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Leveraging natural diversity: bac
k through the bottleneck
MJ Kovach and SR McCouch
Plant breeders have long recognized the existence of useful

genetic variation in the wild ancestors of our domesticated crop

species. In cultivated rice (Oryza sativa), crosses between

high-yielding elite cultivars and low-yielding wild accessions

often give rise to superior offspring, with wild alleles conferring

increased performance in the context of the elite cultivar

genetic background. Because the breeding value of wild

germplasm cannot be determined by examining the

performance of wild accessions, a phylogenetic approach is

recommended to determine which interspecific combinations

are most likely to be useful in a breeding program. As we

deepen our understanding of how genetic diversity is

partitioned within and between cultivated and wild gene pools

of Oryza, breeders will have increased power to make

predictions about the most efficient strategies for utilizing wild

germplasm for rice improvement.
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Introduction
Approximately 10,000 years ago, Neolithic hunter–gath-

erers throughout Asia began to collect wild rice and

impose unconscious selection, marking the beginning

of a complex history of rice domestication. As people

slowly tamed wild rice and learned to mold their societies

around the requirements of rice production, they created

the world’s most enduring monoculture, and in turn

became entirely dependent on this cereal for their daily

sustenance. The global dependency on cultivated rice

(Oryza sativa) has continued to strengthen, as now nearly

half the world’s population relies on rice as a staple food

[1]. But how did the unruly wild rice encountered by early

human societies become transformed into the domesti-

cated, high-yielding varieties of rice we have today? This

change was made possible by the existence of natural

genetic variation, which humans harnessed by selecting
www.sciencedirect.com
for favorable traits. Modern breeding practices continue

to follow in the footsteps of our ancestors as we seek new

sources of genetic variation for rice improvement. This

review will outline how breeders are making use of the

natural diversity in O. sativa and discuss the usefulness of

wild rice germplasm for rice improvement. A framework

for generating the maximum amount of useful genetic

novelty in an efficient and predictive manner will be

presented, along with the challenges associated with this

strategy.

Genetic bottlenecks and the evolution of
population substructure in O. sativa
During the initial process of rice domestication, key traits

such as diminished grain shattering (see Glossary) and

less persistent grain dormancy (see Glossary) were

strongly selected for by humans [2]. Preferential propa-

gation of individuals possessing these valuable traits

would have created a primary domestication bottleneck.

During this genetic bottleneck, many undesirable alleles

from the wild ancestor, along with some potentially

beneficial alleles, were not carried through to early dom-

esticates (landraces), resulting in a narrowing of the

domesticated rice gene pool [3]. Modern plant breeding

continues to constrain the genetic diversity of cultivated

rice by selecting for optimal performance under a highly

managed set of agricultural conditions [4,5]. Therefore,

modern cultivated rice is estimated to retain only approxi-

mately 10–20% of the genetic diversity present in its wild

rice ancestor, O. rufipogon [6,7�].

Two genetically distinct groups within O. sativa, indica and

japonica, have been recognized since ancient times

[reviewed in [8�]]. These two varietal groups (sometimes

referred to as subspecies) are believed to have been dom-

esticated from geographically overlapping, yet genetically

divergent populations of O. rufipogon (Figure 1), a concept

that is extensively supported by molecular evidence [7�,
9–14,15�,16,17�]. Further, sequence comparisons of chlor-

oplast, mitochondrial and nuclear genomes suggest that the

divergence of the indica and japonica gene pools predates

the earliest archaeological evidence for rice domestication

by 50–100,000 years [18,19,20�,21].

The two major varietal groups in O. sativa are further

differentiated into five distinct subpopulations that can

be clearly diagnosed using isozyme, simple sequence

repeat (SSR), chloroplast, and/or single nucleotide poly-

morphism (SNP) markers [7�,22,23��]. Based on these

studies, the japonica varietal group can be divided into the

temperate japonica, tropical japonica, and aromatic/basmati
subpopulations while the indica varietal group contains
Current Opinion in Plant Biology 2008, 11:193–200
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Glossary

Admixture: a rice plant whose genome contains DNA inherited from

different subpopulations within the species as the result of

outcrossing and recombination

Cleistogamous: having unopened, self-pollinating flowers

Dormancy: a physiological period of quiescence during which a

mature seed will not germinate

Grain shattering: seed abscission; when ripe seed falls from the

panicle before harvesting can occur
the indica and aus subpopulations. These subpopulations

are well differentiated from each other, as indicated by

pairwise FST values ranging from 0.2 to 0.42 [23��], and

they also differ in effective population size as a result of

the proximity, duration and severity of the population

bottlenecks experienced by each [7�,23��] (Figure 2).

