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KEYWORDS Abstract Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays
Heat shock protein 90; key roles in the folding, maintenance of structural integrity and regulation of a subset of
Gene cloning; cytosolic proteins. In the present study, the cDNA of Argopecten irradians HSP90 (designated
Bacterial challenge; AiHSP90) was cloned by the combination of homology cloning and rapid amplification of cDNA
mRNA expression; ends (RACE) approaches. The full-length cDNA of AiHSP90 was of 2669 bp, including an open
Argopecten irradians reading frame (ORF) of 2175 bp encoding a polypeptide of 724 amino acids with predicted mo-

lecular weight of 83.08 kDa and theoretical isoelectric point of 4.81. BLAST analysis revealed
that AiHSP90 shared high similarity with other known HSP90s, and the five conserved amino
acid blocks defined as HSP90 protein family signatures were also identified in AiHSP90, which
indicated that AiHSP90 should be a cytosolic member of the HSP90 family. Fluorescent real-
time quantitative PCR was employed to examine the expression pattern of AiHSP90 mRNA in
haemocytes of scallops challenged by Gram-negative bacteria Vibrio anguillarum and Gram-
positive bacteria Micrococcus luteus. In both bacterial challenged groups, the relative expres-
sion level of AiHSP90 transcript was up-regulated and reached maximal level at 9 h after
injection, and then dropped progressively to the original level at about 48 h post challenge.
The results indicated that AiHSP90 was potentially involved in the immune responses against
bacteria challenge in scallop A. irradian.

© 2007 Elsevier Ltd. All rights reserved.

Introduction

Heat shock proteins (HSPs) are ubiquitous and highly con-
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also been suggested that HSPs could function as potent activa-
tors of the innate immune system [7,8]. According to their
apparent molecular mass, HSPs have been classified into
several families: HSP90 (85—90kDa), HSP70 (68—73 kDa),
HSP60, HSP47 and low molecular mass HSPs (16—24 kDa).

HSP90 is one of the most abundant cellular proteins even
under non-stress conditions, accounting for 1%—2% of
cellular proteins in most tissues [9]. It has been demon-
strated to play crucial roles in protein folding, protein
degradation and signal transduction [10—16]. The most
well-known function of HSP90 concerns the maintenance
of key proteins, such as steroid receptors and protein
kinases, by forming specific complexes [17]. It also partici-
pates in the cellular response to environmental stimuli and
interacts directly with several signal transducers and their
components [18], for example casein kinase (CK) II
[12,13], the Raf and Src components of the mitogen-acti-
vated protein (MAP) kinase system [19] and the cell-cycle
control serine/threonine kinases Weel [20]. HSP90 is also
involved in the immune response especially in lipopolysac-
charide (LPS) recognition [21—23], and regulated by a range
of stressors such as heat or cold shock [24—27], hyperos-
motic stress [28], food-deprivation, reduced oxygen level
[29], polychlorinated biphenyl (PCB) [30], arsenates [31],
heavy metals [32,33] and diseases [34,35].

Members of the HSP90 gene family have been charac-
terized in numerous phylogenetically diverse organisms. In
vertebrates and budding yeast, there exist two types of
HSP90 genes, namely HSP90a and HSP90B, which encode
two similar cytosolic isoforms [9,17]. HSP90B lacked the
glutamine-rich sequence (QTQDQ) at the N-terminus com-
pared with HSP90« [36]. Until now, only one type HSP90
has been reported in invertebrates except Anopheles albi-
manus which contains two HSP90 genes [37]. To our knowl-
edge, most studies of HSP90 are focused on mammals and
typical model organisms, while the molecular features
and functional studies in mollusk remain deficient and
only HSP90s from Chlamys farreri and Haliotis tuberculata
have been cloned and characterized [38,39].

Because of fast growth rate and strong tolerance to
diseases, bay scallop Argopecten irradians was introduced
from America, and has been cultured extensively in the
coastal provinces of China. After flourished for several
years, the bay scallop culture in China is now suffering
from the problem of mortality. Better understanding of the
immune mechanisms may allow more efficient control of
the disease, as well as the intensive breeding and long-
term sustainability of scallop farming. The main objectives
of the present study are: (1) to clone the cDNA of A. irradians
HSP90 (designated AiHSP90); (2) to investigate the mRNA ex-
pression of AiHSP90 in haemocytes of bay scallop challenged
by Vibrio anguillarum or Micrococcus luteus, and (3) to un-
derstand the response of HSP90 against bacterial infection.

