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Abstract

Dinoflagellates are microalgae that are associated with the production of many marine toxins. These toxins poison fish, other
wildlife and humans. Dinoflagellate-associated human poisonings include paralytic shellfish poisoning, diarrhetic shellfish
poisoning, neurotoxic shellfish poisoning, and ciguatera fish poisoning. Dinoflagellate toxins and bioactives are of increasing
interest because of their commercial impact, influence on safety of seafood, and potential medical and other applications. This
review discusses biotechnological methods of identifying toxic dinoflagellates and detecting their toxins. Potential applications of
the toxins are discussed. A lack of sufficient quantities of toxins for investigational purposes remains a significant limitation.
Producing quantities of dinoflagellate bioactives requires an ability to mass culture them. Considerations relating to bioreactor
culture of generally fragile and slow-growing dinoflagellates are discussed. Production and processing of dinoflagellates to extract
bioactives, require attention to biosafety considerations as outlined in this review.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Phytoplanktons are responsible for a large proportion
of the photosynthetically produced biomass that sup-
ports zooplankton and other higher lifeforms. Filter-
feeding organisms such as bivalve shellfish and larvae
of commercially important crustaceans rely almost
completely on phytoplankton for food. Mass prolifera-
tions of phytoplankton are known as algal blooms. Such
blooms contain high concentrations of algal biomass.
Blooms occur typically in localized regions that are
temporarily rich in inorganic nutrients such as nitrogen,
phosphorus and iron. Algal blooms are more frequent in
summers when the sunlight levels are high. Most algal
blooms are harmless and can actually benefit aqua-
culture and wild fisheries; however, under exceptional
circumstances, high-density blooms of normally bene-
ficial algae can cause indiscriminate kill of fish and
invertebrates through oxygen deprivation. In addition,
nontoxic algal blooms can make finfish more vulnerable
to disease (Rensel and Whyte, 2003).

Certain microalgae are toxic. Blooms of toxic algae
are known as harmful algal blooms, or HABs. Effects of
HABs on aquatic organisms have been reviewed by
Landsberg (2002). HABs causing red discoloration of
water are commonly known as “red tides”. At least 90
species of marine microalgae are known to produce
toxins. Of these species, 70 are dinoflagellates (Taxo-
nomic Reference List of Toxic Plankton Algae of
Intergovernmental Oceanographic Commission (IOC);
http://ioc.unesco.org/hab/data.htm). Dinoflagellates
occur widely in aquatic environments. Only about half
of the dinoflagellate species are photosynthetic. World-
wide, marine algal toxins cause more than 60,000
poisoning events annually with an associated mortality
rate of 1.5% (Gill et al., 2003). This review is focused
on biotechnology aspects of dinoflagellates and their
toxins. The latter are of potential medical and
commercial significance. Bioactive compounds from
nondinoflagellate phytoplanktons are reviewed else-
where (Metting and Pyne, 1986; Schwartz et al., 1990;
Borowitzka, 1995, 1999; Codd, 1995; Shimizu, 1996,
2003; Moore, 1996, 2005; Tringali, 1997; Tyagi et al.,
1999; Lebeau and Robert, 2003a,b; Singh et al., 2005).

2. Harmful algal blooms (HABs)

HABs are a natural phenomena, but their frequency,
geographic range and intensity appear to have increased
since the 1970s and their economic impact is greater
now than in the past. HABs appear to be stimulated by
nutrient discharges in domestic, industrial and agricul-
tural wastes (Lam and Ho, 1989). Such discharges alter
ratios of key nutrients in coastal waters to favor
development of HABs (Smayda, 1990; Riegman et al.,
1992). Nitrogenous runoffs have been clearly linked
with the formation of large phytoplankton blooms in the
Gulf of California (Beman et al., 2005). The increased
economic impact of HABs is probably linked with the
increased consumption of seafood and growth in coastal
populations (Hallegraef, 2003).

HABs can develop quite suddenly. Dormant cysts of
most of the red tide dinoflagellate species survive in ocean
sediments for years (Pfiester and Anderson, 1987). Under
appropriate environmental conditions, the cysts germinate
to produce HABs. Climatic changes that appear to be
taking place may be a contributory factor to increased
frequency of HABs. In past warmer geological periods,
some of the HAB-associated dinoflagellates occurred
over larger ranges than they do today, as reflected in the
fossil records of the resting cysts. Awarmer climate may
favor their return to former ranges (Edwards and
Richardson, 2004). MacLean (1989) presented strong
circumstantial evidence for a coincidence between

http://ioc.unesco.org/hab/data.htm
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blooms of the dinoflagellate Pyrodinium bahamense and
El Niño–Southern oscillation climatological events.
Examples of temporarily altered ranges of dinoflagellates
include human shellfish poisonings in New Zealand that
were associated with blooms of algal species similar to
Karenia brevis (Jasperse, 1993) that is considered
endemic to the Gulf of Mexico and the east coast of
Florida. These blooms coincided with the unusual
climatic conditions associated with an El Niño event.
Other similar cases have been documented (Dale and
Nordberg, 1993). Geographic distribution of certain
Table 1
Some harmful algal blooms caused by marine dinoflagellates and their effects
Plankton Algae, http://ioc.unesco.org/hab/data.htm)

Effects Causative dinoflagellates (exam

Harmless water discolorations (under
exceptional conditions in sheltered bays,
blooms can grow dense enough to cause
indiscriminate kills of fish and
invertebrates through oxygen depletion)

Akashiwo sanguinea, Gonlyayl
polygramma, Noctiluca scinila
Scrippsiella trochoidea

Produce potent toxins that if ingested by
humans, cause gastrointestinal and
neurological illnesses, such as1:

Paralytic shellfish poisoning (PSP) Alexandrium catenella, A. coho
A. fundyense, A. fraterculus, A.
A. minutum, A. tamarense, A. a
A. ostenfeldii, A. tamiyavanichi
Gymnodinium catenatum, Pyro
bahamense var. compressum

Diarrhetic shellfish poisoning (DSP) Dinophysis acuta, D. caudate,
D. norvegica, D. mitra, D. rotu
D. sacculus, D. fortii, D. miles
D. norvegica, tripos, Prorocent
P. arenarium, P. belizeanum,
P. cassubicum, P. concavum, P.
P. hoffmannianum, P. maculosu
Protoceratium reticulatum, Coo
Protoperidium oceanicum, P. p
Phalacroma rotundatum

Ciguatera fish poisoning (CFP) Gambierdiscus toxicus, Proroc
P. lima, P. concavum, P. hoffma
P. mexicanum, P. rhathytum, G
sangieneum, Gonyaulax polyed
Ostreopsis spp., O. lenticularis
O. siamensis

Neurotoxic shellfish poisoning (NSP) Karenia brevis, K. papilonacea
K. sellformis, K. bicuneiformis,
K. Concordia, Procentrum bor
Gymnodinium breve

Azaspiracid shellfish poisoning (AZP) 2Protoperidinium crassipes
Non-toxic to humans but harmful
to fish and invertebrates (especially
in intensive aquaculture systems)
by damaging or clogging their gills

Karenia mikimotoi, K. brevisul
Karlodinium micrum

1Amnesic shellfish poisoning (ASP) is not included because the causative to
2The ultimate origin of azaspiracids is the dinoflagellate Protoperidinium cr
dinoflagellate cysts has been discussed by Marret and
Zonneveld (2003).

