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Abstract

The problem of determining the optimal age at which to cut trees on four stands, and optimal fire protection expenditure, is

posed. The objective is tomaximise the resulting expected returns from timber and the expected value of the continued existence of

an endangered possum species that relies on old growth for nesting. Dynamic programming is used to solve the problem. Existence

values for the possum are based on the results of a detailed contingent valuation survey. A stochastic metapopulation model is

developed for estimating end-stage survival probabilities of the possum dependent on start-of-stage tree ages and occupancies.

The sensitivity of optimal cutting and fire-protection policies to possum existence values, the rate of discount and the cost of

reducing fire risk is investigated. The study demonstrates the scope of the combined use of simulation and dynamic optimisation

for addressing land management problems involving conservation of species threatened with extinction.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. The existence value of a threatened species and

its use in bioeconomic modelling

A key feature of multiple-use ecosystem manage-

ment planning is the conflict between commercial
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activities and conservation of threatened species.

Resolution of this conflict has been hindered by a

lack of information on the existence value of

threatened species, the value of knowing that a

species exists even when there is no intention of

using the species. This is reflected in the bioeconomic

modelling literature, with wildlife existence values

rarely incorporated into models of multiple-use

ecosystem management, even though such values

may constitute a large proportion of total ecosystem

value (Loomis and White, 1996). Instead, the typical

modelling approach identifies tradeoffs between the
5 (2005) 365–379
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commercial value of an ecosystem and the abundance

or viability of target wildlife populations, a notable

recent example being published in the Journal

(Doherty et al., 1999). Instead of identifying a single

optimal management regime, tradeoff models provide

information on the opportunity cost of meeting

alternative conservation targets (Montgomery et al.,

1994). Where wildlife existence values have been

estimated, it is possible to go beyond tradeoff

estimation to identify optimal management regimes

that maximise the sum of commercial and ecological

values.

Although many studies estimating existence val-

ues have been published (see, for example, Jakobs-

son and Dragun, (1996), Ch. 11, for a survey of

contingent valuation studies in Australia and New

Zealand), the main interest of the studies is often

methodological rather than to use the estimated

existence values to find economically efficient

strategies for managing ecosystems. Kennedy

(1999) has argued that there is great potential for

using survey estimates of existence values in

management models. Existence values are best

elicited in surveys posing simple and comprehensible

scenarios. The values can then be used in decision-

making models taking account of the complex

dynamic and stochastic ecological relationships that

must be considered in management models.

In this spirit, we develop a dynamic programming

model for identifying optimal forest management

strategies that take account of the risk of losing stands

to fire, and the risk of the disappearance of an

endangered possum species from the stands. The

optimal strategies maximise the sum of the expected

present values of periodic net returns from timber

sales and the continued existence of the threatened

species. A notable feature of our approach is the use

of a stochastic metapopulation model to estimate the

risk of extinction of the threatened species under

alternative management choices, and our development

of a novel method for linking the metapopulation

model to the dynamic programming model. We

demonstrate the scope of the combined use of

simulation and dynamic optimisation for addressing

land management problems involving conservation of

species threatened with extinction.

We apply the approach to a case study focusing on

the mountain ash forests of south-eastern Australia.
These forests contain some of Australia’s most highly

valued timber and also provide habitat for several

threatened species, most notably, Leadbeater’s pos-

sum (LBP), the faunal emblem of the State of

Victoria. The Victorian Department of Sustainability

and Environment (DSE), which manages most moun-

tain ash forests, has a legal obligation to conserve

LBP and to supply timber to local sawmills and

pulpmills. Options to conserve LBP are to reduce the

risk of wildfire, and to retain or expand habitat for the

species. The latter options can be accomplished by

withdrawing younger forest stands from timber

production to allow more trees to become old enough

to form hollows suitable for nesting by LBP (Mac-

Farlane et al., 1998).

Jakobsson (1994) and Jakobsson and Dragun

(1996, 2001) report the results of a mail survey of a

random sample of 3900 Victorians of their willingness

to pay for conservation of endangered Victorian

species in general and for LBP in particular. Valuation

questions were based on contingent valuation method-

ology (CVM). Particular attention was paid to whether

survey responses on conservation values of endan-

gered species in general were significantly higher than

values for LBP, to identify whether there were any

embedding or scoping problems. In the survey,

respondents were asked to state their willingness to

pay for the full protection and long-term survival of

LBP. In our forest management model, the expected

existence value of LBP is calculated as the product of

the species’ survival probability and the mean will-

ingness to pay of Victorians for its guaranteed

survival. As in the Jakobsson study, we consider only

the existence value of LBP, even though the species

may have other values, in particular, values stemming

from potential commercial or scientific uses of the

species. In the absence of information on the latter

values, the total economic value of LBP in our

formulation is the species’ existence value. The

question arises whether existence value is sensitive

to LBP population size. Whilst it is possible that

people would have a higher willingness to pay (WTP)

for a larger population, greater than that necessary for

survival, no information on this is available, given that

the Jakobsson CVM study asked respondents to

consider LBP survival regardless of population size.

In this regard, it is worth noting previous studies that

have shown respondents’ WTP being almost the same
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for quite different population levels (for example,

Boyle et al. (1994) found similar values of waterfowl

species in the Central Flyway of the United States

even when the abundance of these species varied by

orders of magnitude).

1.2. Statement of the forest management problem

We consider a forest comprised of multiple

stands, each containing trees of a single age class.

Both timber volumes and threatened species extinc-

tion risk depend on the age profile of the forest. The

consideration of multiple stands and tree ages poses

a computational challenge, particularly when the

spatial arrangement of stands is considered. For

example, if each of S stands can assume one of A

ages, the forest can assume AS different states,

implying an intractable problem if there are more

than a few stands and age classes to consider.

