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Abstract

Future crop production will be adapted to climate change by implementing alternative

management practices and developing new genotypes that are adapted to future climatic con-

ditions. It is difficult to predict what new agronomic technologies will be necessary for crop

production under future climatic conditions. The purpose of this work was to develop an

approach useful in identifying crop technologies for future climatic conditions. As an example

of the approach, we used response surface methodology (RSM) in connection with the

CERES-Wheat model and the HADCM2 climate simulation model to identify optimal config-

urations of plant traits and management practices that maximize yield of winter wheat in high

CO2 environments. The simulations were conducted for three Nebraska locations differing in

altitude and rainfall (Lincoln, Dickens and Alliance), which were considered representative of

winter wheat growing areas in the central Great Plains. At all locations, the identified optimal

winter wheat cultivar under high CO2 conditions had a larger number of tillers, larger kernel

size, fewer days to flower, grew faster and had more kernels m�2 than the check cultivar under
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normal CO2 conditions. In addition, optimal sowing dates were later and optimal plant den-

sities were smaller than under normal conditions. We concluded that RSM used in conjunc-

tion with crop and climate simulation models was useful in understanding the complex

relationship between wheat genotypes, climate and management practices.
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1. Introduction

The decision process of identifying new agronomic technology may be conceptu-
alized as an optimization procedure. When developing new cultivars or new manage-

ment practices, it is reasonable to assume that the major objective is to find the set of

inputs, in this case the set of plant traits or management inputs or techniques, that

result in a crop that optimizes (i.e., maximizes or minimizes) some response. The re-

sponse to be optimized depends on the goal of the particular project, and may be a

single variable, such as profit, yield, organic matter or runoff or some combination of

variables. Most modern agronomic research is oriented toward identifying technol-

ogies that maximize profit. In many studies, field experiments are conducted under
conditions similar to those that farmers would experience and results are used to

make choices among possible technologies. Information about the best technologies

is then either disseminated to farmers or incorporated into new research. While this

classical agronomic research paradigm has been enormously effective in improving

productivity and profitability in the last one-hundred and fifty years, this approach

is not suitable for some problems.

One type of research that does not fit this classical research paradigm involves

evaluating the possible long-term impacts of climate changes on agronomic tech-
nologies. This research can be useful in understanding the types of cultivars and

management practices that may be necessary under likely future climates. It is gen-

erally not possible to conduct field experiments under future environmental condi-

tions, nor is it simple to approximate the cumulative changes in technologies over a

long period of time in response to climate change. Identifying technologies that

may be necessary under future climates requires three components: (1) a method

to generate or simulate future environmental and climatic conditions; (2) the ability

to predict crop response under these future conditions and (3) an approach that
approximates the decision process of identifying and selecting new agronomic tech-

nologies in response to climate change over a long period of time. Climate simu-

lation models and crop growth and yield models have been used extensively to

predict plant responses under future climatic conditions (Rosenzweig et al.,

1995). However, no clear methodology has been proposed that simulates the

long-term decision making process of identifying new agronomic technologies in

conjunction with predicted plant responses under simulated future global climatic

conditions.
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Response surface methodology (RSM) used in connection with crop and climate

simulation models can be adapted to approximate the long-term decision process of

identifying future agronomic technology in response to climate change. RSM is an

optimization approach commonly used in industrial process control and engineering

where the goal is to find levels of input variables that optimize a particular response
(Myers and Montgomery, 1995). RSM proceeds sequentially with a series of exper-

iments to find the area near the optimal (maximum or minimum) response. A final

experiment is then conducted to find the �optimal� input combinations and to evalu-

ate the nature of the surface in the area of the optimum. RSM is most useful when a

response depends on many factors and the objective is to find the levels of these fac-

tors that give an optimum response. In addition, RSM is sequential in nature where

current experiments are dependent upon predictions from previous experiments and

thus is a reasonable approach to simulating human decision making over a long per-
iod of time. Other optimization procedures such as simulated annealing and genetic

algorithms depend on random perturbations of the inputs and consequently are not

reasonable approaches to modeling decision making processes. As a result, RSM can

be a useful tool in approximating the long-term decision process of identifying new

agronomic technologies in response to climate change.