Transport of toxic dinoflagellates and their cysts in
ship ballast waters appears to contribute to their spread
to nonnative regions. Moving contaminated shellfish
stocks from one region to another, is a further likely
contributor. Bivalves can harbor viable dinoflagellate
cells and sometimes can also contain resistant resting
cysts (Scarratt et al., 1993; Schwinghamer et al., 1994).

Barely any effort is made currently to control marine
HABs. Dinoflagellate-infecting viruses are potentially
(Hallegraef, 2003; FAO, 2004; IOC Taxonomic Reference List of Toxic

ples) Main toxins Main aquatic species
containing toxins

ax
ns,

rticula,
leei,
ndersonii,
i,
dinium

Saxitoxins (STXs) Clams, mussels, oysters,
cockles, gastropods,
scallops, whelks, lobsters,
copepods, crabs, fish

D. fortii,
ndata,
,
rum lima,

faustiae,
m,
lia sp.,
ellucidum,

Okadaic acid, dinophysis
toxins (DTXs), yessotoxins
(YTXs) and pectenotoxins
(PTXs)

Mussels, scallops, clams,
gastropods

entrum spp.,
nnianum,
ymnodinium
ra,
,

Ciguatoxins (CTXs),
maitotoxins (MTXs),
palytoxin, gambierol

Fish, snail, shrimps, crabs

,

bonicum?,

Brevetoxins (PbTxs) Oyster, clams, mussels,
cockles, whelks

Azaspiracids (AZAs) Mussels, oyster
kata,

xin is produced by a diatom and not by a dinoflagellate.
assipes (James et al., 2003).

http://ioc.unesco.org/hab/data.htm
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useful for controlling dinoflagellate blooms. Such
viruses have been reviewed by Nagasaki et al. (2006).

3. Health impact of dinoflagellates

Human diseases associated with exposure to marine
dinoflagellate toxins are well known. These diseases
include paralytic shellfish poisoning (PSP), diarrhetic
shellfish poisoning (DSP), ciguatera fish poisoning
(CFP), neurotoxic shellfish poisoning (NSP), and
azaspiracid shellfish poisoning (AZP). Clinical char-
acteristics, geographic distribution, treatment and epi-
Table 2
Some recent patents and patent applications relating to toxic dinoflagellates

Title

Biomarkers for toxic algae
Cigua-dart method for detection of ciguatera toxins
Water soluble toxin produced by Pfiesteria species
Stinging cells expressing an exogenous polynucleotide

encoding a therapeutic, diagnostic or a cosmetic
agent and methods compositions and devices utilizing
such stinging cells or capsules derive therefrom for
delivering the therapeutic, diagnostic or cosmetic
agent into a tissue

Use of sodium channel blockers and their analogues
for the treatment of nicotine dependency

Dinoflagellate karlotoxins, methods of isolation
and uses thereof

Method for the production of dinoflagellate cultures
Novel method for wholly synthesizing of ciguatoxin

ctx3c derivative
Polyether brevetoxin derivatives as a treatment for

neurotoxic shellfish poisoning and ciguatera
fish poisoning

Quantitative method for detecting yessotoxins in
fish products based on the activation caused by
the toxin in cellular phosphodiesterase and
therapeutic usefulness of said activation

Brevetoxin derivative, process for producing
the same and method of detecting shellfish
neurotoxin using the same

Polyether brevetoxin derivatives as a treatment
for neurotoxic shellfish poisoning and ciguatera
fish poisoning

Polyether brevetoxin derivatives as a treatment
for cystic fibrosis, mucociliary dysfunction,
and pulmonary diseases

Sandwich assay kits for detecting shigatoxin ctx3c
Novel method for wholly synthesizing of ciguatoxin

ctx3c derivative
Membrane immunobead assay for the detection

of ciguatoxin and related polyether marine toxins
The detection and identification of saxiphilins using

saxitoxin–biotin conjugates
Analgesic composition and method
Anti-ciguatoxin monoclonal antibody
demiology of these ailments have been documented
(Clark et al., 1999; CDC, 2001; Fleming et al., 2001;
Backer et al., 2003). Symptoms occur generally as a
consequence of consumption of contaminated seafood
and direct human exposure to HABs.

Ciguatera fish poisoning is the most common marine
toxin disease worldwide. The primary toxin involved
appears to be ciguatoxin. Ciguatera poisoning is usually
diagnosed on clinical grounds. Toxin may be detected in
serum, plasma, and urine of patients. Ciguatera poison-
ing can also affect fish populations, as the larval
survivability in finfish is affected (Edmunds, 1999).
and/or their biotoxins

Reference Year

US 7,109,297 2006
US 7,015,045 2006
US 2006/0111557 2006
US 2006/0039897 2006

WO 2006/084765 2006

US 2005/209104 2005

US 2005/070008 2005
US 2005/0107622 2005

WO 2005/027903 2005

WO 2005/012543 2005

WO 2005/051956 2005

WO 2005/027903 2005

WO 2005/028482 2005

US 2005/148041 2005
US 2005/107622 2005

US 6,770,490 2004

WO 2004/072640 2004

US 2004/214842 2004
US 2004/059096 2004
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Table 1 summarizes the algal species, toxins and
seafood that are generally associated with various
types of human poisonings. In addition to the commonly
found toxins noted in Table 1, many other toxins have
been isolated from microalgae but their effects and
significance remain unknown (Daranas et al., 2001).