The process of rice domestication was accompanied by a

gradual shift from the primarily out-crossing wild ances-

tor, O. rufipogon, to the primarily inbreeding domesticated

species, O. sativa. This shift in mating system is largely

responsible for the partitioning of genetic variation into

the present-day subpopulations of O. sativa. Despite this

shift in mating system, there is evidence of gene flow

among the early O. sativa domesticates and between them

and their sympatric wild relatives, infusing alleles that

contributed in different ways to the diversity of each of

the cultivated subpopulations [8�]. Several in-depth stu-

dies demonstrate that key domestication alleles are
Figure 1

The complex domestication process of O. sativa. In contrast to the linear dom

domestication process in O. sativa was considerably more complex. Phyloge

diverse ancestral O. rufipogon populations existed over a broad geographical

at least two primary domesticated varietal groups, namely the indica and jap

ancient gene pools of O. rufipogon and O. sativa that gave rise to modern cult

represent alleles; some of which (red/blue colors) were carried through the d

colors) were left behind in the wild species. Gene flow between early indica a
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shared between the indica and japonica varietal groups

[24–26], suggesting that rice domestication involved

multiple genetic bottlenecks, coupled with episodes of

hybridization and introgression between early rice dom-

esticates from divergent gene pools [27�,28�] (Figure 1).

Implications of subpopulation structure on
rice breeding
The deep genetic differentiation among O. sativa sub-

populations has several major implications for rice bree-

ders. First, it is accompanied by intraspecific sterility

barriers and reproductive incompatibilities that make it

difficult to recover a full array of viable recombinant

offspring when crosses are made between the indica
and japonica varietal groups [8�,29]. As a result, rice

breeders have historically focused on crosses between

genotypes within a varietal group (i.e. temperate japoni-
ca � tropical japonica; indica � indica) [30–32].

A more provocative implication of the subpopulation

structure in rice is that it provides rice breeders with a

suite of naturally occurring, highly divergent gene pools

that can appropriately be considered ‘heterotic’ or ‘com-

binability’ groups. In the traditional sense, heterotic

groups are populations of a species that are sufficiently

divergent so that when crosses are made between the

groups, a significant amount of heterosis (hybrid vigor)

may be observed in the F1 generation [33]. In rice, several
estication bottleneck model proposed by Tanksley and McCouch [3], the

netic, molecular, and archaeological evidence support the concept that

range across Asia and that multiple O. rufipogon populations gave rise to

onica gene pools of domesticated rice. The cloud shapes represent the

ivars. The triangle (indica-specific) and square ( japonica-specific) shapes

omestication bottleneck to modern cultivars, while others (yellow/green

nd japonica domesticates is depicted by arrows between the gene pools.
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Figure 2

Subpopulation structure of O. sativa. In-depth genetic analysis has revealed that the two varietal groups in O. sativa (indica and japonica) are further

subdivided into five distinct subpopulations: indica and aus (in the indica varietal group) and temperate japonica, tropical japonica, and aromatic/

basmati (in the japonica varietal group) [7�,21,23��]. Circles representing the five O. sativa subpopulations are colored to indicate their relationship to

the two varietal groups (indica = red, japonica = blue); domesticated subpopulations are superimposed over the large and diverse O. rufipogon

ancestral gene pool where indica- alleles are represented by triangles and japonica-alleles are represented by squares; allele distribution within the O.

rufipogon cloud indicates that some wild genotypes are more closely related to certain O. sativa genotypes than to each other. The five groups are

highly differentiated from each other, as evidenced by the large FST values [23��]. Pairwise FST values relative to the indica subpopulation are indicated

along the branches of the tree.
decades of work in China have demonstrated that F1

hybrids derived from crosses between divergent rice

subpopulations are generally more productive than F1

hybrids derived from crosses between closely related

cultivars, as long as the sterility barriers are carefully

managed [34,35].

Divergent rice populations have also been proposed to

function as combinability groups for exploiting transgres-

sive variation during the development of superior inbred

varieties [36��]. Transgressive variation is a phenomenon

that is recognized by the appearance of individuals in the

progeny of a cross that exceed the performance of the

better parent. It is generally explained by the fact that

most lines contain a distribution of both positive and

negative alleles that contribute to an intermediate phe-

notype. When genetically divergent parents are crossed,

recombination in the offspring gives rise to segregants

(individual progeny) that are more extreme than either

parent because they contain higher frequencies of either

favorable or unfavorable alleles. The exploitation of this

phenomenon has guided the improvement of inbred

varieties where divergent germplasm resources are used

to generate transgressive variation, which breeders can

then fix in the elite backgrounds of interest [36��,37,38�].
www.sciencedirect.com
Wild germplasm as a resource for capturing
positive transgressive segregation
Rice breeders today face the formidable challenge of

achieving the pest resistance, stress tolerance, yield,

and quality improvements that will be necessary to keep

pace with rising global food requirements. The prob-

ability of success in this endeavor depends to a great

extent on our ability to make use of novel sources of

genetic variation. One way to do this is to explore the

largely untapped reservoir of allelic diversity that remains

hidden within existing populations of early landraces and

wild relatives. New technology makes it possible to

readily identify wild alleles that were left behind by

ancient farmers and to selectively harness those that

enhance performance when introduced into our highly

productive modern varieties.