As a simple example of how RSM might be used with crop and climate simulation

models to approximate the process of identifying new technology, assume that a sci-

entist would like to find levels of two inputs, X1 and X2 that maximize yield (y) of a
particular crop in a particular climate. Further let yield be only a function of inputs

X1 and X2 and a vector of climate related variables W or more specifically,

y = f(X1,X2,W) where a simulation model quantifies this functional relationship.

Also assume that X1 is a genetic trait such as kernel weight and X2 is a management

variable such as planting density. A predicted yield value is generated for a particular

set of inputs X1 and X2, by simulating weather variables W for a future climate and

using X1,X2 and W in the crop simulation model to generate a yield. In a broad

sense, RSM proceeds by sequentially adjusting X1 and X2 until maximum yield is
achieved which approximates the scientist�s search for improved cultivars and man-

agement practices.

In this simple example, the RSM procedure begins with an initial 2 · 2 factorial

first-order experiment, centered at the �current� levels of X1 and X2 (point a in Fig.

1) where each of the four design points are identified by the levels of X1 and X2 in

Fig. 1 and yield is measured on a third axis that is perpendicular to the X1,X2 plane.

Point a represents the current cultivar and management practice. At each of the four

design points about a, yield values are simulated over a number of years and the
across year mean yield (y) is obtained for each point. Based on these four y values,

a first-order statistical model: y = b0 + b1X1 + b2X2 is fit to give a planar yield re-

sponse surface as a function of X1 and X2. Using this surface, the path of steepest

ascent is determined as the line that predicts the steepest increase in yield (line ab

in Fig. 1). Yield values are simulated sequentially at various X1 and X2 values along

the path of steepest ascent until yield decreases substantially. Another 2 · 2 factorial

experiment is then conducted near the point of highest yield on the path of steepest

ascent (point c, Fig. 1), another first-order statistical model is fit and a second path of
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Fig. 1. Simple example of path of steepest ascent to identify maximum yield and optimal value for the two

traits based on three computer simulation experiments.
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steepest ascent is identified (line cd, Fig. 1). The process is continued until there is

little increase in yield at which point a final second-order experiment is conducted
to identify the values of X1 and X2 that maximize yield (X1,opt;X2,opt in Fig. 1). This

final experiment is normally a central composite design and data from this experi-

ment are analyzed with a second-order model y ¼ b0 þ b1X 1 þ b2X 2 þ b11X 2
1þ

b22X 2
2 þ b12X 1X 2. Differentiating the estimated equation with respect to Xi, setting

the result equal to zero and solving gives the optimal inputs, Xi,opt. Evaluation of

the fitted response surface then determines the nature of the surface and the nature

of the Xi,opt values, i.e., if they are maximum, minimum or saddle-points.

Ideally, the final values of X1,opt (kernel weight) and X2,opt (planting density) will
maximize yield under the future climate scenario at this site. Even though the values

of X1,opt and X2,opt are only based on simulations, they could be useful in under-

standing the types of cultivars and management practices that may be needed in fu-

ture climates. Although this example is quite simplistic the method is quite general

since any plant model with any number of input variables and any weather model

can be used as long as the output (y), the inputs (X) and the weather variables

(W) are clearly identified.