No vaccines exist to protect against poisonings by
dinoflagellate toxins, but attempts are being made to
produce suitable vaccines. For example, Xu et al.
(2005a,b) tested in mice a vaccine against tetrodo-
toxin (TTX). The vaccine used Tachypleus tridenta-
tus hemocyanin (TTH) and tetanus toxoid (TT) as
carrier proteins to form the artificial antigen TTX–
TTH and TTX–TT. The TTH–TTX vaccine proved
better than the TTX–TT in protecting mice against
TTX administered orally. This demonstrated for the
first time that experimental vaccines can effectively
protect animals against repeated ingestion of marine
biotoxins. Similar approaches are likely to prove
useful for developing vaccines against other marine
toxins.

Seafood species can adapt to tolerate high levels of
certain algal toxins. For example, softshell clams (Mya
arenaria) from areas exposed to red tides are more
resistant to PSP toxins and accumulate toxins at greater
rates than sensitive clams from unexposed areas (Bricelj
et al., 2005). Phenomena such as this can increase risk to
humans. In addition, toxins undergo various biotrans-
formations in the organisms in which they accumulate
(Shimizu and Yoshioka, 1981; Sullivan et al., 1983;
Oshima et al., 1990; Oshima, 1995; Sakamoto et al.,
2000; Sato et al., 2000; Sekiguchi et al., 2001). These
modified toxins may have effects that have been barely
studied in humans. In addition to the commonly known
toxins, dinoflagellates produce some of the largest and
most complex polyketides that have been identified.
These compounds have a diverse range of biological
activities, including cytotoxic, antitumor, antibiotic,
antifungal, immunosuppressant, and neurotoxic activ-
ities (Wright and Cembella, 1998). Polyketide synthase
genes appear to be responsible for production of most
Fig. 1. Okadaic acid. Structure courtesy of Dr. F.S. Fr
dinoflagellate toxins (Berry et al., 2002; Snyder et al.,
2003).

In view of their diverse range of bioactivities and
emerging biotechnological significance, dinoflagellate
toxins are attracting increasing interest. This is reflected
in the numerous recent patents and patent applications
relating to these toxins (Table 2). Origins, pharmacology
and biosynthesis of some of these bioactives have been
discussed by others (Rein and Borrone, 1999; Daranas
et al., 2001; Shimizu, 2003; Moore, 2005; Rein and
Snyder, 2006). Occurrence of paralytic shellfish toxins
in tropical oceans has been reviewed by Llewellyn et al.
(2006).

4. Dinoflagellate biotoxins

4.1. Potential applications

Marine toxins are used in medical studies in attempts
to understand their modes of action (Dechraoui and
Ramsdell, 2003) and assess therapeutic potential of
toxins and their analogs. Saxitoxin and tetrodotoxin
(TTX), a marine toxin found in the pufferfish (Nishi-
kawa et al., 2003) and related to saxitoxins, are
considered safe, effective, long-acting topical anes-
thetics (Schwartz et al., 1998; Duncan et al., 2001;
Kohane et al., 2003). TTX has been found to curb
narcotic cravings in laboratory animals and is conse-
quently being used in drug dependence research.
Tetrodin™, a drug derived from TTX, is being
developed by WEX Pharmaceuticals Inc. (www.wex-
pharma.com) for withdrawal treatment of heroin
addiction.

Okadaic acid (Fig. 1) is a marine biotoxin that is of
value in medical research as it has been linked to
multiple health risks and has proved useful in under-
standing many cellular processes (Fernandez et al.,
2002; Bujalance et al., 2003). Tumor promoting and
cytotoxic activities of okadaic acid are of potential
interest (Fujiki and Suganuma, 1999; Islam et al., 2002).
Okadaic acid is considered a model potent neurotoxin
y, United States Food and Drug Administration.

http://www.wexpharma.com
http://www.wexpharma.com


181F.G. Camacho et al. / Biotechnology Advances 25 (2007) 176–194
for analyzing the therapeutic effects of atypical
antipsychotic drugs in treatment of cognitive impair-
ment and neuropathological changes of schizophrenia
and other neurodegenerative diseases (He et al., 2005).
Because of its activity as inhibitor of protein phospha-
tase 2A, okadaic acid is used in studies to elucidate
mechanisms by which conjugated linoleic acids might
act as anti-tumor agents on breast cancer cells (Liu and
Sidell, 2005).

Amphidinolides and colopsinols are two groups of
more than twenty structurally unique macrolides that are
produced by marine dinoflagellates of the genus Am-
phidinium (Kobayashi et al., 2003). These toxins have
potent antitumor properties. Extremely limited avail-
ability of these compounds has prevented detailed
biological studies. A lack of supply has hampered
progress toward elucidation of molecular structures of
many of these compounds (Kobayashi and Tsuda,
2004). Amphidinolides have shown strong cytotoxicity
towards murine lymphoma L1210 and human epider-
moid carcinoma KB cells in vitro. A related compound,
caribenolide I, has shown strong cytotoxicity against
human colon tumor cell line HCT 116 and its drug-
resistant variant HCT 116/VM 46 (Daranas et al., 2001).
Caribenolide is active against murine tumor P388 in
vivo (Kobayashi and Ishibashi, 1997).

Gonyautoxins are paralytic toxins produced by Am-
phidinium dinoflagellates. Gonyautoxins have been
used for anal sphincter infiltrations in clinical practice
(Garrido et al., 2005). Goniodomin-A, an antifungal
polyether macrolide produced by the dinoflagellate
Goniodoma pseudogoniaulax (Murakami et al., 1988),
has been shown to inhibit angiogenesis by inhibiting
endothelial cell migration and basic fibroblast growth
factor (bFGF)-induced tube formation (Abe et al.,
2002). Goniodomin-A is active in vivo (Abe et al.,
Fig. 2. Yessotoxin. Structure courtesy of Dr. F.S. Fry
2002). Gymnocin-A isolated from red tide dinoflagel-
late Gymnodinium mikimotoi is weakly toxic in fish, but
is cytotoxic to P388 mouse leukemia cells (Satake et al.,
2002).

Yessotoxins (YTXs) (Fig. 2) are a group of marine
toxins that are produced by dinoflagellates of the genera
Protoceratium and Gonyaulax (Takahashi et al., 1996).
Multiple analogs of yessotoxins have been identified in
P. reticulatum (Miles et al., 2005; Souto et al., 2005;
Bowden, 2006). YTXs cause selective disruption of the
E-cadherin–catenin system in epithelial cells, to poten-
tially compromise the tumor suppressive functions of E-
cadherin (Ronzitti et al., 2004). Yessotoxins are further
reviewed by Bowden (2006).

