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ABSTRACT
Traditional NIR calibration methods rely on assembling a calibration set of samples and using procedures
such as multiple linear regression or partial least squares to develop the calibration. The problem with
this methodology is to assemble a calibration set which maximises the diversity of samples represented
whilst minimising the intercorrelations between constituents, particularly total protein content and
moisture content. The application of NIR measurements of grain has moved beyond simply measuring
protein and moisture content. There is now considerable interest in using NIR to measure a range of
quality parameters such as Extensograph extensibility and maximum resistance. These parameters are
not themselves represented in the NIR spectrum, but are a direct result of the protein composition of
the sample. Consequently, a method for predicting the protein composition would be useful. In this
paper, we present the results of a comparison of a curve fitting methodology and the more usual partial
least squares curve fitting of the component protein spectra, using samples obtained from a wheat
breeders’ trial. Gliadin and glutenin contents were measured by SE-HPLC and used to develop a partial
least squares calibration and the results compared with a curve-fitting methodology. For the situation
examined here, the curve fitting methodology did not perform as well as partial least squares calibration.
For glutenin, SEP=0·65 for the curve fitting compared to SECV=0·38 for a traditional PLS calibration.
However, the results from the curve-fitting are independent of the total protein content and show
sufficient discrimination for potential use in sample protein ranking.
 2001 Academic Press
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a need to measure properties that are indicativeINTRODUCTION
of the protein quality. Measurements such as those

Although total protein content is the primary factor obtained from the Extensograph, Mixograph and
in determining the end use of wheat, there is often Farinograph are widely used to assess the quality

of wheat flour, both by end-users and by plant
breeders. These measurements require relatively : PLS=Partial Least Squares;
large amounts of material (although small-scaleNIR=near infrared; HPLC=high performance liquid
measurements are available) and are time con-chromatography; SDS=sodium dodecyl sulphate;

PAGE=polyacrylamide gel electrophoresis; SEP- suming making them unsuitable for use in the
standard error of prediction; SECV=standard error of early stages of breeding programmes and at grain
cross validation. receival stations.
∗ Corresponding author. There are a number of reports on the use of
∀ Present address: Australian Centre for International Agricultural Near Infrared (NIR) spectroscopy to predict qual-Research, GPO Box 1571, Canberra, ACT 2601, Australia.

ity parameters. Osborne1 investigated NIR for∗∗ Present address: AWB Research Ltd., GPO Box 4562, Mel-
bourne, Vic 3001, Australia. predicting SDS sedimentation volume as a
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measurement of protein quality and concluded the protein composition which is often described
in terms of the gliadin and glutenin content andthat there was not a significant correlation with

the NIR spectral data when the contribution of the ratio of high molecular weight to low molecular
weight glutenin subunits. It is the relative amountsprotein content to the calibration was removed.

Rubenthaler and Pomeranz2 studied water ab- of these components that determine the per-
formance of a flour at a given protein content.sorption, mixing time and loaf volume, achieving

reasonable predictions for these characteristics and Hence, an alternative to a ‘Black-Box’ calibration
based on physical properties is to independentlysuggested that NIR was indeed measuring more

than simply total protein content. Williams et al.3 measure the composition of the protein and to use
these values to calculate the likely performance ofand Pawlinsky et al.4 investigated a wide range of

quality parameters with a view to developing whole the flour under varied conditions.
Measurements of protein composition are madegrain NIR calibrations. Delwich and Weaver5

noted that the ability of NIR to robustly predict by HPLC methods that, despite their effectiveness,
are time-consuming and thus unattractive for situ-parameters such as dough mixing time, mixing

tolerance and overall bake score was low due to ations where speed of analysis or the number of
analyses required are the deciding factors. Sizethe complexity of the interactions between protein,

starch and lipid. Exclusion (SE-) HPLC separates protein extracts,
usually in unreduced form, based on their mo-This type of NIR calibration (essentially a ‘Black

Box’ approach) suffers from a number of de- lecular sizes. A typical SE-HPLC chromatogram
and SDS-PAGE analyses of fractions collectedficiencies. Firstly, there is the requirement to as-

semble a large sample set, complete with from each sector is shown in Figure 1(a,b). Three
main size classes are obtained from total proteinlaboratory analysis. This can be time-consuming

and there is a real risk of the physical and chemical extracts, mainly consisting of glutenins (Mr=mil-
lions – 20 million, peak 1 in Figure 1(a)], gliadinsproperties of the samples changing significantly

between the time of recording the spectra and [Mr=30 000–70 000, peak 2 in Figure 1(a)] and
albumins+globulins (Mr=20 000–30 000, peak 3completing the reference measurements. A second

problem is the relationship between the material in Figure 1(a)], respectively, although some of the
albumins and globulins may elute with the gliadinsused in the physical test and the material used to

obtain the NIR spectrum. Many of the properties in the second peak.
In a recent paper6, Delwiche et al. showed theof interest are not properties of the grain or flour.