Climate models have predicted that in the next 100 years, the atmospheric concen-
tration of CO2 could double and that temperature and precipitation patterns could

change substantially (IPCC, 1995). The combined effect of these changes on winter

wheat production is difficult to evaluate. Changes in temperature and precipitation

patterns during critical periods of crop development can have dramatic positive or

negative impacts while increases in CO2 concentration can raise the rate of photosyn-

thesis, promoting biomass accumulation, increasing plant growth and yield (Kim-
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ball, 1983; Cure and Acock, 1986). Whatever the climatic changes, crop production

can be adapted to climate change by implementing alternative management practices

and developing new genotypes that will take advantage of the future climatic condi-

tions. However, these new agronomic technologies cannot be identified without

understanding future climatic conditions that are likely to result. In addition, devel-
oping new cultivars will require knowledge of crop traits that will allow the crop to

perform well in the future climate. Coupling response surface methods with crop and

climate simulation models can be useful in understanding what types of cultivars and

management practices may be necessary to maximize production in the future.

In this work, we used the CERES-Wheat model to simulate yield of wheat crops

as a function of climatic variables, genetic coefficients, soil characteristics and man-

agement practices (Tsuji et al., 1994). CERES-Wheat, V3.0 (Ritchie and Otter, 1985)

simulates daily growth and development of wheat as well as yield, has been validated
for present CO2 and current climate conditions (Otter-Nacke et al., 1986), and has

been widely used to assess wheat responses to elevated CO2 and future climate

change scenarios (Delecolle et al., 1995; Mearns et al., 1996; Rosenzweig et al.,

1995; Tubiello et al., 1999; Weiss et al., 2003). The effect of increased CO2 concen-

trations can be simulated by CERES-Wheat (Rao, 2002). The direct effect of in-

creased CO2 concentrations on growth responses in CERES-Wheat is achieved by

multiplying the daily potential dry matter formed by a number (greater than one)

that represents the ratio of the current to the future scenario carbon dioxide concen-
tration. Tubiello et al. (1999) tested the modified CERES-Wheat model under ele-

vated CO2 treatments using field data from free-air carbon dioxide enrichment

(FACE) experiments with spring wheat and found that simulations of dry matter

and yield were, in most all cases, within 10% of measured values. For weather inputs

of future climates, we used the LARS-WG V3.2 stochastic weather generator, to sim-

ulate appropriate weather data (Racsko et al., 1991; Semenov et al., 1998; Semenov

and Brooks, 1999) based on a well-known climate model, the Hadley Center global

climate model (HADCM2) (Johns et al., 1997). The objective of this research is to
demonstrate the use of response surface methodology (RSM) with crop and climate

models to identify optimal configurations of plant traits and crop management prac-

tices that maximize winter wheat yield under high CO2 environments.
2. Materials and methods

CERES-Wheat was coupled with HADCM2 and RSM to identify levels of the
non-weather CERES-Wheat input variables (Xi) that maximized yield under two

CO2-weather scenarios (normal: 360 lmol/mol; high: 720 lmol/mol) at three Nebras-

ka locations (Lincoln, Alliance and Dickens). Our overall strategy was to use RSM

in three steps. First, using the method of steepest ascent, we identified the region of

CERES-Wheat input variables that gave near maximum yield. Second, we ran a final

set of CERES-Wheat simulations to more carefully estimate the surface in the area

of the maximum yield and to estimate the optimal inputs (Xi). Finally, we evaluated

the shape and orientation of the response surface to determine if the optimal Xis gave
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a maximum or saddle point, and to identify a further path of steepest ascent if

needed.

CERES-Wheat simulates yield, growth and development of a wheat crop as a

function of weather variables, soil characteristics, management practices, and genetic

coefficients, which are the coefficients to be used as input variables in CERES-Wheat
to represent a particular cultivar (Tsuji et al., 1994). The model uses seven genetic

coefficients related to anthesis date, maturity date, grain m�2, grain weight and

grains per spike. Soil characteristics and management factors related to sowing, fer-

tilization and irrigation are also required as input variables. While the model also

simulates daily growth and development of the crop based on local weather, we

did not use the growth and development variables in subsequent analyses.