Konishi et al. (2004) reported potent cytotoxic
metabolites in the supernatant of the cultured dino-
flagellate Protoceratium cf. reticulatum. The four
equally active glycoside polyether principles in the
extract were named protoceratins I, II, III and IV. These
compounds had mean IC50 values of less than
0.0005 μM against human cancer cell lines and
demonstrated some cell-line selectivity.

Dinophysis species produce pectenotoxins (PTXs)
(Fig. 3) (Miles et al., 2006). PTXs are potently cytotoxic
against several human cancer cell lines (Zhou et al.,
1994; Jung et al., 1995). Pectenotoxin-2 (PTX2), an
actin inhibitor, has been suggested as a candidate potent
chemotherapeutic agent against p53-deficient tumors
(Chae et al., 2005).

Zooxanthellatoxins (ZTs) A, B, and Cs are polyhy-
droxypolyenes with potent vasoconstrictive activity.
These compounds have been isolated from the cultured
dinoflagellate Symbiodinium sp. (Onodera et al., 2005).
The same dinoflagellate genus is known to produce
amphoteric iminium metabolites symbioimine and neo-
symbioimine. Symbioimine is a potential antiresorptive
, United States Food and Drug Administration.



Fig. 3. Pectenotoxin. Structure courtesy of Dr. F.S. Fry, United States Food and Drug Administration.
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drug for prevention and treatment of osteoporosis in
postmenopausal women (Kita et al., 2005). In addition,
symbioimine may be useful in developing new nonsteroid
anti-inflammatory drugs for treatment of cyclooxygenase-
2-associated diseases (Kita et al., 2005).

A new type of bioactive ceramide, symbioramide,
was isolated from the laboratory-cultured dinoflagellate
Symbiodium sp. by Kobayashi et al. (1988). Symbior-
amide exhibited antileukemic activity against L-1210
murine leukemia cells in vitro (Kobayashi, 1989).

Potent antifungal agents, gambieric acids A–D, were
isolated by Yasumoto and co-workers from a culture of
the marine dinoflagellate Gambierdiscus toxicus (GIII
strain) (Nagai et al., 1992a,b). Gambieric acids display
significant activity against filamentous fungi but are
inactive against yeasts. Gambieric acids are up to 2000-
fold more active against some fungi than is amphotericin
B. Gambieric acids are also cytotoxic, but they do not
possess the significant neurotoxicity that is associated
with other large marine fused-polyether toxins such as
brevetoxins, ciguatoxins, yessotoxins, and maitotoxins
(Nagai et al., 1993).

Paradoxical thermal dysthesia is an unusual dysfunc-
tion of the thermoregulatory system that occurs in
humans ingesting certain algal toxins. Work is being
done in mice for assessing the thermoregulatory
mechanisms affected by marine algal toxins such as
maitotoxin and brevetoxin. Work such as this should
lead to improved methods for treating victims of
ciguatera and other poisonings (Gordon and Ramsdell,
2005). Maitotoxin is a powerful activator of voltage-
insensitive Ca2+ channels and it stimulates synthesis and
secretion of the nerve growth factor (Obara et al., 1999).

4.2. Detection of toxins

Mouse bioassay (AOAC, 1980) remains the accepted
regulatory method for detection of and quantification of
many marine toxins in suspect samples. The assay
involves intraperitoneally injecting white mice with
extracts of toxic seafood. Mouse bioassay is expensive
and lacks specificity. Consequently other rapid and
inexpensive methods are being established to replace the
mouse bioassay. These methods are the focus here.

Antibody-based immunoassays are potentially useful
for accurate, sensitive and routine determinations of
marine toxins (Lewis, 2001). These assays can be
inexpensive and portable. Antibody-based assays typi-
cally take the form an enzyme-linked immunosorbent
assay (ELISA) or radioimmunoassay (RIA). Unfortu-
nately, relatively few antibody-based assays are avail-
able because pure toxins in sufficient quantities are
rarely accessible (Hirama, 2005) for preparing anti-toxin
antibodies and validating the assays. In addition, a poor
supply of relevant radiolabeled compounds and cross-
reactivity of antibodies with nontarget molecules, pose
problems. Other cumbersome and expensive physico-
chemical procedures such as LC-MS and HPLC have
been developed for detection and quantification of many
toxins (Doucette et al., 1996; Morton and Tindall, 1996;
Fremy et al., 1999; Puech et al., 1999; Pierce and
Kirkpatrick, 2001; Quilliam, 2003; Samdal et al., 2005).

In the European Union (EU), physicochemical
testing procedures are acceptable for all marine
biotoxins as an alternative to testing in animals, so
long as they have been validated in compliance with an
internationally accepted protocol. Animal testing is used
nonetheless, as not all physicochemical protocols have
been validated because of a lack of reference materials.
In the event of discrepancy between different test
methods, the mouse bioassay remains the EU reference
standard for okadaic acid, dinophysis toxins, yessotox-
ins, pectenotoxins and azaspiracids.

Many of the initial symptoms of marine toxin
poisoning in humans tend to be nonspecific, hence
poisoning is hard to diagnose. Methods are needed for
verifying human exposure to toxins. Biological diagnos-
tic methods for use in humans are mostly experimental, or
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nonexistent (Backer et al., 2003). Radioimmunoassay
(RIA) has been used for determining brevetoxin (Fig. 4)
in blood of aquatic animals that have been exposed to
Karenia brevis (Woofter et al., 2005). Similar technol-
ogies can be extended for detecting toxicologically
relevant levels of biotoxins in human bodyfluids. Naar
et al. (2002) reported an ELISA for detecting
brevetoxins in mammalian bodyfluids. A receptor
binding assay and HPLC may be used to diagnose
paralytic shellfish poisoning caused by saxitoxin
(Doucette et al., 1996).

Here we focus on immunodetection techniques that
are useful in the field for establishing contamination
with toxins involved in paralytic shellfish poisoning
(PSP), diarrhetic shellfish poisoning (DSP), neurotoxic
shellfish poisoning (NSP), and ciguatera fish poisoning
(CFP). The techniques discussed in the following
sections have been developed primarily for use with
extracts of seafood and are not intended for diagnostic
purposes in human patients. Analytical methods for
algal toxins have been further reviewed by others
(Fremy et al., 1999; Garthwaite, 2000; Van Dolah and
Ramsdell, 2001; Pierce and Kirkpatrick, 2001; Mack-
intosh et al., 2002; Metcalf and Codd, 2003; Quilliam,
2003; Samdal et al., 2005).