However, as was originally recognised by Bowes

and Krutilla (1989), considerable reductions in

computational requirements are possible if all that

matters for optimal decision making on stands is the

combination of stands and not their ordering, nor the

location of one stand relative to the location of the

other stands. It can be shown that the number of

states is reduced from AS to ((A+S�1)!/S! (A�1)!)

(Kennedy, 1998; Spring, 2002). To exploit this large

reduction in dimensionality, we formulate our deci-

sion problem so as to capture important features of

LBP population dynamics within and between

stands, but without accounting for the spatial

arrangement of stands. Rather, we consider only

the total number of stands containing LBP popula-

tions and LBP nesting habitat, as explained in

Section 2.1.2. We further reduce state dimensions by

considering only the occupancy of stands by LBP

populations rather than the species’ abundance. Under

this formulation, there are ((A+S)!/S!A!) possible age-

occupancy states when only stands in the oldest age

class can be occupied by LBP. This is a much smaller

number of states than if spatial layout were consid-

ered. For example, if S=6 and A=5, the number of

states falls from 46,656 (calculated as (A+1)S) to 462.

To demonstrate the approach, we solve a small

example problem, comprising 4 stands and 5 tree

age classes (S=4 and A=5, with 126 states). In the case

of 4 stands actually laid out as a 2 by 2 matrix of
stands the assumption of cells’ location relative to the

others may not be so stringent in matters of possum

migration or spread of fire.

The problem is formulated in the next section, and

model parameters given in Section 3. Optimal policies

are reported in Section 4. Conclusions and sugges-

tions for further research are presented in the final

section.
2. Model formulation

Because decisions are sequential and subject to

uncertainty, stochastic dynamic programming (SDP)

is used to formulate and solve the problem. The

decision-stage interval is set at 50 years, to restrict

the number of states to a tractable level whilst

capturing the long period required for nest-trees to

form (approximately 200 years) in old-growth

forest. A decision is made at the beginning of each

stage whether to keep or fell stands. Because trees

can be lost to fire, with probabilities inversely

related to expenditure on fire protection, a decision

is also made on the level of fire protection. The

objective is to determine, for each possible combi-

nation of tree ages and LBP occupancy on the four

stands at each decision stage, the decision combi-

nation that results in the maximum present value of

expected net returns from timber production and

LBP survival over infinite stages. By making the

simplifying assumption that all stage-return and

state-transition functions are the same for all

decision stages, the optimal decision for each state

(the optimal policy) is the same for all stages. The

optimal infinite-stage policy is readily obtained by

policy iteration (Kennedy, 1986).

Vectors (4�1) are used to represent age-LBP

occupancy states, LBP occupancy and fire events

and keep/fell decisions on each stand. As already

explained, no significance attaches to the ordering of

the stands in the vectors. All bold symbols are (4�1)

column vectors, with the ith element denoting the

symbol value on the ith stand. The unit row vector is

denoted by 1/. Braces are used for functions. The

decision variables are the scalar, a, which denotes

forest-wide fire-protection expenditure (one of three

possible levels), and the keep/fell column vector, d.

The i element, di, takes the value 0 if the decision is to
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keep the trees on the ith stand, and 1 if the decision is

to fell the trees.

The state variables are xi, denoting the age of

trees and occupancy status of LBP on stand i. These

form the (4�1) state vector x. Only the oldest tree

age class (the Ath age class, referred to hereafter as

bold growth forestQ) contains trees suitable for

nesting by LBP, and therefore is the only class that

can be occupied by LBP. There are (A+1) possible

values for each stand: one value for each of the A

age classes, and 1 additional value for the Ath age

class being occupied. The age-occupancy state

variable on stand i takes a value of 1 if the stand

has trees in the first age class (zero years) and a

value of A+1 if the stand is occupied and has trees

in the Ath age class (200 years). The state vector at

the end of a stage t is denoted xT. The sequence

and timing of events in the SDP problem, and

associated returns and state transitions, are illus-

trated in Fig. 1.
Start-of-stage State
Tree age and LBP

occupancy on each stand

Stochastic LBP occ
on each st

Decisions
Keep/Fell and

Fire protection
 on each stand

Stand transition s
 Tree age and LBP oc

Returns

Timber returns net of maintenance,
regeneration, and fire protection costs

50 years

x x

Fig. 1. Forest decision and even
Allowance is made for the forest state across

all four states to change following logging

decisions and fire events. The state at the

beginning of a decision stage, representing the

ages of trees and LBP occupancy, is denoted by

x. After the decision to keep or fell trees on each

stand is made at the beginning of the stage, tree

age and occupancy may change. The state is

denoted by x. Over the following 50 years,

migration, reproduction and mortality are simu-

lated, resulting in changed state xT. At the end of

the stage, fire may burn out some stands. The

resulting final state of the system for the decision

stage is denoted xT, which is also the state at the

beginning of the following decision stage. The

within-stage state transitions are explained in the

rest of this section.

Felling and fire protection decisions are made and

implemented at the start of the stage. The felling

decision immediately transforms the state vector
End-of-stage State

Stochastic fire event
on each stand

upancy event
and

tates
cupancy

Returns from salvage harvests and
survival of LBP to end of stage

time

Tx Tx

t time lines for each stage.



Table 1

Probability of fire for different levels of protection expenditure, aa

No. of stands

burnt

Probability

a ($’000/

stage)

1% 0 291 1025

4% 0 530 1870

0 0.0011 0.2763 0.5262

1 0.0203 0.4192 0.3665

2 0.1351 0.2385 0.0957

3 0.3998 0.0603 0.0111

4 0.4436 0.0057 0.0005

a Source: Brigham (1997).
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from x to x{x,d}, defined by individual stand

elements:

xPi xi; dif g ¼ xi if di ¼ 0

1 if di ¼ 1
8i

�
ð1Þ

Logged stands are immediately replanted. Possum

occupancy of stands and fire on stands are stochastic

events occurring at the end of the stage. Burnt stands

are salvage-logged immediately after a fire and

regenerated. Existence value is obtained at the end

of the stage if at least one stand is occupied by LBP.