In the optimization procedure, five genetic and one management factors were con-

sidered as input variables and all other factors were considered fixed. The five genetic
factors used as variables were: P1D – the relative amount that development is slowed

when plants are grown in a photoperiod 1 h shorter than the optimum (which is con-

sidered to be 20 h); P5 – the relative grain-filling duration based on thermal time

units (degree-days above a base temperature of 1 �C), where each unit increase above

0 adds 20 degree days to an initial value of 430 degree days; G1 – the kernel number

per unit weight of stem (less leaf blades and sheaths) plus spike at anthesis (1/g); G2 –

the kernel filling rate under optimum conditions (mg dy�1 kernel�1); G3 – non-

stressed dry weight of a single stem (excluding leaf blades and sheaths) and spike
(grain ear) when elongation ceases (g). One genetic factor was held constant: P1V,

defined as ‘‘relative amount that development is slowed for each day of unfulfilled

vernalization, assuming that 50 days of vernalization is sufficient for all cultivars’’

was fixed at six (6) to represent winter wheat.

In this study, Karl 92 was used as a starting cultivar. Karl 92 is adapted to south-

eastern Nebraska (represented by Lincoln), less so to Dickens, and poorly adapted to

Alliance. Genetic coefficients of Karl 92 used in this study were calculated using the

GenCalc program in DSSAT v. 3.0 from experimental field data. Plant population
density (plants m�2), a management input, was varied to find the optimal plant pop-

ulation that maximized yield. Sowing dates used with normal CO2 were based on

current management practices at each site. Sowing dates used with high CO2 scenar-

ios were chosen to approximate the dates when mean air temperature from high CO2

scenarios was the same as the mean air temperature of current sowing dates (Table

1). Thus, we assumed no change in germination traits for future cultivars. Nitrogen

was held constant at 50 kg/ha, a typical minimum input for wheat in Nebraska. The

simulation was run assuming rain-fed production (without irrigation). Current data
Table 1

Sowing dates used for current (normal CO2) and future (high CO2) climatic scenarios at three Nebraska

locations

Scenario Alliance Dickens Lincoln

Current (CO2 = 360 lmol/mol) 8 September 18 September 26 September

Future (CO2 = 720 lmol/mol) 29 September 9 October 17 October



Table 2

Predefined ranges for the values of genetic input variables used in the CERES-Wheat model (Tsuji et al.,

1994)

Input Lower limit Upper limit

Photoperiod sensitivity (P1D) 1.0 4.7

Grain filling duration (P5) 1.0 5.0

Kernel number per spike parameter (G1) 1.1 5.5

Kernel filling rate (G2) 1.3 6.8

Kernel weight parameter (G3) 1.0 4.4
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for soil characteristics for each of three locations were also used (Weiss et al., 2003;

Won, 2001). It was assumed that the wheat was sown in fallow soil. Initial soil mois-

ture conditions at each site were obtained by running the water balance component

of CERES-Wheat 40 days prior to sowing. Other management variables were held

constant based on current management practices. It was assumed that no biotic

stresses were present while abiotic stresses for temperature, soil water, soil nitrogen

and CO2 concentration were considered. The ranges of the genetic factors were based
on the lowest and highest values for the set of winter wheat cultivars listed in DSSAT

manuals (Table 2 and Tsuji et al., 1994). The genetic factors were limited to these

ranges since the precision of CERES-Wheat predictions beyond these ranges is

unknown.

Two different climatic scenarios were used: normal CO2 (360 lmol/mol), based on

the mean climate conditions (temperature, solar radiation, and precipitation) of the

period 1961–1990, and high CO2 (720 lmol/mol) with future climatic conditions

based on the mean conditions of the last 30 years of the 21st century based on
HADCM2 (Johns et al., 1997). We used the HADCM2 projections because they

were not considered extreme in terms of either over- or underprediction of major cli-

mate variables (Southworth, 2002). These projections were used by the National

Assessment Synthesis Team (2000) to provide an impact assessment of climate

change in the United States. Weiss et al. (2003) also used HADCM2 climate change

projections to assess winter wheat responses to climate change scenarios in the winter

wheat growing areas in Nebraska.