Landraces of O. sativa are genetic intermediates between

wild ancestors and modern, elite cultivars. Having been

selected for alleles and adaptive gene complexes that are

favorable to humans, they represent a rich pool of genetic

diversity that is readily accessible to modern rice bree-

ders. Why then should we look to the poor performing,

low-yielding rice ancestors for the novelty necessary for

rice improvement? One reason is that all elite cultivars are
Current Opinion in Plant Biology 2008, 11:193–200
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Figure 3

Rice breeding options: How to generate novelty? Traditional rice breeding has generated elite cultivars derived from crosses between genetically

similar germplasm, such as between members of the same varietal group (panel A). While this avoids potential problems with reproductive barriers and

quality issues, little genetic novelty is available for enhancing the performance of the cultivar. By contrast, F1 hybrids between genetically divergent

groups, such as between indica and japonica parents, bring together alleles that contribute to heterosis (panel B). A third option is to selectively

introgress genes from genetically divergent germplasm (i.e. from O. rufipogon) into elite O. sativa cultivars, creating introgression lines that exhibit

positive transgressive variation (panel C). It is of interest to determine whether carefully crafted introgression lines make it possible for inbred varieties

to equal or outperform F1 hybrids. The small filled circles with a bold outline at the top of the panel indicate the germplasm pools being crossed

(corresponding to the subpopulations indicated in Figure 2 or wild germplasm pools). The large circles at the bottom of each panel represent individual

genotypes resulting from a particular cross; the red triangles and blue squares represent indica-like and japonica-like alleles, respectively; yellow

triangles and green squares represent alleles from O. rufipogon that were left behind during the domestication bottleneck, but are re-introduced into

inbred elite lines through selective backcrossing. Panel (C) shows two introgression lines, where divergent O. rufipogon alleles were introduced into

either a japonica (blue) or an indica (red) genetic background.
the result of selections from landrace varieties that have

themselves been through the primary domestication bot-

tleneck. Modern varieties are therefore expected to share

a higher proportion of alleles with landraces than with

wild accessions. Thus, the probability of generating novel

genetic variation from crosses between elite varieties and

wild germplasm is greater than would be expected from

crosses to landrace materials. In addition, crosses between

elite cultivars and wild germplasm generally present

fewer reproductive barriers than do crosses between

indica and japonica cultivars [8,29,36��].

Numerous studies report improvements in performance

because of the introgression of valuable genes from wild

germplasm into elite rice cultivars. Historically, breeders

identified phenotypes such as disease resistance or male-

sterility in a wild rice species and then introduced the trait

through backcross breeding (reviewed in [39]). More

recently, the use of advanced backcross quantitative trait

locus (QTL) analysis and near isogenic lines (NILs) have

made it technically and economically feasible to identify

and selectively introgress genes or QTL that confer

superior performance in the genetic background of an

elite cultivar but that have no observable phenotype in

the wild donor (Figure 3). Despite its inferior yield and
Current Opinion in Plant Biology 2008, 11:193–200
agronomic performance, O. rufipogon has been the source

of beneficial alleles for diverse quantitative traits in-

cluding grain size, grain weight [40,41], grain yield

[36��,38�,41–47,48�,49�,50], grain quality [51], cold toler-

ance [52], aluminum tolerance [53], and flowering time

[54]. Yield and grain quality enhancing alleles have also

been identified from O. glaberrima [55–57] and O. glumae-
patula [58,59].

In cases where genes are introgressed from genetically

divergent, low-performing wild or weedy donors, the

alleles of interest are associated with positive transgres-

sive variation in elite genetic backgrounds (Figure 4).

This phenomenon has been demonstrated through inter-

specific crosses in many crop species [60–67], highlighting

the potential usefulness of exploring exotic germplasm

sources for the improvement of a wide array of domesti-

cated crop species.