For example, the extensibility measurement is potential of NIR to measure gliadin and glutenin
content of whole wheat beyond what would bemade on a piece of dough prepared under specified

conditions. Although its properties are un- expected by a simple correlation with total protein
content. The methodology used by Delwiche etdoubtedly related to the chemical composition of

the flour and grain, it is not the same material. In al.6 still leaves open the question of how to develop
an NIR calibration that gives results independentmany cases, there is a high correlation between

the quality parameters especially dough ex- of protein content. The obvious method, simply
correcting the laboratory or predicted values to atensibility and total protein content. The nature

of traditional NIR calibration methodologies gives given protein content, is not valid as there is no
reason to assume that the relationship betweenmuch greater weight to the larger absorbances in

the NIR spectrum and thus biases any prediction the protein composition and the total protein con-
tent will be the same for all samples. In a PLStowards outcomes that favour this weighting. Con-

sequently, the unwary user can inadvertently de- NIR calibration, the laboratory reference data is
regressed onto the NIR spectral data. Thus, if therive a poor protein calibration. A third point to

consider is that the physical properties of interest effect of a particular component is to be removed,
then it should be removed from the spectral (x-do not themselves have NIR spectra. It is the

individual chemical structures in a wheat grain or axis) data. This can be done easily in some cases
by removing particular wavelengths from the cal-a flour that give rise to the absorption features on

which NIR measurements are based. Un- ibration. However, in the case of measuring gliadin
and glutenin, the effect we wish to remove is thatfortunately, the exact nature of the relationship

between chemical composition and dough rheo- of total protein, and yet we wish to measure the
content of a protein component. Clearly, removinglogical properties is not known. It is known that

total protein content is an important factor, as is spectral regions with a high correlation to total
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protein content is going to have an adverse effect are determined by performing a least squares
deconvolution on the spectra of a set of mixtureson a calibration for gliadin and glutenin content.

In essence, the problem is to develop a cal- of known composition. Subsequently, a simple
least squares fit is then used to determine theibration for protein composition that is in-

dependent of the protein content. Whilst there is proportion of each spectral component required
to reconstruct the spectrum of the target. Thesea general trend for the gliadin and glutenin content

to be correlated with total protein content, there is proportions can be directly translated to con-
centrations of the component present. In the pres-no reason to assume that the specific mathematical

relationship found in a calibration set is valid for ent paper, we compare the Curve-Fitting
methodology with the more usual Partial Leastall possible samples. Therefore, a calibration must

truly measure the amounts of the individual com- Squares (PLS) calibration on a set of samples of
wide range of physical properties and cultivarsponents present.

One of the problems with developing cal- and grown at a number of sites in Australia.
ibrations for use in plant breeding programs is
that the material to be predicted will be unusual

EXPERIMENTAL– i.e. it is unlikely to be represented well in any
calibration set. This is because calibration sets are Samplesusually based on material which is the result of
several generations of selection. At this point, there Flour samples (total=78) were obtained from two

sources. Forty-eight samples were obtained fromhas already been quite significant selection to
remove material that is clearly undesirable. How- a Stage 3 Breeders’ trial co-ordinated by NSW

Agriculture, Wagga Wagga, NSW Australia. Theever, it is precisely the unusual material that the
breeder wishes to identify at an early generation material in this set represents a broad range of

advanced breeders’ lines and released varietiesby NIR methods. A recent paper by Wesley et al.8

offers an alternative to traditional NIR calibration from breeding programs at Wagga Wagga (NSW),
Temora (NSW), Narrabri (NSW) and Toowoombamethods based on curve fitting the spectra of

the pure components. This method is based on (Queensland). The samples were grown at two sites
(Wagga Wagga and Condobolin (NSW)) plantedidentification of regions in the NIR spectrum that

are unique to the components of interest, in this early in the growing season and mid-season. Each
sample was a composite of three replicates growncase gliadin, glutenin and starch. Initially, the