In order to go from the course grid scale of the Hadley model output to a specific
location, the following procedures were used. The historical data for each location,

from VEMAP (Kittle et al., 1997) were averaged over 1961–1990 (base data) and the

HADCM2 climate change projections data obtained from VEMAP were averaged

over 2070–2099. These averages were compared to calculate absolute changes in

monthly temperature and solar radiation and relative changes in monthly total pre-

cipitation, length of wet and dry periods, and daily temperature standard deviations.

The distribution of wet and dry days was not modified, i.e., these distributions were

the same as in the original data set. LARS-WG v3.2 (Racsko et al., 1991; Semenov
et al., 1998; Semenov and Brooks, 1999) can generate daily values of maximum and

minimum air temperature, precipitation and solar radiation from monthly values

of these parameters and their associated standard deviations. Once the monthly
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absolute and relative changes in the climatic variables and associated standard devi-

ations were determined, actual daily weather data (maximum and minimum temper-

atures, precipitation, and solar radiation) were used by LARS-WG to generate the

climate scenario based on the HADCM2. Different climate scenarios could be gen-

erated by changing the mean and standard deviation values of climate parameters.
More detail about this weather simulation method can be found in Weiss et al.

(2003). One hundred independent stochastically simulated normal and high CO2

‘‘years’’ of daily weather data representing the range of average conditions for the

last 30 years of each climate scenario were generated for three locations in Nebraska:

Lincoln (sub-humid climate; 40�51 0N, 96�36 0W, 34 m elev.), Alliance (semi-arid cli-

mate; 42�30 0N, 102�55 0W, 1213 m elev.), and Dickens (transition between sub-humid

and semi-arid; 40�57 0N, 100�58 0W, 945 m elev.). These locations are reasonably rep-

resentative of the major portion of the winter wheat growing areas in the Central
Great Plains of the USA (Peterson, 1992).

We ran the CERES-Wheat model using one hundred simulated years� weather un-
der the normal CO2 concentration and under the doubled CO2 concentration of

720 lmol/mol. RSM was used to identify levels of the six CERES-Wheat input vari-

ables that maximized grain yield at the three sites under high CO2 conditions. A sec-

ond-order design and model were then used to estimate the response surface near the

maximum and finally, canonical analysis was used to characterize the nature of the

surface around the maximum.

2.1. Finding the area of the maximum: the method of steepest ascent

We used this method to sequentially find an area near the maximum yield using

the following steps. The method of steepest ascent allows us to find the values of

the six input variables (P1D, P5, G1, G2, G3 and plant density) in the area near

the maximum yield.

Step I: Starting values and ranges of experimental factors. Initial starting points for
the six input variables were established by using the genetic coefficients for a winter

wheat cultivar Karl-92 (Weiss et al., 2003; Xue, 2000) and using the plant population

density commonly used by farmers at each location (Table 3). The low and high val-

ues for the variables were chosen so that they were sufficiently different to ensure a

primarily linear response but not large to induce curvature effects.
Table 3

Initial values and ranges for CERES-Wheat input variables used in the steepest ascent procedure to

identify an area near maximum yield

Location P1D P5 G1 G2 G3 Plants/m2

Alliance 2.9 1.5 4.0 2.1 2.0 160

Dickens 2.9 1.5 4.0 2.1 2.0 200

Lincoln 2.9 1.5 4.0 2.1 2.0 260

Range ±0.2 ±0.2 ±0.2 ±0.2 ±0.2 ±10

P1D = photoperiod sensitivity; P5=grain filling duration, G1 = kernel number per spike parameter;