This depends on whether there are any occupied

stands at the start of the stage, and if so, whether any

are logged, become unoccupied as a result of

demographic processes or are burnt. The demographic

processes include dispersal mortality and demo-

graphic stochasticity, and are collectively referred to

hereafter as the bstochastic occupancy eventQ (Fig. 1).
To limit the number of states, trees that are 200 years

old at the start of the stage remain at that age if they are

not logged or burnt. Thus, if no logging or fire occurs

on stand i, the stand will be 50 years older at the start of

the next stage, provided it has trees younger than 200

years old at the start of the current stage. Stands can be

occupied at the end of the stage only if they are not

logged or burnt, and if their populations do not become

extinct as a result of the stochastic occupancy event.

Carrying capacity is assumed to change instantane-

ously, from zero on a 150-year old stand to the maxi-

mum capacity of 100 adult females when trees reach

200 years. Thus, stands aged 150 years at the beginning

a stage cannot be occupied during the stage as they

become suitable for breeding only after all annual

dispersal and reproduction events have occurred.

The stochastic occupancy event and fire event are

denoted by the vectors zj and yk, respectively. As

occupancy is a binary state, there are 24 or 16 possible

occupancy vectors. The i th element of the j th

occupancy vector, z ji , takes the value 0 if the ith stand

is not occupied immediately before the fire event and 1

if it is. The occupancy event transforms the state vector

from x to xT{x,z
j} defined by individual stand

elements:

xPT ; if xPi ; z
j
i g ¼

xPi þ 1 if xPi b5

5 if xPi z5 and z
j
i ¼ 0

6 if xP i z5 and z
j
i ¼ 1

8><
>: 8i

ð2Þ
There are 16 possible fire vectors, identical in

structure to the occupancy vectors. The ith element of

the kth fire vector, yi
k specifies the fire event, taking

the value 0 if no fire occurs on the ith stand, and 1 if it

does. The fire event transforms the state vector from

xT to the end-of-stage vector xT{xT,y
k} defined by

individual stand elements:

xT ;ifxPT ; i; y
k
i g ¼

�
xPT ; i if y ki ¼ 0

1 if y ki ¼ 1
8i ð3Þ

The probabilities of each pre-fire occupancy vector

and fire vector are defined as the probability functions

Pr{zj|x} and Pr{yk|a}, respectively. Each is described

in the next section.

2.1. Probability distributions for the stochastic events

2.1.1. Probability distributions for the number of

stands burnt

For simplicity we assume in our baseline analysis

that the probability of fire on a stand is independent of

fire on the other stands. The binomial distribution

therefore is used to estimate the probability of zero to

four stands being burnt. Estimates of fire probabilities

Pr{yk|a} at different levels of protection expenditure

are based on unpublished data (Brigham, 1997,

discussed briefly in Section 3.2), and are given in

Table 1.

Dividing the probabilities of the five possible fire

outcomes by the number of ways in which these

outcomes can be arranged across the four stands

produces the probabilities of each of the 16 fire

events, k. This approach is valid if fire on stand i is

the same for all i, which implies that fire risks on

different stands are not influenced by site specific

factors.



Table 2

Leadbeater’s possum parameters used in the baseline RAMAS

simulations

Parameter Base values

Carrying capacity of sub-stand

(adult females/33.3 ha)

10

Initial abundance (no. of sub-stands

occupied at capacity per stand)

6b

Mean dispersal distance 1 kmd

Maximum population growth rate/year 1.15c

Mortality/yeard

Juvenile 0.0

Sub-adult 0.3

Adult 0.3

Fecundity/year 0.4d

(a) Based on a capacity of 0.3 animals per hectare, similar to that

found by Smith (1984).

(b) This reflects anecdotal evidence that LBP is absent from

approximately 40% of its suitable habitat (MacFarlane et al., 1998).

(c) Based on Smith, 1984.

(d) Harley, personal communication.
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Fire probabilities are influenced by the size of each

stand (300 ha) and the duration of the stage interval

(50 years). If a significantly larger stand area were

modelled, the probability that an entire stand will be

burnt during a single stage would be lower. The 300-

ha stand area is approximately equal to that of the

largest old growth stand in commercially productive

forest in the Study Region.

2.1.2. Probability distributions for the number of

stands occupied immediately before the fire event

The number of stands occupied by LBP before the

fire event depends on demographic stochasticity

(random variation in birth and death rates) and

environmental stochasticity (random variation in

environmental conditions that influences population

growth rates). Demographic stochasticity is of partic-

ular importance in small populations as it operates

independently among individuals (Lande et al., 2003).

In addition to demographic stochasticity, dispersal

mortality can also strongly influence the survival

probability of small populations of LBP. This may

reflect not only poor site selection ability of subadult

dispersers, but also the high rate of mortality among

young female Leadbeater’s possums that are excluded

from established colonies (Smith, 1984).