NIR spectra for each of the pure components in the field so as to eliminate field variation. Thirty
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samples were obtained from Agrifood Technology,
Werribee, Victoria, Australia. This set consists of
14 varieties representing Australian wheats with a
range of physical properties. The samples were
collected from four sites (Horsham (Vic), Moree
(NSW), Yeelanna (SA) and Wongan Hills (WA)).
At each site, all of the varieties were grown in
plots in the same field. In addition, the grain for
the whole trial came from the same source for a
given variety. The only difference between samples
from a particular site is varietal and for a given
variety, the only difference in environmental.

A further set of samples (total=100) were grown
in 1997 and in 1998 at Roseworthy, SA. The
samples were selected from a range of wheat
lines with the aim of maximising the physical and
chemical properties of the sample set.

SE-HPLC Measurements of Gliadin and Glutenin
Content

Different wheat storage protein extracts were sub-
jected to SE-HPLC using a Beckman System Gold
HPLC (Beckman Instruments, Inc., Fullerton, CA,
U.S.A.), configured with two model 126 Pumps,
a model 166 Detector and a model 507E Auto-
sampler. Integration of chromatograms was per-
formed using Beckman Gold Nouveau v1.5.
Analyses were performed on total protein9, ‘ex-
tractable’ and ‘unextractable’ polymeric protein10.
For total protein analysis, 10 mg of flour was
extracted with 1 mL 0·5 % SDS- 0·05  phosphate
buffer (pH 6·9), subjected to 15 s sonication (son-
ifier set at output 5, Branson Sonic Power Com-
pany, Danbury, CT, U.S.A.), centrifuged at
17 000×g for 15 min ( Jouan A-14 micro-
centrifuge, Societe Jouan, Saint Herblain, France)
and filtered through a 0·45 �m polyvinylidene
fluoride filter (Gelman Sciences Inc., Ann Arbor,
MI, U.S.A.). Aliquots of 20 �L were injected into
a Phenomenex Biosep SEC-4000 column (Pheno-
menex, Torrance, CA, U.S.A.) running at room
temperature with an eluant consisting of 50%
acetonitrile (190 grade, Ajax Laboratory Chem-
icals, Auburn, NSW, Australia) and 50% high
purity water (Millipore Water Purification System,
Millipore Corp., Bedford, MA, U.S.A.) both con-
taining 0·05% trifluoroacetic acid (sequanal grade,
Pierce, Rockford, IL, U.S.A.) according to Batey

29

1:
2:
3:
4:

Total protein extract. Peak 1. Glutenins
SDS-soluble without sonication. Peak 1. Glutenins
SDS-soluble with sonication. Peak 1. Glutenins
Total protein extract. Peak 2. Gliadins
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et al.9 A running time of 10 min, based on a flowFigure 1 (a) SE-HPLC chromatogram of the proteins of
rate of 2 mL/min, was used according to Larroquewheat flour (unreduced) and (b) SDS-PAGE gel of extracted

component proteins (reduced). et al.11 Eluted protein was detected at 214 nm.
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Three main peaks were determined: peak 1, con- NIR Calibrations
sisting of polymeric protein (mainly glutenins);

