 (grams of water per gram of dry Sunagoke

moss) but appeared to be ‘‘relaxed’’ physiologically at water

contents in between.
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The maximum possible total uncertainty of thermal data

acquired in the study was 70.50 1C at 17 1C, ambient

temperature. The maximum uncertainty of the visible light

data was 77.65, pixel intensity and attributed to red

bandwidth. Thermal imaging could only detect drought water

stress while visible reflectance imaging was able to detect

both drought and flood water stress in the sample. It is

concluded that a combination of thermal and visible light

imaging as espoused in the TRIS systems can be used to

detect both deficit and excess water stress in Sunagoke moss.

Although only Sunagoke moss was used in this study, the

TRIS system is novel and could be extended to other biotic

and abiotic stress detection in other plants. As for the results

with Sunagoke moss, from this study, we deduce that the

optimum amount of water to ensure its best aesthetic and

physiological states and optimum water utilisation is in the

range of 1.5–3.0 times its dry weight. However, more studies

incorporating photosynthesis measurements need to be

carried out to verify this and to develop thermal-reflectance

digital fingerprints for water stress before a prototype of TRIS

systems can be fully tested.
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