4.2.1. Paralytic shellfish poisoning (PSP)
Paralytic shellfish poisoning (PSP) is associated with

saxitoxins (STXs). An integrated ELISA screening
system for screening extracts for ASP, NSP, PSP and
DSP toxins (including yessotoxin) has been described
(Garthwaite, 2000; Garthwaite et al., 2001). Such a
system is suitable only for identifying suspect shellfish
samples for subsequent analysis by methods that have
been approved by international regulatory authorities.
Kawatsu et al. (2002) developed a direct competitive
enzyme immunoassay based on a gonyautoxin 2/3
(GNTX2/3)-specific monoclonal antibody and a sax-
Fig. 4. Brevetoxins (R=–CH2C(=CH2)CHO in PbTx-2; R=–CH2C(=CH2)CH
Dr. F.S. Fry, United States Food and Drug Administration.
itoxin–horseradish peroxidase conjugate. GNTX2/3,
dc-GNTX2/3, C1/2, GNTX1/4, STX and neoSTX
were detectable at concentrations lower than the
regulatory limit.

An ELISA test kit for detecting saxitoxin in shellfish
is commercially available (RIDASCREEN® Saxitoxin
and RIDASCREEN®FAST Saxitoxin; r-Biopharm AG).
Possible cross-reactivities with decarbamoyl saxitoxin,
gonyautoxins and neosaxitoxin have been reported by
the manufacturer.

A commercial rapid test kit (MIST Alert™; Jellett
Rapid Testing Ltd., www.jellett.ca) is available for
detection of PSP toxins in shellfish. This test is accepted
by the United States Food and Drug Administration for
use in the US National Shellfish Sanitation Program. In
an assessment of MISTAlert™ reported by Mackintosh
et al. (2002), the kit detected toxin in all samples that
had the European Union tolerance level of 8 μg
saxitoxin equivalents per kilogram of shellfish flesh as
determined by the mouse bioassay. Importantly, the kit
could be readily used and accurately interpreted by
individuals with no technical or scientific background
(Mackintosh et al., 2002). Clearly, MIST Alert™ is
suitable for initial screening for PSP toxins and
eliminates the need for routine use of the mouse
bioassay. Similar conclusions were reached by Inami
et al. (2004) concerning the use of commercial in vitro
immunodetection methods.

In view of the cross-reactivities that occur with
immunoassays and the potential for a lack of response to
all toxins in the PSP group, usefulness of these assays is
likely to remain limited unless they can be rigorously
validated in accordance with internationally accepted
procedures.

The marine toxin domoic acid (Fig. 5) is associated
with amnesic shellfish poisoning (ASP), but is not a
dinoflagellate toxin. Domoic acid is produced by
certain diatoms. An ELISA test (Biosense ELISA test;
2OH in PbTx-3; R=–CH2COCH2Cl in PbTx-8). Structure courtesy of

http://www.jellett.ca


Fig. 5. Domoic acid. Structure courtesy of Dr. F.S. Fry, United States
Food and Drug Administration.
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www.biosense.com) for domoic acid in shellfish has
been approved by the Association of Official Analy-
tical Chemists (AOAC; www.aoac.org), suggesting
that reliable ELISA-type assays may be developed for
other marine toxins. Unlike most dinoflagellate toxins,
domoic acid is a relatively small molecule.

4.2.2. Diarrhetic shellfish poisoning (DSP)
Diarrhetic shellfish poisoning (DSP) is associated

with polycyclic ether toxins okadaic acid, dinophysis-
toxin-1 (DTX1) (Fig. 6), and pectenotoxins (PTX)
(Bowden, 2006). Yessotoxin (YTX) (Fig. 2) is classified
as a DSP toxin because it was first isolated in 1987 from
scallops that were linked to a DSP incident, but
pharmacological activity of YTXs is quite different
from those of DSP toxins (Bowden, 2006).

The DSP-Check® ELISA test kit (r-Biopharm AG;
www.r-biopharm.com) has been used worldwide for
screening for okadaic acid and its derivative DTX1 in
seafood. A detection limit of 10 μg per kg sample is
claimed. The monoclonal antibody used in the kit cross-
reacts with DTX1 at a level comparable to okadaic acid
but PTXs and YTXs are not reactive (Cembella et al.,
2003). DSP-Check® test is known to underestimate total
okadaic acid in extracts that contain both okadaic acid
and methylokadaic acid (Morton and Tindall, 1996).

A new rapid field test kit to screen for DSP toxins has
been developed by Jellett Rapid Testing Ltd. (Laycock
et al., 2006). This antibody-based kit detects presence of
okadaic acid and some of its analogs in about 30 min.
Fig. 6. Dinophysis toxin (R=H in DTX1; R=–COOH in DTX3). Structure
Potentially, immunoaffinity chromatography of mixed
toxin samples may be used as a cleanup step prior to
immunodetection of specific toxins. Anti-okadaic acid
monoclonal antibodies used on immunoaffinity columns
have shown cross-reactivity with DTX1 and DTX2
(Puech et al., 1999).

Briggs et al. (2004) produced polyclonal antibodies
for developing a cELISA for detecting yessotoxins.
Cross-reactivity studies indicated that the antibodies had
broad reactivity and that binding to yessotoxin analogs
was strongly affected by changes to the A-ring and, to a
lesser extent, the K-ring regions of the toxin molecule
(Briggs et al., 2004). Samdal et al. (2005) have
compared the ELISA methodology for screening
shellfish samples for YTXs with data obtained by LC-
MS analysis of extracts. The results of ELISA were 3–
13 times higher than LC-MS, probably because the
antibodies reacted to YTX analogs that were not
included in the LC-MS analysis. This discrepancy
notwithstanding, there was a good correlation between
ELISA and LC-MS data (Samdal et al., 2005). Samples
measuring less than 4 mg/kg by ELISA were below the
current EU regulatory limit of 1 mg/kg by LC-MS
(Samdal et al., 2005). Use of ELISAwas recommended
as a screening tool, with samples measuring less than
4 mg YTX per kilogram by this method being
considered YTX-negative.

4.2.3. Neurotoxic shellfish poisoning (NSP)
Neurotoxic shellfish poisoning (NSP) is caused by

brevetoxins (PbTxs). A competitive radioimmunoassay
(RIA) for detecting brevetoxins PbTx-2 and PbTx-3 was
developed by Trainer and Baden (1991) using bovine
serum albumin-linked PbTx-3 as the antigen. The
antiserum was produced in goats. The RIA technique
for PbTx is based on the competitive displacement of
3H-PbTx-3 from complexation with the antibody. Both
PbTx-2 and PbTx-3 were detected with roughly equal
responses. However, oxidized PbTx-2, which is not
toxic in either the fish or mouse bioassay, also displaced
PbTx-3 in RIA, indicating a lack of a high specificity
(Trainer and Baden, 1991). Woofter et al. (2005)
courtesy of Dr. F.S. Fry, United States Food and Drug Administration.

http://www.biosense.com
http://www.aoac.org
http://www.r-biopharm.com
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successfully used a radioimmunoassay (RIA) for
detecting various levels of brevetoxin PbTx-3 in blood
of aquatic animals that had been exposed to a Karenia
brevis culture.