Calibrations were developed using ISI3 version 4peak 2, made up of monomeric gliadins and peak
software (Foss NIRSystems Inc., Silver Spring,3, composed of a mixture of monomeric protein:
MD, U.S.A.) over the range 1100–2498 nm, thealbumins and globulins [Fig. 1(a)]. A SDS-PAGE
range (covered by the near infrared reflectionpattern of reduced fractions collected from the
detector on the instrument) which is the focus ofthree main peaks is shown in Figure 1(b) (lanes 1,
this paper. The region 800–1100 nm is generally4 and 5 respectively).
only applicable to transmission spectroscopy whereFor ‘extractable’ and ‘unextractable’ polymeric
the long pathlengths give rise to reasonable logprotein analysis, 10 mg of flour was extracted for
(1/T) values. In reflectance, the log (1/R) values in10 min with 1 mL 0·5% sodium docecyl sulphate,
this region are very small and have poor resolving0·05  phosphate buffer (pH 6·9) in a shaker. The
power for reconstruction and calibration. All spec-supernatant obtained after centrifugation
tra were scatter corrected using Standard Normal(17 000×g for 15 min) was considered as SDS- Variance and Detrend prior to calibration12. Asoluble (or ‘extractable’) polymeric protein and second derivative calculated over a 8-point (16 nm)was filtered into vials for HPLC analysis. The gap and an 8-point (16 nm) smooth was applied.remaining pellet was resuspended in the same Calibrations were developed using a modified Par-extraction buffer and sonicated for 30 s. Samples tial Least Squares algorithm and a one-out crosswere then centrifuged at 17 000×g for 15 min, validation strategy with no outlier elimination.and the supernatant, considered as SDS-soluble Curve fitting was performed as described by Wes-polymeric protein ‘with sonication’ (or ‘un- ley et al.8 using GRAMS32 v5 (Galactic Industriesextractable’), filtered into vials for SE-HPLC ana- Corporation, Salem, NH, U.S.A.). An alternativelysis in the same conditions as reported for total method for calculating derivatives, a stabilised

protein. Figure 1(a) shows the profiles for both second derivative13 calculated using a 9-point tem-
‘extractable’ (arrowed as ‘SDS-soluble without plate with an even grid spacing of 2 nm, was used.
sonication’) and ‘unextractable’ (arrowed as ‘SDS-
soluble with sonication’) chromatograms. SDS-
PAGE patterns of reduced fractions collected from RESULTS AND DISCUSSION
the peak 1 of each of these two profiles are shown

When considering the performance of NIR cal-in Figure 1(b) (lanes 2 ‘extractable’ and 3 ‘un-
ibrations, it is useful to establish the typical errorextractable’).
on the laboratory reference method. SE-HPLC isA ratio ((area P1 unextractable polymeric pro-
a well-established technique and recent advancestein ∗ (area P1 extractable+area P1 unextractable
in instrument design, computerisation and columnpolymeric protein)−1)∗100 was used determine the
performance mean that the SE-HPLC measure-molecular size distribution of polymeric protein.
ment itself is highly repeatable. Most of the errorsThis parameter, known as the percentage of un-
lie in the preparation of the samples, particularlyextractable polymeric protein (%UPP), has been
the sonication step, and in the interpretation ofconsistently linked to wheat quality.
the SE-HPLC data. Sonication is used to solubilise
the largest protein molecules by breaking them
into lower molecular weight fractions. The extent
to which this is repeatable is dependent largely onNIR Measurements
the technical skill of the operator. In order to

NIR Spectra were recorded using a NIR Systems investigate these effects, a repeatability trial was
6500 scanning monochromator spectrometer fitted performed using one flour. Six separate extracts
with a sample transport accessory (Foss NIR- were prepared and each extract injected five times.
Systems Inc., Silver Spring, MD, U.S.A.). Spectra Analysis of Variance showed that most of the
were recorded in reflectance mode using an ISI error was associated with the sample extraction,
ring cup. Spectral data were recorded from 400 so comparing extractions, the standard deviation
to 2498 nm at 2 nm intervals and saved as the of difference is 0·08% (total flour basis). Another
average of 32 scans for each sample. A four-point source of error is the integration of the SE-HPLC
Fourier smoothing was applied to the data during trace. The SE-HPLC trace of the extracted protein

consists of three peaks [Fig. 1(a)]. The first rep-collection.
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resents polymeric material, while the second and indicates that PLS is in fact doing no better.
However, working with such coarse estimates isthird are monomeric material. However, as we

are actually measuring the size of the protein acceptable in most plant breeding situations where
a simple cut-off is applied. The other obviousmolecules, which is a continuum, there is no clear

differentiation between the peaks. Other errors problem with the Curve-Fit is the large bias be-
tween the actual and predicted values (Fig. 2).include assumptions that 100% of the protein is

extracted and that all glutenin is in Peak 1 and all This is caused by the extreme simplicity of the
model. There is a considerable amount of materialgliadin is in Peak 2. In the final analysis, we can

expect the SE-HPLC data to have a standard (water, lipid, water-soluble proteins) that is not
represented in the three-component model. Thisdeviation of differences of 0·1% total flour basis,

and it is this value which is crucial to understanding material should be included so that the spectral
reconstruction is more relevant. The easiestthe performance of the NIR methods. This is

perfectly acceptable given the range of values in method of including this material is to calculate a
residual spectrum using spectra with known gli-the calibration set, giving a range/error ratio of

approximately 20. adin, glutenin and starch content. The application
of the method for determining the residual spec-The calibration results are shown in Table I

and illustrated in Figure 2. Superficially, the PLS trum must take account of and be stratified with
respect to the physical (whole grain, ground graincalibrations look marginally better than the Curve