Making the most of transgressive variation in
rice
One method of delivering superior varieties to farmers is

through F1 hybrid technology. In China, the superior

performance of hybrid versus inbred rice varieties has

resulted in the expansion of hybrid production to approxi-
www.sciencedirect.com
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Figure 4

Transgressive segregation. Transgressive segregation is observed in crosses between genetically divergent genotypes where the progeny exceed the

performance of the parents. This figure displays the phenotypic distribution of the progeny of a hypothetical cross between an elite japonica cultivar

(P1) and an indica-like O. rufipogon accession (P2). The average performance of P1 and P2 are indicated by arrows. Since the two parents do not share

many of the same alleles, there is a high probability that some of the progeny (A) will possess novel combinations of alleles that confer a performance

advantage. Selective introgression of beneficial alleles from exotic germplasm sources offers a way to expand the gene pool of modern cultivars

without disrupting many of the gene complexes that contribute to the quality and adaptation of elite cultivars. Divergent introgression lines could then

be used as parents to create F1 hybrids (B) that aim to maximize the heterotic potential of O. sativa.
mately 50% of the total rice production [35]. For the last

80 years, hybrid technology has been largely responsible

for the steady increase in maize yields in the United

States (�1% per year) and more recently for sorghum as

well [68–70]. In light of these successes, and of the

industry’s interest in the hybrid model, it is tempting

to assume that hybrids will drive increases in productivity

for most crops in the future. However, the relative costs

and benefits of hybrid versus inbred variety development

in inbreeding versus out-crossing species, and in high-

value versus low-value crops, suggest that the answer is

not entirely clear.

The perfect, cleistogamous flowers (see Glossary) of rice

make it difficult and costly to reliably obtain out-crossed

F1 seed, even with the development of both two- and

three-line male sterility systems [71]. In addition, genetic

evidence suggests that overdominance does not appear to

be the major cause of heterosis in O. sativa, making it

possible to capture complimentary alleles in inbred

varieties. Further, because inbreeding crops have

expunged most deleterious recessive alleles over the

course of evolution, the heterozygosity provided by F1

hybrids is not theoretically necessary to achieve superior

performance [72,73].

Thus, we propose that rice breeders can capture a large

portion of heterosis in inbred varieties and that wild

germplasm represents an underutilized source of novel

alleles. To approach this systematically, genetic diversity

within O. rufipogon must be characterized and the relation-
www.sciencedirect.com
ships between subpopulations of O. sativa and O. rufipogon
must be defined. Several studies have reported ecological

and/or geographical population substructure in O. rufipo-
gon. While the relationship between the wild and culti-

vated subpopulations is complicated by the substantial

and well-documented gene flow between them [74,75],

there are subpopulations of O. rufipogon that cluster nearer

to some subpopulations of O. sativa than others

[13,14,15�,16,17�] (Figure 2). We can, therefore, use a

phylogenetic approach to select wild genotypes that are

genetically divergent from target elite cultivars to use as

parents. This strategy will help to maximize the prob-

ability of creating useful transgressive segregation from

which to select superior phenotypes (Figure 3). By intro-

gressing a few, selected chromosomal segments (QTLs)

from genetically divergent wild donors, breeders aim to

move existing elite rice cultivars ‘up the fitness land-

scape’ [76], fixing positive transgressive segregants

through repeated backcrossing and selfing [36��]. Once

these ‘wild QTLs’ are fixed in improved inbred varieties,

they may also be useful to hybrid breeders who can take

advantage of them to create a new generation of superior

hybrids [77] (Figure 4).

Conclusions—future challenges and needs
The immediate wild ancestor of rice, O. rufipogon, is

known to contain alleles that confer valuable transgres-

sive variation when introgessed into elite cultivars of O.
sativa, but at this time there is no predictive model that

will tell us, a priori, where to look for the valuable wild

alleles. The challenge before us is therefore to integrate
Current Opinion in Plant Biology 2008, 11:193–200
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information from both whole genome SNP assays and

targeted gene-mapping studies as a step toward more

efficient utilization of wild relatives for rice improvement.

New technologies can now be used to resequence entire

genomes and to define regions that are highly divergent

between gene pools or regions that are shared. This will

allow us to identify genomic segments that are common

by descent in both indica and japonica but divergent in O.
rufipogon (and may correspond to domestication loci), as

well as regions of admixture between populations. Chro-

mosomal regions of interest can be introgressed into a

suite of elite cultivars to determine whether estimates of

divergence are predictive of positive transgressive vari-

ation following hybridization. As we gain knowledge

about the genes, functional nucleotide polymorphisms

and pathways underlying positive transgressive variation,

we will be able to make and test predictions about how

specific genes or alleles will interact with each other in a

given genetic backgound. We will also be able to examine

the relationship between SNP frequencies, genome wide

patterns of diversity and patterns of linkage disequili-

brium to make and test predictions about which of the

many wild or exotic accessions combine best with specific

elite materials. This information will lay the foundation

for ‘reverse genetics’ models that allow us to more effi-

ciently utilize the wealth of natural variation that resides

on the other side of the domestication bottleneck.
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