The effects of demographic factors on LBP

occupancy probabilities were estimated using a

spatially explicit stochastic population simulation

model. The model was developed using the

software RAMAS Metapop Version 4.0 (RAMAS

hereafter) (Akçakaya and Root, 2002). Spatial

detail was determined by specifying carrying

capacities for each stand and dispersal rates

between each pair of stands. Annual dispersal rates

(expressed as the proportion of animals in one

population that disperse to another population over

one year), were estimated using the following

dispersal function:

pb bð Þ ¼ e�b=r; rN0 ð4Þ

where b is dispersal distance and r is mean dispersal

distance (1 km in our case study, based on

unpublished data of Harley, in review). Only sub-

adult possums disperse (Smith, 1984), therefore our

simulation model is age-structured, with three age

classes modelled: juveniles (b1 year old); sub-adults
(1–2 years old) and adults (N2 years old). We

assumed that dispersal is random in direction and

occurs once per year. The mean dispersal distance (1

km) is short relative to the distance between centres

of stands (1.7 km). To increase the accuracy of the

stand-to-stand dispersal estimates, we subdivided

each stand into 9 sub-stands arranged on a 3�3

grid. Combining Eq. (4) with the assumption of

uniformly distributed dispersal directions produces

a bivariate probability distribution, which we

numerically integrated to estimate dispersal propor-

tions for a forest comprising 36 square 33.3 ha

stands. As all pairs of stands in the SDP

formulation are assumed equidistant, we calculated

dispersal proportions for the hypothetical case of 4

pairs of adjacent stands (Table 2). Though this

leads to some inaccuracy in estimated dispersal

proportions, this is small relative to general

uncertainty about the dispersal behaviour of LBP

(Harley, personal communication). Dispersal beyond

the Study Region’s perimeter or into stands without

nesting habitat was treated as mortality. Other

parameters used in the RAMAS simulations are

set out in Table 2.

The probability of occupancy at the end of the

stage, before any fire event, depends partly on the

number of old growth stands at the beginning of the



Table 3

Baseline LBP within-stage occupancy transition probabilities

Total no. of

old-growth stands

No. of old-growth

stands occupied

Probability of

no. of old-growth

stands occupied

Timing in the decision stage

Start Start End End

l{x} X{x} X{xT} Pr{X{xT}|x}

1 1 0 0.060

1 0.940

2 1 0 0.010

1 0.060

2 0.930

2 2 0 0.000

1 0.010

2 0.990

3 1 b2 0.000

2 0.010

3 0.990

3 2 b3 0.000

3 1.000

3 3 b3 0.000

3 1.000

4 1 b3 0.000

3 0.004

4 0.996

4 2 b4 0.000

4 1.000

4 3 b4 0.000

4 1.000

4 4 b4 0.000

4 1.000
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stage, after planned logging, which is specified by the

counting function:

l xP
� �

¼
X4
i¼1

	
1 if xPi

z5

0 otherwise



i

ð5Þ

It also depends on the number of occupied stands

at the beginning of the stage after planned logging,

specified by the counting function:

X xP
� �

¼
X4
i¼1

	
1 if xPi

¼ 6

0 otherwise



i

ð6Þ

The probability of reaching the jth occupancy

vector at the end of the decision stage before any

fire event, Pr{zj|x}, is calculated as follows. For

each initial stand age-occupancy state, x, one

thousand 50-year simulations of populations at the

sub-stand scale were carried out, in which repro-

duction and dispersal occur annually. This produced

a distribution of end-of-stage occupancy outcomes

on the 36 sub-stands, which were aggregated up to

the stand scale to estimate the probability of 0/1/2/3/

4 stands being occupied. A given stand was defined

to be unoccupied at the end of 50 years if none of its

sub-stands are occupied. Given that possums on a

sub-stand can produce juveniles that colonise other

sub-stands, including those in other stands, our

formulation allows for the possibility of a small

surviving population existing on a single stand to

reproduce and provide dispersers to other stands. For

each x, the probability of 0/1/2/3/4 stands being

occupied was estimated as the proportion of the

1000 simulations that resulted in each of those

possible occupancy outcomes at the end of 50 years.

The probabilities of all possible stand-level occu-

pancy outcomes under baseline conditions are

illustrated in Table 3.

To assist in interpreting Table 3, consider the

probabilities of transition from a state at the start of

the stage with 4 old-growth stands, one of which is

occupied, to all possible occupancy states at the end of

the stage. The three rows starting with d4 1b3 0.000T
show there is a zero probability that less than 3 of the

stands will be occupied at the end of the stage. The

probabilities of 3 and 4 stands being occupied after 50

years, immediately before any final fire event, are

0.004 and 0.996, respectively.
Inspection of the table indicates that occupancy

probabilities are particularly sensitive to the initial

number of old growth stands (l{x}), and are less

sensitive to the initial number of occupied stands

(X{x}). The relatively high probability of extinction

for states with 1 old growth stand reflects both

demographic stochasticity and dispersal mortality.

Dividing the probabilities of the five occupancy

outcomes (0/1/2/3/4 occupied stands at the end of

the stage) by the number of ways in which these

outcomes can be arranged over the four stands gives

the probabilities of each of the 16 stochastic occu-

pancy events, j.

2.2. Timber revenue and cost functions

The combination of x, d and yk determines

regeneration costs and harvested timber volumes, Tf,
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with subscript f referring to the grade of timber, equal

to s for sawlog-grade timber and p for pulplog-grade

timber. The price of timber is assumed to be

independent of the volume sold.

Timber volume of grade f on stand i depends on

the stand’s age, xi, and is denoted by vf,i{xi}. The

volume of timber planned for sale at the start of a

decision stage from an individual stand is:

qf ;ifxi; dig ¼
�
vf ;ifxig if di ¼ 1 fellð Þ
0 otherwise

8i ð7Þ

Stage returns from timber equal the sum of returns

from planned logging at the beginning of the stage

and discounted returns from any salvage logging after

fire at the end of the stage. The salvage volume is the

proportion u of the volume that would have been

available had the stand not been burnt. Thus timber

returns are:

Rwfx;d;kg ¼
X
f¼s;p

pf q1Vqf x;df g þ ahyk Vvf fxPT
ga ð8Þ

where qf{x,d} is the column vector of planned timber

volume on each stand, 1V is the unit row vector, ykV is
the row vector for the kth fire event, pf is the price of

f-grade timber, and a is the discount factor for a 50-

year period, equal to (1+r)�50, where r is the annual

discount rate.