Fitting results, although neither approaches the or flour) and varietal nature of the samples.
The bias between predicted and actual valuesrepeatability error of the SE-HPLC method. How-

ever, the extremely good performance of the PLS is not important as long as the method reliably
predicts the ranking of samples. In order to testcalibrations is quite likely due to a high in-

tercorrelation with total protein content (Table this, a further two sets of 100 samples were ana-
lysed. Both sets contained the same material, butII). This correlation arises because of the necessity

of using gliadin and glutenin contents quoted on grown in different seasons (1997 and 1998). The
results are shown in Figure 3 and Table III. Thea total flour basis. This will inevitably invoke a

high correlation with protein unless the sample lines on the figures represent the boundaries when
each year’s data is divided into three. The bound-set has been designed to specifically avoid such

problems. Given the high correlation between aries were calculated as:
protein and the gliadin and glutenin, and the well
known ability of NIR to predict total protein Lower boundary=median−standard deviation

Upper boundary=median+standard deviationcontent, the high R2 and low SECV values for the
gliadin and glutenin predicted by a PLS calibration
is not surprising. If the values are approximately normally dis-

tributed, then 1 standard deviation from the me-The correlation analysis shows the extent to
which a PLS calibration for gliadin and glutenin dian represents approximately 66% of the range.

The use of the median rather than the mean allowscan be dependent on the total protein content.
Given that all likely calibration sets will include a for skewed populations where a few samples may

significantly alter the mean value. In these cases,wide range of cultivars, growing sites, etc and
therefore a wide range of total protein content, it using the median value simply means that some

unwanted samples may be retained. However, nois extremely difficult to develop a calibration which
measures gliadin and glutenin content in- desirable samples will be eliminated. In the case

described here, there are no samples that aredependently of total protein content. As can be
seen from Table I, the results compare very fa- ranked in the top 16% in one year and in the

bottom 16% in the other. There are some samplesvourably with those obtained from a PLS method-
ology, using R2 as a criteria. The more important that are ranked in the bottom and middle. In these

cases, most are ranked lower than the mediancriterion is the SEP and the more important con-
stituent is glutenin, which is the major contributor value. Only 3 samples (labelledΦ) are ranked low

one year and above the median value in the otherto dough quality14. On this basis, the error on
both measurements (±0·76 for PLS and±1·3 for year. A similar result is found for the samples

ranked in the top 16% in one year and in theCurve-Fit) is unacceptably large and at best this
would allow the samples to be classified on the middle in the other year. A Spearman Rank Cor-

relation test was performed on the sample rankingsbasis of either high or low glutenin content. This
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Figure 2 Actual vs Predicted for PLS calibration for glutenin (a) and gliadin (b) and for Curve Fit for glutenin (c) and gliadin
(d). (Ε=samples from Agrifood technology, Φ=samples from NSW Agriculture).

Table I Calibration results

Curve Fit PLS

Range (%) .. R2 SEP R2 SECV Terms

Glutenin 3·92–7·65 0·93 0·71 0·65 0·83 0·38 4
Gliadin 3·55–7·55 0·91 0·46 1·02 0·78 0·43 1

..=standard deviation of laboratory values. R2=multiple correlation coefficient between actual and predicted values.
SEP=Standard Error of Prediction. SECV=standard error of cross validation. Terms=number of PLS terms in equation.
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Figure 3 Comparison of prediction of glutenin content and gliadin content by Curve Fitting of samples grown over two
consecutive years. Φ=samples which are measured low in one year and above the median in the other year.

Table II Intercorrelation of laboratory data Table III Spearman Rank Correlation statistics for samples
grown in consecutive years

Gliadin Glutenin Total
protein R2 SED Spearman Rank

Correlation
Gliadin 1
Glutenin 0·72 1 Gliadin 0·31 0·38 0·5149a

Glutenin 0·26 0·38 0·5819aTotal protein 0·92 0·93 1

a Significant at P<0·01. R2 is the coefficient of
determination for the line of best fit through the data. SED
is the Standard Error of Differences (standard deviation of(top, middle, bottom). The results (Table III) show
differences between predicted values for each sample).that the rank correlation is highly significant be-

tween the two years and hence the method is
correctly predicting the glutenin content.