Naar et al. (2001) produced and characterized mice
polyclonal and monoclonal antibodies (MAbs) specific
for PbTx-2 type toxins. PbTx-3–carrier-conjugates
prepared at the nanomolar level in a reversed micellar
medium were used to generate the antibodies. These
apparently were the first MAbs produced against PbTxs.
A competitive ELISA for detecting brevetoxins in
seawater, mammalian bodyfluids and shellfish extracts
has been reported (Naar et al., 2002).

4.2.4. Ciguatera fish poisoning (CFP)
Ciguatoxins (CTXs) (Nicholson and Lewis, 2006)

are the primary toxins responsible for ciguatera fish
poisoning. CFP is associated with consumption of
contaminated reef fish such as barracuda, grouper, and
snapper. The disease is often not properly diagnosed and
is therefore grossly under reported. Toxins may be
detected in bodyfluids of patients by an enzyme-linked
immunosorbent assay or high-performance liquid chro-
matography (HPLC) (Adaeda, 2001). Ciguatera poison-
ing has been reviewed extensively (Lehane, 2000;
Lehane and Lewis, 2000; Lewis, 2001; Hokama and
Yoshikawa-Ebesu, 2001).

Hokama and coworkers developed several immuno-
chemical tests for detecting ciguatoxin (CTX) (Fig. 7)
and related polyethers (Hokama et al., 1988; Hokama
and Yoshikawa-Ebesu, 2001). An anti-ciguatoxin
monoclonal antibody was prepared using natural CTX,
but cross-reactivity with other toxins was observed.

A rapid commercial Cigua-Check™ immunodiag-
nostic test (http://cigua.oceanit.com) for detecting
ciguatoxin in seafood is available. This test is based
on binding of antibodies to the CTX polyether skeleton
and okadaic acid. A recent study compared the Cigua-
Check™ test kit with the well-established mouse
bioassay (Wong et al., 2005). Although the number of
Fig. 7. Cigua
samples used was small, substantial discrepancies were
found between the validated mouse bioassay and the
rapid commercial immunoassay. The rapid test is useful
for rapid general screening to select positive samples for
further analysis by a more established assay.

4.3. Reference standards

Validation and calibration of toxin assays requires
reference standards of toxins. Reference materials also
help in establishing identity of unknown samples of
toxins. Very few of the marine biotoxins are available
commercially (Quilliam, 2003). Small quantities of
purified dinoflagellate biotoxins can be purchased from
suppliers such as Sigma-Aldrich (www.sigmaaldrich.
com), Gentaur Molecular Products (www.gentaur.com).
The Lab Depot (www.labdepotinc.com), ScienceLab
(www.sciencelab.com), PKC Pharmaceuticals (www.
lclabs.com), Tocris (www.tocris.com), Wako Pure
Chemical Industries (www.wako-chem.co.jp), and
VWR International (www.vwrsp.com). A given product
can vary a great deal in price, depending on claimed
purity and supplier. Some products are available only
from a single source. Prices range from several hundred
Euros per mg to more than €30,000 per mg. These
biotoxins have been sourced from an extremely small
number of species, namely Prorocentrum concavum,
Ptychodiscus brevis (Gymnodinium breve), Gambier-
discus toxicus, Palythoa caribaeorum, and Protogo-
nyalaux sp. In many cases, the credibility of the stated
quantity and purity are questionable and the available
materials are not suitable for use as reference standards
in quantitative analysis (Quilliam, 2003).

In principle, reference standards could be produced
by chemical synthesis, but de novo synthesis of most
dinoflagellate toxins is complicated, when feasible. The
existing total syntheses typically require more than 100
steps. Development of more practical synthetic routes
remains a challenge (Inoue, 2004). Certified reference
standards of some marine biotoxins are available from
toxin.

http://cigua.oceanit.com
http://www.sigmaaldrich.com
http://www.sigmaaldrich.com
http://www.gentaur.com
http://www.labdepotinc.com
http://www.sciencelab.com
http://www.lclabs.com
http://www.lclabs.com
http://www.tocris.com
http://www.wako-chem.co.jp
http://www.vwrsp.com
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the National Research Council of Canada's Certified
Reference Materials Program (www.imb.nrc.ca/crmp/).
The problem of inexpensively supplying quantities of
toxins for various investigational purposes remains
intractable.

5. Detection and identification of HAB species

Taxonomic classification of dinoflagellate has been
discussed by Taylor (1987) and Adl et al. (2005).
Taxonomy of harmful dinoflagellates has been reviewed
by Taylor et al. (2003). Evolutionary aspects of
dinoflagellates have been reviewed by Hackett et al.
(2004) and Saldarriaga et al. (2004). Here the focus is on
identification of harmful dinoflagellates using highly
specific molecular probes.

Strategies for molecular detection and characteriza-
tion of HAB species have been reviewed by Litaker and
Tester (2002) and Rublee et al. (2005). Molecular
methods include conventional PCR, real-time PCR,
denaturing gradient gel electrophoresis (DGGE), fluor-
escent fragment detection PCR, fluorescent in situ
hybridization (FISH), lectins, antibodies and ribosomal
RNA (rRNA)-targeted DNA probes. Lectins are glyco-
proteins that bind noncovalently to specific sugar
residues on the surface of a cell. Fluorescently labeled
lectins with different binding specificities have been
used to differentiate among different HAB species,
including different serotypes of the same species (Costas
et al., 1993; Costas and Rodas, 1994; Cho et al., 2001;
Cho, 2003). Although, lectin probes are promising, they
do have limitations. For example, lectin-binding profiles
may be altered as cells go through different stages of the
division cycle or experience different environmental
conditions (Costas et al., 1993; Rhodes et al., 1995;
Alvarez et al., 1998). Using cultures of Scrippsiella
lachrymose, Kremp and Anderson (2004) recently
confirmed that glycoconjugate composition of dino-
flagellate cells can vary with their physiological state.