Regeneration costs are incurred on stands aged

zero at the beginning of the decision stage, after

logging has occurred, and are equal to the product of

the unit row vector and the column vector c{x,d}

consisting of stand elements:

ci xi; dif g ¼ c if di ¼ 1 or xi ¼ 1

0 otherwise
8i

�
ð9Þ

where c is the cost of regenerating one stand.

2.3. LBP stage existence value function

Ignoring for the moment the existence of LBP

outside the Study Region, the existence value of

LBP within the Study Region is obtained only if

the species occupies at least one stand at the end

of the stage. The existence value function is
expressed as the return from survival or extinction

of LBP as:

RlfXfxTgg ¼
�
0 if XfxTg ¼ 0

E otherwise
ð10Þ

where E is the existence value obtained in 50

years time from survival of the species to the end

of the stage, and X{xT} is a counting function,

similar to Eq. (6), giving the number of stands

occupied after any fire event. Thus X{xT}=0

indicates the state that no stands are occupied at

the end of the stage, and X{xT}N0 denotes the

state of possum survival. The outcome X{xT}

depends on the state vector after the keep/fell

decisions x, and on the j occupancy and k fire

stochastic events, as given in Eqs. (2) and (3).

However, the region modelled in our case study

forms only a part of the total geographic range of LBP.

The LBP exists in some forests that are not harvested

for timber, and it would be computationally infeasible

to determine optimal timber-cutting and fire-protec-

tion strategies for all the other harvested forests in

which it exists. Thus the probability of survival of

LBP depends on the probability of survival outside

the Study Region (1�d), as well as the survival

probability k within the Study Region. The proba-

bility of extinction outside the Study Region, d, is
treated as an exogenous parameter, independent of the

occupancy and fire events within the region.

The overall probability of extinction is d(1�k),
and the corresponding survival probability is:

SP ¼ 1� d 1� kð Þ

¼ dk þ 1� dð Þ ð11Þ

Therefore, in the model expected existence value

within the Study Region is calculated as the expected

value of Rl weighted by d. The expected existence

value for outside the Study Region (equal to

(1�d)*E) is not included.
As for all other parameter values in the model, d is

assumed to apply for all future 50-year decision

stages. For lack of estimates of d, and the uncertainty

attached to it, sensitivity analysis was conducted over

a large range, with values of 1, 5, 50 and 95% per 50

years.



Table 4

Timber volume yields by age (m3/ha)a

Tree age Tree age

index x

Sawlog volume

vs{x}

Pulplogs volume

vp{x}

0 1 0 0

50 2 84 509

100 3 516 379

150 4 628 371

z200 5 628 371

a Source: Simulations conducted using STANDSIM.
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2.4. Solution method

The objective is to determine the optimal policy

vectors for all decision stages resulting in maximum

present value of expected stage returns over the

planning horizon. Stage returns are the sum of the

present values of expected returns from timber and

from the public’s knowledge of the continued

existence of Leadbeater’s possum. Each policy vector

specifies the optimal decision combination, a and d,

across all possible age-occupancy states. Solutions are

obtained by dynamic programming.

As there is no obvious finite horizon for this

problem, solutions are obtained for an infinite plan-

ning horizon. This is readily achieved by making the

simplifying stationarity assumption that the return,

state transformation and probability functions are the

same for all stages. It is found as the policy vector

satisfying the following recursive functional equation:

V xf g ¼ max
a;d

X16
k¼1

Pr yk ja
� �

Rw x; d; kf g � 1Vc x; df g
"

� a�mþ a
X16
j¼1

Pr z jjxP
� �

dRl V xTf gf gð
 

þ V xTf gÞ
!#

ð12Þ

V{x} is the sum of the expected present value of all

stage returns to infinity from implementing the

optimal policy, a*{x} and d*{x}, at the start of each

decision stage, for all possible start-of-stage age-

occupancy state vectors x. It equals the expected

value of timber and LBP survival returns for the

current stage, plus the expected present value of all

the forest states which may be accessed at the end of

the decision stage (xT). The optimal value function

V{x} and associated optimal policy vectors are

obtained by solving Eq. (12) numerically for all

possible state combinations of tree age and LBP

occupancy on the four stands, (x). The range of x and

xT is the same.

Eq. (12) is recursive because V{x} for any stage on

the LHS depends on V{x} on the RHS. The same

function appears on both sides of the equation because

the planning horizon is infinite (the passing of one

stage still leaves infinite stages in the planning
horizon, and the same optimal value for each possible

start-of-stage state), and because stationarity is

assumed.
3. Case study parameter values

Some of the parameter values used in the baseline

analysis were set out in the above tables. Remaining

parameter values are set out in Tables 4 and 5 and are

described briefly below.

3.1. Timber yields and prices

Timber volume yields at different stand ages were

estimated using the mountain ash stand simulation

model STANDSIM (Coleman, 1989), which indicated

that no change in timber volumes takes place after a

stand reaches 150 years of age (Table 4).