Although the Curve Fitting method does not R2 values and the rank correlation values for
samples grown in separate years do suggest thatpredict the ‘correct’ answer for the gliadin and

glutenin content as measured by SE-HPLC, the the method will rank the samples sufficiently for



NIR measurement of gliadin and glutenin 133

flour by near-infrared spectrophotometry: feasibility ofa discrimination into high, medium and low con-
modelling. Journal of Food Science 59 (1994) 410–415.tent for each component. Most importantly, the

6. Delwiche, S.R., Graybosch, R.A. and Peterson, C.J.results are independent of total protein content. Predicting protein composition, biochemical properties,
and dough handling properties of hard red winter wheat
flour by near-infrared reflectance. Cereal Chemistry 75
(1998) 412–416.Acknowledgements

7. Wrigley, C.W. Developing better strategies to improve
This project is funded by the Grains Research and grain quality for wheat. Australian Journal of Agricultural
Development Corporation of Australia through the Research 45 (1994) 1–17.
Grain Industries Centre for NIR. The authors wish to 8. Wesley, I.J., Uthayakumaran, S., Anderssen, R.S., Corn-

ish, G.B., Bekes, F., Osborne, B.G. and Skerritt, J.H. Athank Dr Bob Anderssen (CSIRO Maths and In-
curve-fitting approach to the near infrared reflectanceformation Sciences) for his valuable assistance with
measurement of wheat flour proteins which influencethis project. P. Burridge, P. Smith and G. Hollamby
dough quality. Journal of Near Infrared Spectroscopy 7 (1999)supplied samples from Roseworthy, SA.
229–240.

 2001 CSIRO Australia 9. Batey, I.L., Gupta, R.B. and MacRitchie, F. Use of size-
exclusion high-performance liquid chromatography in
the study of wheat flour proteins: an improved chro-
matographic procedure. Cereal Chemistry 68 (1991) 207–REFERENCES
209.

1. Osborne, B.G. Investigations into the use of near infrared 10. Gupta, R.B., Khan, K. and MacRitchie, F. Biochemical
reflectance spectroscopy for the quality assessment of basis of flour properties in bread wheats. I. Effects of
wheat with respect to its potential for bread baking. Journal variation in the quantity and size distribution of polymeric
of the Science of Food and Agriculture 35 (1984) 106–110. protein. Journal of Cereal Science 18 (1993) 23–41.

2. Rubenthaler, G.L. and Pomeranz, Y. Near-infrared re- 11. Larroque, O.R. and Bekes, F. Rapid analysis of molecular
flectance spectra of hard red winter wheats varying widely size distribution for wheat storage protein. Cereal Chemistry
in protein content and breadmaking potential. Cereal 77 (2000) 451–453.
Chemistry 64 (1987) 407–411. 12. Barnes, R.J., Dhanoa, M.S. and Lister, S.J. Standard

3. Williams, P.C., Jaby El-Haramein, F., Ortiz-Fereira, G. normal variate transformation and de-trending of near-
and Srivastava, J.P. Preliminary observations on the infrared diffuse reflectance spectra. Applied Spectroscopy 43
determination of wheat strength by near infrared spec- (1989) 772–777.
troscopy. Cereal Chemistry 65 (1988) 109–114. 13. Anderssen, B., De Hoog, F. and Hegland, M. A stable

4. Pawlinsky, T. and Williams, P. Prediction of wheat bread- finite difference ansatz for higher order differentiation of
baking functionality in whole kernels, using near infrared non-exact data. Bulletin of the Australian Mathematical Society
reflectance spectroscopy. Journal of Near Infrared Spectroscopy 58 (1998) 223–232.
6 (1998) 121–127. 14. MacRitchie, F. Studies of gluten protein from wheat

flours. Cereals Food World 25 (1980) 382–385.5. Delwiche, S.R. and Weaver, G. Bread quality of wheat


	INTRODUCTION
	Figure 1

	EXPERIMENTAL
	Figure 1

	RESULTS AND DISCUSSION
	Figure 2
	Table I
	Figure 3
	Table II
	Table III

	REFERENCES