Antibodies are commonly used for detection and
identification of HAB species (Anderson, 1995; Alvarez
et al., 1998; Scholin and Anderson, 1998; Peperzak et
al., 2000; Cho and Costas, 2004), but only a few
antibodies are available commercially. Antibodies bind
to specific peptides, glycoproteins, and toxins associated
with HAB agents. Polyclonal antibodies are sometimes
sufficient for detecting the species of interest, but they
may exhibit cross-reactivity as some antigens may be
common to different HAB species (Mendoza et al.,
1995). Monoclonal antibodies (MAbs) are more specific
and can be produced in large batches for binding to
specific antigens.
Rublee et al. (2001) used DNA-based probes to
assess geographic distribution of Pfiesteria species.
Hosoi-Tanabe and Sako (2005a,b) used FISH and real-
time PCR to identify and enumerate cells of Alexan-
drium tamarense and A. catenella in natural plankton
assemblages. Takahashi et al. (2005) used FISH for
assessing plastid density and activity of dinoflagellates.
Wang et al. (2005) used PCR and DGGE for identifying
species and establishing population complexity of
dinoflagellates.

Fiber optic microarrays that use oligonucleotide
probes specific for ribosomal RNA (rRNA) of target
HAB species, have been described for simultaneous
detection of multiple species (Ahn et al., 2006).
Automatic image analysis of dinoflagellates is another
emerging technology that can potentially help in rapid
morphologically-based identification of species (Cul-
verhouse et al., 2006).

6. Bioreactor culture of dinoflagellates

Many bioactive compounds have been discovered in
dinoflagellates and other marine organisms (Metting
and Pyne, 1986; Schwartz et al., 1990; Borowitzka,
1995, 1999; Tringali, 1997; Codd, 1995; Shimizu, 1996,
2003; Moore, 1996, 2005; Tyagi et al., 1999; Proksch et
al., 2003; Lebeau and Robert, 2003a,b; Belarbi et al.,
2003; Singh et al., 2005; Walker et al., 2005; Dittmann
and Wiegand, 2006), but few of these have led to
commercial products. This is because in many cases
insufficient bioactive material has been available for
investigational purposes (Rouhi, 1995; Belarbi et al.,
2003). Producing useful quantities of bioactive materi-
als from dinoflagellates for biomedical, toxicological
and chemical research requires an ability to mass culture
these microorganisms.

Although production of large quantities of nondino-
flagellate microalgae in photobioreactors has proved
extremely successful (Molina Grima et al., 1999, 2000,
2001, 2003), culturing dinoflagellates poses new
problems. Dinoflagellates have substantially lower
growth rates compared with typical microalgae. The
causes for this have been speculated on (Tang, 1996),
but not clearly established. Low growth rates are
unlikely to be related to efficiency of light harvesting
because the photosynthetic capacity per unit of
chlorophyll a in dinoflagellates is not significantly
different from that in diatoms. Because of the low
biomass concentrations that are typically attained in
dinoflagellate cultures, the concentrations of toxins in
the broth tend to be of the order of micrograms per
liter. Consequently, extremely large volumes of culture

http://www.imb.nrc.ca/crmp/
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broth are needed to produce minuscule amounts of
toxins.

Small-scale turbulence is known to affect the growth
rate and morphology of dinoflagellates (Berdalet and
Estrada, 1993; Sullivan and Swift, 2003; Sullivan et al.,
2003). Inhibition of dinoflagellate growth by agitation,
shaking, aeration and stirring has been reported in
laboratory cultures (White, 1976; Pollingher and Zemel,
1981; Berdalet, 1992). Controlled daily exposure to
laminar shear flow has inhibited growth of some
dinoflagellates (Thomas and Gibson, 1990, 1995; Juhl
et al., 2000). Field data confirming a negative correla-
tion between dinoflagellate abundance and high inten-
sity of winds and waves have been known for some time
(Pollingher and Zemel, 1981; Berman and Shteinman,
1998; Stoecker et al., 2006). The shear stress levels that
dinoflagellates may withstand are generally one or two
orders of magnitude lower than the levels that generally
damage most animal and plant cells (Namdev and
Dunlop, 1995; Joshi et al., 1996; Chisti, 1999, 2000,
2001; Juhl et al., 2000).

The shear stress threshold of some dinoflagellates is
even lower than that of erythrocytes (0.029 N·m−2)
(Chisti, 2000). For example, a continuous laminar shear
stress level of only 0.0044 N·m−2 (equivalent a shear
rate of 2.2 s−1) has proved lethal to the dinoflagellate
Gonyaulax polyedra Stein, a producer of yessotoxins
(Thomas and Gibson, 1990, 1995; Juhl et al., 2000).
Like animal and plant cells (Chisti, 1999, 2001), G.
polyedra responds differently to laminar and turbulent
shear stresses. The observed response depends also on
the intensity, duration and frequency of exposure to
shear field. Growth phase during which exposure
occurs, prevailing irradiance level, and light–dark
cycling also appear to influence shear tolerance. Other
dinoflagellate species behave similarly (Juhl et al.,
2001; Juhl and Latz, 2002). Shear stress levels can
influence the production of dinoflagellate toxins (Juhl et
al., 2001).

In bioreactors, average shear rates range from 0.2 to
1000 s−1 in airlift and bubble column devices. In
commonly used stirred tank bioreactors, shear rates can
range from 2 to 2×105 s−1. In spinner flasks that are
commonly used to culture highly fragile animal cells in
the laboratory, an average shear stress value of
0.8 N·m−2 that occurs at a relatively low 150 rpm
agitation speed may be lethal for dinoflagellates. In
addition to hydrodynamic fluid shear forces, effects
associated with the rupture of gas bubbles at the surface
of the broth, bubble coalescence and breakup in the
fluid, and bubble formation at the gas sparger, can
contribute to cell damage in a bioreactor (Contreras
Gómez et al., 1998; Contreras et al., 1999; Chisti, 1999,
2000, 2001; García Camacho et al., 2000, 2001;
Sánchez Mirón et al., 2003). How these factors might
affect dinoflagellates, remains unknown. Fragility of
dinoflagellates notwithstanding, successful strategies
have been developed for large scale culture of highly
shear-sensitive cells (Chisti, 1999, 2000, 2001; García
Camacho et al., 2001; Sánchez Mirón et al., 2003;
Voisard et al., 2003; Mazzuca Sobczuk et al., 2006).
Some of these strategies can be adapted for use with
dinoflagellates.