Sawlog and pulplog prices were obtained from

recent unpublished records (Source: M. Woodman,

Senior Forester, DSE, personal communication) of the

royalties received from the most recent timber sales in

the Study Region, which are: $64/m3 for grade B

sawlogs, $50/m3 for grade C sawlogs and $27/m3 for

grade D sawlogs. Approximately 40% of the sawlogs

harvested are grade B, 40% are grade C, and the

remaining 20% are grade D. The weighted average

sawlog price is therefore calculated as follows:

ps ¼ 64�0:40þ50�0:40þ27�0:20 ¼ $51=m3:

The price of pulpwood is approximately $12:60=m3:

3.2. Fire protection expenditures

The following protection strategies (drawing on

Department of Conservation and Natural Resources,



Table 5

Other model parameters

Parameter Symbol Values for rate of discount p.a. Value

r=1% r=4%

Area of each stand (ha) 300

Rate of discount (%) per stage 65 611

Probability of extinction of LBP outside the Study

Region within each 50-year stage (%)

d 1, 5, 50, 95

Salvage rate of burnt timber h 0.67c

Sawlog price ($/m3) ps 51

Pulplog price ($/m3) pp 12

Future value of certain LBP survival over 50 years

($m/stage)

E

Lower bound (at $58.31 m/year) 1253a 2285b

Upper bound (at $320.17 m/year) 6878a 12,550b

Costs

Present value of maintenance costs (at $68 m/year)c m 2692 1519

Regeneration ($/ha) c 1622c

The rate used by the Victorian Government (Victorian Government 1986).
a At a discount rate of 4%.
b At discount rate of 1%.
c Source: Galapitage (1992). Prices are in real terms expressed in Australian dollars.
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1995) were considered: fire detection using lookout

towers; fire response using alternative levels of

manpower in readiness for fighting an outbreak; fire

protection by burning off strategic corridors every

three years; and education to reduce fires initiated by

people. Annualised costs were calculated for each

strategy from estimated capital and annual costs.

Rough estimates of the impact of the strategies alone

and in combination were obtained from staff at the

Alexandra office of the DSE.

Three points on the efficient frontier of the set of

12 fire-probability/protection-expenditure points

based on the study of Brigham (1997) were selected

as the basis of three fire protection programs in the

study (Table 1). The first program is the null

program of no protection, chosen because there

has been a longer period of observation of fires

under this program than any under any other.

Brigham (1997, p. 35) gives a probability of a

destructive fire spreading through a particular

hectare of mountain ash forest, without any detec-

tion or suppression activity, to be 1 year out of 30.

This estimate was made in consultation with staff of

Alexandra Office of the DSE on the basis of

historical data prior to 1940 when no State-owned

fire agency was employed to prevent or suppress an

outbreak of fire.
The second program is the combination of towers

and home standby. The third program is the

combination of towers, depot standby, education

and burnoff. Changes have been made to the original

estimates in Brigham (1997) by adding the cost of

fire access roads to the cost of lookout towers in

reducing the probability of destructive fire due to

basic infrastructure. The original cost of the burnoff

strategy related to a mix of forest types in the

Alexandra fire protection region. After consultation

the cost has been increased to reflect the higher costs

for an all-mountain-ash stand which is relatively

more dense and inaccessible (Greg McCarthy, Senior

Researcher, Forest Science Centre, DSE, personal

communication).

3.3. Leadbeater’s possum existence value

The annual existence value of LBP estimated by

Jakobsson and Dragun (1996) for a sample of

registered voters in the State of Victoria, on the basis

of a contingent valuation survey was between $58 and

$320 per year per head. These figures were adjusted

for inflation between 1989 (the year in which the

survey was conducted) and 2002 using the Australian

consumer price index (ABS, 2002). Multiplying the

willingness-to-pay to ensure the long term survival of
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LBP per respondent by the number of registered

voters in Victoria (3.266 million in November 2002)

gives upper and lower bounds on the range of possible

existence values in Victoria for LBP. We consider

both the lower and upper bound values in our

analysis.

These and other parameter values used in the case

study are set out in Table 5.

Optimal policies for different discount rates and d,
E combinations are presented in Section 4 for selected

states. Conclusions and suggestions for further

research are presented in the final section.
4. Optimal policies

Optimal policy vectors were found numerically by

solving Eq. (12) using the general purpose dynamic

programming software developed by Kennedy (1986,

2003). The vectors show the optimal keep/fell

decision on each stand, and the optimal fire protection

expenditure, for all 126 state combinations of age and

occupancy on the four stands that can be reached at

any stage. The optimal policy is implemented at all
Table 6

Optimal decisions for selected age-occupancy states at different discount ra

Study Region

Optimal protection expenditure (a

Tree ages Occupancy d dE r=4%

Stands Stands $m a Keep/f

1/2/3/4 1/2/3/4 $ 1/2/3/4

100/100/100/200 0/0/0/1 0.01 13 3 F.F.F.K

69 3 F.F.F.K

0.05 63 3 F.F.F.K

344 3 F.F.F.K

0.50 626 3 F.F.F.K

3439 3 F.F.F.K

0.95 1190 3 F.F.F.K

6534 3 F.F.K.

100/200/200/200 0/0/0/1 0.01 13 3 F.F.F.K

69 3 F.F.K.

0.05 63 3 F.F.K.

344 3 F.K.K

0.50 626 3 F.K.K

3439 3 F.K.K

0.95 1190 3 F.K.K

6534 3 F.K.K

**TV refers to the threshold value of retaining a stipulated number of old

* EPV refers to expected present value.
future stages by applying the optimal decision set for

the state reached, which in turn depends on the initial

state and stochastic events of the previous stage.

Most of the commercially productive forest in the

Study Region is regenerating from a large wildfire

that occurred in 1939, with smaller areas of younger

and older forest. In our case study applications, we

give particular attention to states with a single

occupied old-growth stand surrounded by 50- or

100-year-old regrowth stands. We also consider a

state with more old-growth stands. For brevity, results

for the state 50/50/50/200–0/0/0/1 are not included in

Table 6, but are described in the text.

Optimal policies for two states are presented in

Table 6. Decisions and expected values from imple-

menting the optimal policy across infinite stages are

reported for two discount rates (r), two existence

values (El) and four values of d. The existence values
are at the lower and upper bounds of the range

estimated by Jakobsson and Dragun (1996).