Materials and methods

Animals, immune challenge and haemolymph
collection

Bay scallops A. irradians, averaging 55 mm in shell length,
were purchased from Nanshan Market, Qingdao, China and

maintained in aerated seawater at 18 °C for 1 week before
processing. For the bacterial challenge experiment, 100 in-
dividuals were kept in each aerated tanks. A total of 50 pL
of live Vibrio anguillarum or Micrococcus luteus resus-
pendedin 0.1 mol L=" PBS (pH6.4, OD¢go = 0.4) was injected
into the adductor muscle of scallops. The non-injected scal-
lops and scallops received an injection of 50 uL PBS were
used as blank group and control group, respectively. The
injected scallops were returned to seawater tanks and
nine individuals were randomly collected at 3, 6, 9, 12, 24,
48 and 72 h post-injection. Haemolymph from three individ-
uals were pooled as a replicate to minimize individual
variability, and three replicates were employed for each
time point during the challenge experiment. The haemo-
lymph from the blank, control and stimulated groups were
collected using a syringe from the adductor muscle and
centrifuged at 800 x g, 4 °C for 10 min to harvest the haemo-
cytes. The haemocyte pellets were immediately subjected
to RNA extraction using TRIzol reagent (Invitrogen).

cDNA library construction and AiHSP90 cloning

A cDNA library was constructed from the whole body of
a bay scallop challenged by V. anguillarum, using the ZAP-
cDNA synthesis kit and ZAP-cDNA Gigapacklll Gold cloning
kit (Stratagene) [40].

Two degenerated primers F1 5-GDGTGTTYATCATGGAC
AAYTGTGA-3 and R1 5-TTCATGATYCTYTCCATGTTDGC-3’
were designed based on the conserved sequence of known
HSP90s to amplify the partial fragment of AiHSP90 gene
from bay scallop. PCR reaction was performed in a 20 pL re-
action volume containing 2 uL of 10x PCR buffer, 1.2 uL of
MgCl, (25 mmolL™"), 1.6 uL of dNTP (2.5 mmolL™"), 1 pL
of each primer (10 umol L"), 12 uL of PCR-grade water,
0.2 pL (1 U) of Taq polymerase (Promega) and 1 pL of cDNA
template. The PCR temperature profile was 94 °C for 5 min
followed by 33 cycles of 94 °C for 1 min, 56 °C for 1 min,
72°C for 1 min and a final extension step at 72°C for
10 min. The PCR products were separated on 1.5% agarose
gel and purified by the PCR fragment purification kit
(TaKaRa). The purified PCR product was ligated into the
pMD18-T vector (TaKaRa), and transformed into competent
Escherichia coli cells. The recombinants were identified
through blue-white color selection in ampicillin-containing
LB plates and screened with M13 forward and reverse
primers. Three positive clones were sequenced on an
ABI377 Automated Sequencer (Applied Biosystem), and the
resulting sequences were verified and subjected to cluster
analysis.

The 5 end of AiHSP90 cDNA was obtained by RACE
technique. Two specific reverse primers, R2 5'-TGTTAGCG
GACCAACCATACTG-3' and R3 5-CTGTGATGTATGGTATCG
GAGG-3' were designed based on the partial sequence
amplified by degenerated primers. The PCR amplification
was performed using the same reaction system as described
before with oligo (dG)-adaptor and R2 by the 5 RACE
system (Invitrogen), and then a nested PCR was carried out
using oligo (dG)-adaptor and R3.

The 3’ end of AiHSP90 was amplified by using sense
primer F2 5'-AAGATGAGAAGCCAAAGGTCG-3' and T5 primer
5-TGTGCTGCAAGGCGATTAAG-3’ with 1 uL of cDNA library
mix as template. The full-length of the sequence was verified



Molecular cloning, characterization and expression of hsp 90 gene 381

by sequencing the fragment amplified by the primers F4 5'-
ATCAGGCAGAAACTAACACCG-3' and R4 5'-AACGAGAAGAAAT
GCCAAACG-3' (located at 5’ UTR and 3’UTR of AiHSP90).

Sequence analysis of AiHSP90

The searches for nucleotide and amino acid sequence
similarities were conducted with BLAST programs at the
National Center for Biotechnology Information (http://
www.ncbi.nlm.nih.gov/BLAST/). The deduced amino acid
sequence was analyzed with the Expert Protein Analysis
System (http://www.expasy.org/). Multiple alignment of
AiHSP90 was performed with the ClustalW Multiple Align-
ment program (http://www.ebi.ac.uk/clustalw/). A phylo-
genic tree was constructed using the programs of CLUSTAL
X1.83 [41] and MEGA3.1 [42] based on the sequences of
AiHSP90 and other known HSP90 sequences. Bootstrap anal-
ysis was used with 1000 replicates to test the relative sup-
port for the branches produced by the neighbor-joining
analysis.