Photobioreactor engineering problems of dinoflagel-
late culture notwithstanding, dinoflagellates can poten-
tially contribute to improved understanding of shear
stresses and other turbulence phenomena in bioreactors.
For example, many morphologically diverse dinofla-
gellates are bioluminescent (e.g. Lingulodium polye-
drum, Ceratocorys horrida, Pyrocystis fusiformis, G.
polyedra) and turbulence appears to stimulate biolumi-
nescence. Dinoflagellate bioluminescence is easily
visualized and quantified (Latz et al., 2004a). This
provides a powerful tool for flow visualization under
conditions not amenable to conventional methods (Latz
et al., 1995, 2004a; Rohr et al., 1997, 1998; Blaser et al.,
2002). Bioluminescence stimulation and suppression
under different conditions of turbulence may assist in
establishing mechanisms of cell damage in bioreactors
(Chen et al., 2003). Potentially, dinoflagellates can be
used to map regions of high shear in biomedical devices
such as prosthetic heart valves (Yoganathan et al.,
2000). Bioluminescence response of dinoflagellates to
developed and developing turbulent flow in pipes has
been discussed (Latz et al., 2004b; von Dassow et al.,
2005).

Dinoflagellates appear to exhibit complex circadian
systems. For example, in nature, actively swimming G.
polyedra cells aggregate in the upper layer of the ocean
during daylight and photosynthesize. During the night
they sink to deeper layers where nutrient (nitrate)
concentrations are higher (Roenneberg and Merrow,
2002). Gradients in nutrient levels in the water column
appear to affect vertical migrations (Doblin et al., 2006).
How essential are these rhythms to cellular metabolism
in a photobioreactor that would normally be always rich
in inorganic nutrients, remains to be elucidated. Other
issues that need addressing to enable mass cultivation of
dinoflagellates are: the development of suitable media
for cell growth and production of toxins; identification
of optimal temperature, pH and oxygen tolerance;
understanding of irradiance-photosynthesis behavior;
elucidation of possible triggers for synthesis of toxins;
and engineering of photobioreactors for large scale
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culture. For example, in controlled cultures of the
dinoflagellate Alexandrium catenella, temperature has
been shown to influence the saxitoxin content of the
cells (Navarro et al., 2006). The effect of environmental
factors on growth of K. brevis has been discussed
(Magana and Villareal, 2006). In cultures of A.
tamarense, nutritional supplementation has influenced
toxin productivity (Wang and Hsieh, 2002) and a two-
step culture methodology has been found to benefit
toxin production (Hu et al., 2006).

Biosynthesis of some microbial products is sup-
pressed as the product accumulates in the culture broth.
Examples of such products include many secondary
metabolites (Casas López et al., 2004) and products
such as ethanol (Minier and Goma, 1982). Synthesis is
suppressed either because a high concentration of the
product is toxic to the producing microorganism, or the
biosynthetic pathway is subject to feed-back inhibition
of one of the enzymes. Extractive fermentations in
which the product is removed continuously as it is
made, can be used to greatly increase the productivity
of such self-inhibited fermentations (Minier and Goma,
1982; Chisti and Moo-Young, 1996; Zijlstra et al.,
1998; Banik et al., 2003). This approach has been used
in producing β-carotene from the microalga Dunal-
liella salina (Hejazi and Wijffels, 2004) and hydro-
carbons from the green alga Botryococcus braunii
(Banerjee et al., 2002). Use of extractive fermentation
principle has been proposed for producing microalgal
neurotoxins (Hejazi and Wijffels, 2004). Whether
extractive production is possible with dinoflagellates,
remains unproved. Economically feasible methods
remain to be established for extraction and purification
of toxins.

Production of paralytic shellfish toxins in cultured
dinoflagellates has been reviewed (Hsieh et al., 2001).
Production of yessotoxins in laboratory cultures has
been discussed by Paz et al. (2004). Effects of organic
nutrient additives on growth and gymnodimine produc-
tion in cultures of the dinoflagellate Karenia selliformis
have been discussed by Mountfort et al. (2006). The
maximum value of the specific growth rate observed
was 0.23 d−1 (Mountfort et al., 2006). Toxin production
in cultures of A. tamarense has been discussed (Wang et
al., 2002; Wang and Hsieh, 2002).

7. Biosafety considerations

Dinoflagellate toxins can be extremely toxic in
minute quantities. A high level of attention to safety is
therefore necessary in producing dinoflagellates and
their toxins. Safety issues become further accentuated as
the scale of operation increases. A comprehensive safety
management plan is necessary for any facility producing
or processing biotoxins. Unlike the case with many
toxic chemicals, no acceptable exposure limits have
been established for biotoxins. Often, toxicological data
on toxins are quite limited. Information on chronic
exposure to subsymptomatic doses is virtually non-
existent. No commercially available devices exist for
routine monitoring of personnel at risk of exposure.

Dinoflagellates and their toxins are hazardous if
inhaled or ingested. Marine toxins are odorless, tasteless
and are not destroyed by cooking or autoclaving. Marine
toxins do not vaporize, but airborne toxic dust is easily
generated during processing (Chisti, 1998). Work with
toxins requires personnel that have been trained in
relevant good working practices; suitably designed
facilities with engineered controls for risk mitigation;
use of personnel protective equipment; exposure
monitoring; and emergency response plans. Waste
from processing facilities must be assessed for contam-
ination with toxins and suitably inactivated. Specific
procedures are required for deactivation of specific
toxins (Wannemacher, 1989). Ciguatoxin and maito-
toxin are heat and acid stable. Saxitoxins can be
inactivated by a 60-min exposure to 10% sodium
hypochlorite.

General biosafety considerations in production and
handling bioactive substances have been discussed by
Chisti (1998). Specific information relating to handling
of marine toxins is reviewed by Johnson et al. (2001)
and Richmond and McKinney (1999). Further informa-
tion is available from the American Biological Safety
Association (www.absa.org).

8. Concluding remarks

Dinoflagellate toxins and bioactives are potentially
useful in many applications. Dinoflagellate bioactives
are inaccessible in large quantities and this severely
limits research in potential applications of these
compounds. Some of the toxins that are available in
small amounts are quite expensive. Chemical synthesis
of most dinoflagellate toxins is complex and expensive.
Gaining access to toxins requires an ability to mass
culture dinoflagellates. These microorganisms appear to
be extremely sensitive to hydrodynamic shear forces
and pose new challenges in photobioreactor engineer-
ing. Bioprocess engineering studies for enabling
economic use of dinoflagellates as cell factories are
only just beginning. This paucity of knowledge
notwithstanding, a track record of achievements in
culturing fragile cells of higher animals, plants and

http://www.absa.org
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microalgae suggests that commercial mass culture of
dinoflagellates will be feasible in the future.
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