We begin by discussing the results at a 4%

discount rate, the rate currently used by DSE for

forest policy evaluation. To place the impact of LBP

existence value in perspective, if the existence value
tes, stage existence values, and LBP survival probability outside the

) and keep/fell (K/F) decisions

dE r=1%

ell EPV* $m a Keep/fell EPV*

$m $m 1/2/3/4 $m

. 36.3 23 3 F.F.F.K. 68.3

. 86.9 126 3 F.F.K.K. 231.4

. 81.3 114 3 F.F.K.K. 212.8

. 335.1 628 3 K.K.K.K. 1099.6

. 589.8 1143 3 K.K.K.K. 1994.0

. 3127.5 6275 3 K.K.K.K. 10,962.8

. 1098.3 2171 3 K.K.K.K. 3791.3

K. 5923.7 11,922 3 K.K.K.K. 20,832.0

. 39.7 23 3 F.F.K.K. 71.7

K. 93.9 126 3 F.K.K.K. 305.4

K. 87.1 114 3 F.K.K.K. 278.9

.K. 403.8 628 3 K.K.K.K. 1518.5

.K. 730 1143 3 K.K.K.K. 2761.9

.K. 3,979.6 6275 3 K.K.K.K. 15,215.2

.K. 1381.2 2171 3 K.K.K.K. 5257.5

.K. 7555.4 11,922 3 K.K.K.K. 28,918.7

growth stands (see text).
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is zero, it is optimal to fell all trees at 50 years of

age and older.

For those states in which there is one old-growth

stand, it is optimal to retain the stand and fell the other

stands. This result applies over the entire range of

existence values estimated by Jakobsson and Dragun

(1996) ($58 to $320 m/year in 2002 prices) for the

lowest value of d=1%. In order for it to be optimal to

retain at least one 100-year-old stand, dE would need

to be at least $5.15 billion (not illustrated), which is

within the range of values estimated by Jakobsson and

Dragun if d is set at the highest trial value of 95%.

Table 6 shows that for dE set at $6.534 b (with annual

willingness to pay for LBP survival set at its upper

limit of $320 m and d set at 95%), it would be optimal

to retain one 100-year-old stand for the state 100/100/

100/200–0/0/0/1. In order for it to be optimal to retain

at least one 50-year old stand, dE would need to be at

least $14.8 b/stage. The much larger threshold

conservation value for 50-year-old stands than 100-

year-old stands reflects the longer time required for

the younger stand to reach an age of 200 years. The

longer is the time required for new habitat to form, the

lower is its expected value in terms of the monetary

value of increased future survival probability. This is

due not only to discounting, but also the risk that the

stand will be destroyed by fire before new habitat

forms, and the risk of extinction on the sole existing

old growth stand. If extinction occurs before any new

habitat forms, the new habitat would have zero

conservation value, given our assumption that there

is no immigration of possums into the Study Region.

In sum, whether it is optimal to expand old growth

habitat in the future will depend on the current age

profile of the forest and the value of dE.
Though decisions optimal for a 4% discount rate

are of interest because it is the rate used by DSE for

forest policy evaluation, it can be argued that lower

rates should be used on grounds of intergenerational

equity. Future generations may prefer to inherit a

world with more old-growth-dependent wildlife spe-

cies than would result from the current generation

applying a 4% discount rate to choices between such

species and timber production. Weitzman (2001) has

argued on different grounds that the discount rate for

appraising a project should depend on the term of the

project—e.g., 4% for projects of 1–5 years, 1% for

76–200 years, and 0% for over 200 years. For
illustrative purposes, we conducted the analysis at

discount rates of 4, 1, and 0.1%. Results for discount

rates of 4 and 1% are presented in Table 6. Results for

0.1% are discussed briefly in the text.

Table 6 shows that discounting has a strong

influence on the optimal habitat retention and

expansion decision. At the lower discount rate of

1%, lower values of dE are required for it to be

optimal to expand old growth habitat than under the

higher discount rate. For example, if the initial state is

100/100/100/200–0/0/0/1 and dE is set at $114.3 m, it

is optimal to retain one of the 100 year-old stands,

while it is optimal to retain none of the 100-year old

stands at the equivalent dE value under a discount rate

of 4% ($62.65 m). Initial occupancy has much less

influence on the keep/fell decision than the age profile

of the forest (not illustrated). This reflects the fact that

initial occupancy has only a small influence on the 50-

year extinction probability (Table 3) and this applies

only to relatively few states, namely, those in which

there are two old growth stands.

Reducing the annual discount rate to 0.1% has a

marked effect on the optimal policy. For a wide range

of values of dE, it is optimal to keep all stands for any

state containing at least one occupied stand. A much

less marked habitat expansion policy is evident at

higher discount rates, including a rate of 1% p.a. This

can be illustrated for an dE value of $114 m/stage: at

this value, it is optimal to fell up to two stands for a

range of states in which LBP exists, whereas it is

optimal to retain all stands in those states at a 0.1%

discount rate. An implication is that the debate on the

appropriate discount rate to apply to projects that have

environmental impacts extending into the far-distant

future has significant implications for forest manage-

ment choices involving old-growth-dependent wild-

life species.

Because of the difficulty of obtaining estimates of

the probability of fire destroying a stand of a given

area over a given time period, protection expenditures

double and half the rates shown in Table 1 for the

three levels of protection were tested. The effect of

doubling protection expenditures was found to depend

on the discount rate and the value of dE. This can be

seen in the results for the two states in Table 6.