Quantitative analysis of AiIHSP90 mRNA expression

The expression of AiHSP90 transcript in haemocytes after
bacterial challenge was recorded by fluorescent real-time
RT-PCR. Total RNA was isolated from the haemocyte pellets
as described above. The cDNA first-strand synthesis was
carried out based on Promega M-MLV RT Usage information
(Promega). cDNA mix was diluted to 1:5 and stored at —80 °C
for subsequent fluorescent real-time PCR. Two AiHSP90
gene-specific primers AiRTF 5-TCAGTATGGTTGGTCCGCTA
A-3" and AIRTR 5-CGGTTGCCTTTTCCTTCAGA-3' were used
to amplify a product of 149 bp. A constitutive expression
gene, B-actin gene, was used as internal control to verify
the quantitative real-time PCR reaction. Two scallop B-actin
primers AF 5-CCCTCTATGCCTCTGGTCGT-3' and AR 5'-TTCT
CTCTCGGCTGTGGTTG-3' were used to amplify a 200 bp frag-
ment of bay scallop B-actin gene. PCR grade water for the
replacement of cDNA template was used as negative control.

The fluorescent real-time PCR assay was carried out in an
ABI PRISM 7300 Sequence Detection System (Applied Bio-
systems). The amplifications were performed in triplicates
in a 25 puL reaction volume containing 12.5 uL of 2x SYBR
Green Master Mix (Applied Biosystems), 1 uL (each) forward
primer and reverse primer (10 umol L™"), 1 uL of 1:5 diluted
cDNA, and 9.5 plL of PCR grade water. The thermal profile for
real-time PCR was 50 °C for 2 min and 95 °C for 10 min fol-
lowed by 40 cycles of 95°C for 15s, 57°C for 15s and
72 °C for 1 min. Dissociation curve analysis of amplification
products was performed at the end of each PCR reaction
to confirm that only one PCR product was amplified and de-
tected. After the PCR program, fluorescent real-time PCR
data from three replicate samples were analyzed with
7300 System SDS Software v1.3.0 (Applied Biosystems,
USA). To maintain consistency, the baseline was set auto-
matically by the software. The comparative C+ method
was used to analyze the expression level of AiHSP90 [43].
All analyses were based on the Ct values of the PCR prod-
ucts. The Cywas defined as the PCR cycle at which the fluo-
rescence signal crossed a threshold line that was placed in
the exponential phase of the amplification curve. The C;

for the target amplification of AiHSP90 and the C+ for the in-
ternal control B-actin were determined for each sample.
Differences in the C for the target and the internal control,
called ACq, were calculated to normalize the differences in
the amount of total nucleic acid added to each reaction and
the efficiency of the RT-PCR. The blank group was used as
the reference sample, called the calibrator. The ACt; for
each sample was subtracted from the ACt of the calibrator;
the difference was called AACy value. The expression level
of AiHSP90 could be calculated by 2722¢T and the value
stood for an n-fold difference relative to the calibrator.
The data obtained from real-time PCR analysis were sub-
jected to Student’s t-test to determine differences in the
mean values between blank and treated groups. Signifi-
cance was concluded at P < 0.05.

Results

cDNA cloning and sequencing of the scallop
AiHSP90 gene

The PCR product amplified by the degenerated primers was
of 745 bp, and its nucleotide sequence was homogeneous to
other known HSP90s. AiHSP90-specific primers R2, R3 and
F2 were designed based on the above sequence, and used
for the full-length cDNA cloning. By RACE and nested PCR
approaches, two fragments corresponding to the 5 and 3’
end of the AiHSP90 cDNA were amplified. A 2669 bp nucle-
otide sequence representing the complete cDNA sequence
of AiHSP90 was obtained by cluster analysis of the above
fragments.