G2 = kernel filling rate; G3 = kernel weight parameter (Tsuji et al., 1994).
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Step II: First order experiments. In the two input illustration depicted in Fig. 1, the

first order experiments around points a and c were 22 full factorials (i.e., four points

around point a and c). Six input variables were considered in this study and use of a

full factorial design with two levels for each input factor would require an excessive

number of simulations since it would be necessary to run 26 = 64 design points with
100 years of simulations for each design point (i.e., 6400 simulations). Since the path

of steepest ascent is computed from a planar-type of surface obtained by fitting a

first-order main effects model excluding interactions, it is only necessary to use a por-

tion of the 26 design points. In our study, a Plackett–Burman design (PBD) was used

because it allows one to evaluate up to n � 1 factors in n design points when n is

divisible by four (Lin and Draper, 1992). The first six columns from a PBD with

n = 12 were considered to identify the 12 design points for each first-order experi-

ment conducted when using the steepest ascent procedure (Table 4).
Step III: First-order model and the path of steepest ascent. For a given first-order

experiment, mean yields over 100 years of simulations were obtained for each of the

design points. For example, in Fig. 1 mean yields would be obtained for each of the

four design points around point a for the initial experiment or point c for the second

first order experiment. Using the mean yields as the values of the dependent variable,

the following first-order model was fitted

ŷ ¼ b0 þ
X

biX i; i ¼ 1; 2; . . . 6;

where the slope coefficients (bi) were estimated using least-squares and the Xi were in

coded form with Xi = + 1 for the high level of the factor and Xi = �1 for the low le-

vel. To identify the path of steepest ascent, the largest |bi| was identified and the ratio
bj/max|bi|, i 6¼ j = 1, . . ., 6 was obtained for each variable. Step sizes of DXi = 0.4 were

used and values of Xj = ratio Æ DXi + starting value, for each variable were identified

as points on the path of steepest ascent. These points were translated to the original
Table 4

Design points for initial first-order experiment at Alliance, NE for CERES-Wheat input variables used in

the steepest ascent procedure to identify an area near maximum yield

Design point P1D P5 G1 G2 G3 Plants/m2

1 3.1 1.3 4.2 1.9 1.8 150

2 3.1 1.7 3.8 2.3 1.8 150

3 2.7 1.7 4.2 1.9 2.2 150

4 3.1 1.3 4.2 2.3 1.8 170

5 3.1 1.7 3.8 2.3 2.2 150

6 3.1 1.7 4.2 1.9 2.2 170

7 2.7 1.7 4.2 2.3 1.8 170

8 2.7 1.3 4.2 2.3 2.2 150

9 2.7 1.3 3.8 2.3 2.2 170

10 3.1 1.3 3.8 1.9 2.2 170

11 2.7 1.7 3.8 1.9 1.8 170

12 2.7 1.3 3.8 1.9 1.8 150

P1D = photoperiod sensitivity; P5 = grain filling duration, G1 = kernel number per spike parameter;

G2 = kernel filling rate; G3 = kernel weightparameter (Tsuji et al., 1994).
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scales for the six CERES-Wheat input variables and the CERES-Wheat was run for

each of the points on the path. Simulations were run for points along the path until

either the mean of the simulated yield was substantially less than the predictions

from the first-order model or until the mean yield decreased substantially. We also

stopped making runs on the path if at least one of the genetic values exceeded the
range predefined in Table 2. In either case, we stopped, returned to step II, another

PBD was set up at that point and continued. If any genetic input was out of range,

the value for that input was fixed as predefined and additional first-order experi-

ments were conducted varying the remaining inputs.

Step IV: Terminating steepest ascent. The steps II to III were repeated until either

(1) all the least-squares slope coefficients (bi) were small or (2) only a small increase in

yield was obtained by additional runs on the path, or (3) the harvest index achieved a

value of 0.5, the highest achievable value (Slafer et al., 1999).