Consider the first state, 100/100/100/200–0/0/0/1,

with dE set at $13 m under the 4% discount rate

and $23 m under the 1% discount rate. After doubling
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forest protection costs at 4%, it is no longer optimal to

retain the old growth stand. In contrast, it remains

optimal to retain the stand at 1%. Similarly, for the

state 100/200/200/200–0/0/0/1 and the same values of

dE, doubling the protection cost only causes a fall in

the number of retained old growth stands at the 4%

discount rate; not at the lower discount rate (for which

the optimal number of retained old growth stands

remains at two). Qualitatively different responses to

higher fire risk at the two discount rates were

observed not only for the lowest values of dE, but
also higher values. This is illustrated for the case

where equivalent dE values at the higher and lower

discount rates are $62.65 m and $114.3 m, respec-

tively, and the initial state is 100/200/200/200–0/0/0/

1. In this case, doubling the protection cost increases

the optimal number of retained stands, from two to

three, at the lower discount rate, but has no effect on

the habitat retention decision at the higher discount

rate. Halving the protection costs has no effect on the

optimal decisions for the states in Table 6.
5. Conclusions

We obtained solutions to a timber-wildlife manage-

ment problem using existence values for the threat-

ened wildlife based on the results of a contingent

valuation survey. Expected stage existence value was

calculated as the product of the species’ probability of

surviving to the end of the stage and the willingness of

the public to pay for guaranteed survival of the

species. We considered environmental and demo-

graphic threats to the species’ survival, and two

management options that reduce those threats: reduc-

ing the risk of wildfire and retaining or expanding old

growth habitat. Choice amongst these options entails

weighing up the public’s value of believing the

species will survive in the future against foregone

timber value. Our dynamic optimisation approach is

well suited to considering this tradeoff, as it accounts

for the possibility of extinction. Applying our

approach to a case study indicated that the decisions

on whether to retain or expand habitat and how much

to spend on reducing fire risk can be highly sensitive

to the discount rate, the cost of reducing fire risk, the

threatened species’ existence value and its risk of

extinction outside the Study Region.
An important untested assumption in our analysis

is that of a linear relationship between expected

existence value and probability of survival. It has

been argued elsewhere that the marginal utility of

increases in survival probability of a threatened

species declines with increases in survival probability

(Maguire, 1986). If this were proven correct, it could

reduce the optimal number of stands to retain as

habitat, as increments in survival probability would be

worth less, the greater is the number of stands already

retained.

Another factor affecting relative timber and pos-

sum values that we did not consider is the difference

in reinvestment opportunities between timber returns

and existence value. Assuming existence value can be

reinvested, as we have done, when in fact it cannot be

reinvested, is likely to lead to an underestimate of

wildlife existence value relative to timber value, as

one should apply the lower consumption rate of

discount to existence value, increasing present values

of conservation relative to timber present values. A

method of working with two rates of discount for this

situation in dynamic programming models is dis-

cussed in Kennedy (1986, Ch. 8).

Another methodological issue is whether to con-

sider only the occupancy of stands by the target

species, as we have done, or whether to consider the

species’ abundance on each stand. The latter would

enhance the biological realism of the model by

accounting for possible changes in LBP abundances

on stands between one decision stage and the next.

This would be particularly useful if changes in

abundance influence future occupancy probabilities.

However, additional state values would be required to

account for the different abundance classes, resulting

in a large increase in the number of states. Thus, the

occupancy approach used here entails some loss of

information on occupancy probabilities, at the gain of

a considerable reduction in problem size. The

occupancy approach is a reasonable simplification in

cases where local population sizes can change rapidly

on the time scale of the extinction/colonization

processes that determine the dynamics of the meta-

population (Hanski and Thomas, 1994). Possingham

(1996) used a similar occupancy model to determine

optimal policies for a metapopulation. As noted

above, such a formulation allows for the three main

influences on LBP extinction risk to be considered:
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demographic processes operating at the landscape and

local scales, including the ability of a small surviving

population existing on a single stand to reproduce and

provide dispersers to other stands; environmental risk,

including fire risk, and the removal of habitat as part

of timber harvesting.

Our use of binary keep/fell decision variables on

each stand is somewhat unrealistic because, in

practice, it may be possible to remove a proportion

of trees on a stand, for example, in a thinning

operation or in post-fire salvage harvesting. Further-

more, if thinning occurs on a stand containing hollow-

bearing trees (HBTs), partial tree removal may not

significantly reduce the carrying capacity of the stand

for LBP. For example, LBP abundance in old growth

forest is limited by food availability rather than HBT

availability (MacFarlane et al.), implying that some

trees could be removed without reducing carrying

capacity. Accordingly, a useful extension of our

formulation would be to allow for partial harvests of

stands, although this would increase the size of the

problem, requiring increases in the number of decision

variables. It also would require additional state

variables, if thinning results in changed timber volume

and/or tree age structure on the stand. The latter

outcome is likely in old growth stands, where natural

thinning processes have ended; in contrast, thinning a

young stand can replicate natural processes and

thereby have no impact on the stand’s tree age

structure. It also would require additional state

variables, for at least two other reasons. First, thinning

results in a change to a stand’s tree density, which may

persist over subsequent successional stages reached

by the stand. Second, thinning of an old growth stand

can result in a changed tree age structure on the stand,

from one with a uniform age to one with a mix of old

and young trees.

The multi-stand approach suggested by Bowes and

Krutilla (1989) proved a useful way of incorporating

the results from a simulation model of possum

dispersal between stands in a dynamic programming

model without greatly increasing the dimensionality

of the problem. Many previous optimization analyses

of multiple-stand management for timber production

and wildlife conservation portray logging-induced

damages to wildlife indirectly, using adjacency

relationships (Murray, 1999). With this structure it is

simple to allow for other interdependencies if these do
not significantly depend on the relative positions of

stands. For example, the model could be extended to

allow for interdependent fire risk among stands (that

is, the risk of fire spreading among stands). This might

have the effect of reducing the number of stands to

retain as habitat at high discount rates and low

existence values, a similar effect to that described in

our sensitivity analysis for the case of increased fire

risk.

Our analyses demonstrate how dynamic optimisa-

tion combined with stochastic population simulation

offer a useful framework for gaining a deeper under-

standing of habitat management issues.
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