Characterization of AiHSP90

The cDNA sequence of AiHSP90 was deposited in GenBank
under accession no. EF532406. The full-length cDNA of
AiHSP90 was of 2669 bp, including a 5'-terminal untrans-
lated region (UTR) of 90 bp, a 3’-terminal UTR of 404 bp
with a canonical polyadenylation signal sequence AATAAA
and a poly (A) tail, and an open reading frame (ORF) of
2175 bp encoding a polypeptide of 724 amino acids with
predicted molecular mass of 83.08 kDa and theoretical
isoelectric point of 4.81. The five amino acid blocks defining
HSP90 protein  family, (NKEIFLRELISN[S/A]SDALDKIR,
LGTIA[K/R]SGT, IGQFGVGFYSA[Y/F]LVA[E/D], IKLYVRRVFI,
GVVDS[E/D]DLPLN[I/V]SRE) and the consensus sequence
MEEVD at the C-terminus were highly conserved in AiHSP90
sequence. SMART program analysis revealed that the typical
histidine kinase-like ATPases domain, which was ubiquitous
in all HSP90 family members, located from position 35—188.

Homology analysis of AiHSP90

The deduced amino acid sequence of AiHSP90 was close
matched to other HSP90s in invertebrates and vertebrates.
It displayed high similarity to HSP90s of Zhikong scallop
(96.8%), abalone (89.7%), human (86% to a isoform and
86.7% to B isoform), zebrafish (84.6% to o isoform and 85% to
B isoform), fruitfly (83.4%) and so on. The common names,
species names and the GenBank accession numbers were
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listed in Table 1. Multiple sequence alignment of AiHSP90
with other known HSP90 proteins revealed that they were
highly conserved, especially in the regions of HSP90 family
signatures.

Based on the sequences of HSP90s, a phylogenetic tree
was constructed using the programs of CLUSTAL X1.83 and
MEGA3.1 (Fig. 1). Plant and animal HSP90 were separated
and formed two distinct branches in the tree. In the branch
of animal, all the vertebrates were clustered together and
formed two branches (HSP90a and HSP90B isoform groups).
All the vertebrates and arthropods were clustered together
and formed a sister group to the branch of mollusk consist-
ing of bay scallop, Zhikong scallop and abalone. The rela-
tionships displayed in the phylogenic tree were in good
agreement with traditional taxonomy.

Quantitative analysis of AiHSP90 gene expression

Fluorescent real-time quantitative PCR was employed to
measure the temporal expression of AiHSP90 transcript in
haemolymph of scallops challenged by V. anguillarum or
M. luteus. After V. anguillarum challenge, AiHSP90 mRNA
level increased and reached the maximum (6.8-fold higher
than blank group) at 9 h post injection (Fig. 2). As time pro-
gressed, the expression level of AIHSP90 mRNA dropped
back to the original level at 48 h post injection. Significant
differences in the expression level of AiHSP90 were ob-
served at 3h, 9h, 12 h, 24 h and 72 h after injection com-
pared with the blank group (P < 0.05). Same expression
pattern of AiHSP90 transcript was also observed in the
M. luteus challenged group. AiHSP90 mRNA level increased
and reached maximal level at 9 h after injection and was 3-
fold higher than that observed in the blank group. Then the
expression level of AiHSP90 transcript dropped gradually to
nearly the original level at 48 h post injection. Significant
differences of the expression level of AiHSP90 were ob-
served at 9 h, 12 h, 24 h and 72 h after injection compared
with the blank group (P < 0.05).
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Figure 1 A phylogenetic tree of HSP90 family members con-
structed with the neighbour-joining method. The common
names, species names and the GenBank accession numbers
are the same as those in Table 1. Numbers at each branch in-
dicate the percentage of times a node is supported in 1000
boostraps pseudoreplication by neighbour joining.

Discussion

In this paper, the complete cDNA sequence of HSP90 gene
from A. irradians was reported. Conserved sequences and
characteristic motifs, such as HSP90 family signatures,

Table 1  Sequences used in the homology analysis and phylogenetic tree

GenBank no. Name Common name Isoform
EF532406 Argopecten irradians Bay scallop —
AAR11781 Chlamys farreri Zhikong scallop =
AM283515 Haliotis tuberculata Abalone =
CAA27435 Drosophila melanogaster Fruit fly —
AAB05639 Anopheles albimanus Mosquito =
BAB41209 Bombyx mori Domestic silkworm —
NP_571403 Danio rerio Zebrafish HSP90o
057521 Danio rerio Zebrafish HSP90B
P11501 Gallus gallus Chicken HSP90o
CAA49704 Gallus gallus Chicken HSP90B
NP_005339 Homo sapiens Human HSP90a.
NP_031381 Homo sapiens Human HSP90B
NP_786937 Rattus norvegicus Rat HSP90a.
P34058 Rattus norvegicus Rat HSP90B
NP_001012688 Bos taurus Bovine HSP90o
BAC82488 Bos taurus Bovine HSP90B
AAP87284 Hordeum vulgare Barley =
AAQ08597 Hevea brasiliensis Rubber tree =
BAA00615 Arabidopsis thaliana Thale cress =
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Figure 2 Temporal expression of AIHSP90 mRNA relative to B-actin analyzed by real-time PCR in scallop haemolymph after V.
anguillarum and M. luteus challenge. The values are shown as means + S.E., n = 3. Significant differences between challenged
group and blank group are indicated by an asterisk (P < 0.05) and two asterisks (P < 0.01), respectively.

ATP and geldanamycin binding domain (from 35 to 188
amino acid residues) [44], as well as the major structural
and functional domains typically in HSP90 [45,46], were
found in the deduced AiHSP90 amino acid sequence. The
EEVD sequence at the N-terminus of AiHSP90 was strictly
conserved and shared with the other members of HSP90
family. It has been reported that this peptide is recognized
by TPR domains of HOP (HSP70 and HSP90 organizing pro-
tein), an adapter protein which mediates the association
of HSP70 and HSP90 into a multichaperone complex [47].
Furthermore, the presence of sequence MEEVD on the
C-terminus is a character shared by all of the cytosolic
HSP90 proteins. Searching for sequence similarities re-
vealed that the deduced amino acid sequence of AiHSP90
shared high similarity with other known HSP90s (more
than 77% similarity in all the matches), especially with
those from Mollusca, C. farreri and H. tuberculata. Based
on the sequence alignment, structure comparison and phy-
logenetic analysis, AiHSP90 was concluded to be a cytosolic
member of HSP90 family.

In vertebrates, there exists two different cytosolic
isoforms of HSP90 gene (HSP90« and HSP90B) which are
different in the structure of glutamine-rich sequence
(QTQDQ) at the N-terminus, a site of phosphorylation by
a dsDNA-dependent kinase [36,48]. In contrast, most inver-
tebrates possess only one HSP90 gene. Homology analysis
demonstrated that AiHSP90 shared higher similarity with
HSP90B. Moreover, like all vertebrate B-isoforms, there
was no QTQDQ sequence at AiHSP90 N-terminus. This obser-
vation suggested that AiHSP90 was more closely related to
the vertebrate B-isoforms.

The mechanisms underlying HSPs induction and the role
of HSPs during bacterial infection have not been fully
elucidated. Phagocytosis of bacteria or bacterial products
is usually coupled with the generation of oxygen free
radicals or reactive oxygen species (ROS) [49]. Generation
of ROS is an effective defense against bacteria, while it is
also detrimental for the host cell, which could result in pro-
tein denaturation or proteotoxicity. As a result of bacterial
infection and subsequent ROS production, accumulation of
denatured proteins in the host cell might trigger HSPs ex-
pression. Up-regulation of HSPs is perhaps a protective

mechanism since HSPs could bind to damaged or misfolded
proteins to restore their original structure [34,50].

The recent data indicated that stress proteins possessed
the ability to modulate the cellular immune responses and
played key roles in protecting organisms from pathogenic
stress [51,52]. In mammals, there were several studies
showing that bacteria or bacterial products induced expres-
sion of stress proteins in host cells [53—55]. The increased
HSP90 expression and tissue-specific HSP90 response in
the western painted turtle Chrysemys picta bellii during
bacterial infection also suggested a role of HSP90 in immu-
nopathological events in reptiles [34]. The study on proto-
zoa Acanthamoeba castellanii suggested that HSP90 was
involved in phagocytosis or bactericidal activity against
bacteria in host cells [56].

In the present study, the mRNA transcripts in haemo-
cytes were measured after scallops were challenged by
V. anguillarum or M. luteus. In both bacterial challenged
groups, the expression of the AiHSP90 mRNA increased
and reached the maximum at 9 h, and then dropped pro-
gressively. The increase of AiHSP90 transcript was higher
in V. anguillarum challenged groups than that in M. luteus
challenged groups, which suggested that V. anguillarum
was probably a stronger inducer for AiHSP90. It was consis-
tent with the fact that V. anguillarum is one of the disease-
causing bacteria in bay scallop [57]. This is the first time
such a response of HSP90 has been observed in a molluscan
species, indicating that AiHSP90 is potentially involved in
scallop immune responses to bacterial infection. These
data would be helpful to understand the significance of
HSP90 to scallop immune defense.
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