2.2. Simulation experiments near the area of the maximum: Second order design and

model

Assuming the method of steepest ascent identifies the values of the CERES-Wheat

input variables near the maximum yield, an appropriate experimental design and

estimated response surface are then needed to precisely estimate the input values that

maximize yield. A central composite design (CCD) was used to identify the design
points for the final set of simulation runs (Myers and Montgomery, 1995). Using

the means of the simulated yields for the points from the CCD, the following second

order model was fitted

yij ¼ b0 þ
X

biX i þ
X

biiX 2
i þ

XX
bijX iX j; i; j ¼ 1; . . . ; k;

where bs are the linear (bi), quadratic (bii) and cross-product (bij) regression coeffi-

cients estimated using least-squares and k is the number of input variables in the final

experiment. In matrix notation, the model is written as

y ¼ b0 þ X 0bþ X 0BX ;

where X 0 = row vector of input values = [X1X2. . .Xk]; b
0 = [b1b2. . .bk] a row vector of

linear slope coefficients, B = a matrix of quadratic and cross-product regression coef-

ficients. These b coefficients were estimated using least-squares and the fit of the

model was evaluated using R2. The significance of each model term (linear, quadratic

and cross product) was tested using residual error variance.
2.3. Identifying input levels that maximized yield and evaluation of the surface

Values of the experimental variables that maximized yield were determined by dif-

ferentiating the second order model, equating the derivative to zero and solving for

X. More specifically, oy/oX = b + 2B X = 0 which implies that X0 = �1/2 Æ B�1 Æ b,
where X0 is the stationary point and the value of yield at the stationary point is

y0 ¼ b0 þ X 0
0bþ X 0

0BX 0, where B�1 is the inverse of B.
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To evaluate the surface in the area of the optimum, the second order model was

transformed to the canonical model,

y ¼ y0 þ
X

kiW 2
i ;

where the ki are eigenvalues of B and the Wi are the canonical variables (Myers and

Montgomery, 1995). The Wi are the variables for transformed axes that identify the

orientation of the second-order response surface. The canonical model is useful (1)

for determining if the stationary point is a maximum, minimum or saddle point
and (2) to evaluate the change in yield as one moves from the stationary point to

nearby points. The ki values identify the nature of the stationary point. If the ki
are all negative then any movement away from the stationary point will reduce y

and so X0 is a maximum. Similarly, if all the ki are positive, X0 is a minimum and

when the ki are mixed signs X0 is a saddle point.

The estimated surface was characterized on the basis of the following criteria:

Case I: If the stationary point determined by the model was inside the experimental

region and all ki were less than zero, the stationary point, X0 was the point of max-
imum yield response. Case II: If the stationary point was outside the range of the

second-order design points and some ki were less than zero and some were greater

than zero, the stationary point, X0 was a saddle point. The saddle point can be eval-

uated by values of �ki and +ki. When the response surface was a saddle, a ridge of

steepest ascent was estimated and further simulation runs on these ridges were con-

ducted until there was only a slight increase in yield and this final point was consid-

ered maximum.
3. Results and discussion

The Hadley (HADCM2) based scenario projected a mean annual monthly tem-

perature greater (3 �C) than the observed data over the calendar year. A similar

temperature increase was obtained under the HADCM2 scenario during the winter

wheat growing season (September–June). During the calendar year, the mean total

monthly precipitation increased under the HADCM2 based scenario with a 17%
(�5 mm), 21% (�12 mm), and 25% (�15 mm) for Alliance, Dickens, and Lincoln,

respectively. During the winter wheat growing season, the scenario projected 21%

(�6 mm), 26% (�14 mm), 26% (�14 mm) increases in monthly precipitation at

Alliance, Dickens, and Lincoln, respectively. Similarly, the mean annual monthly

solar radiation from the HADCM2 scenario projected decreases of 0.84, 0.98,

and 0.94 MJ m�2 d�1 for Alliance, Dickens, and Lincoln, over the calendar year.

During the growing season, decreases in solar radiation of 0.81, 0.96 and

0.89 MJ m�2 d�1 at Alliance, Dickens, and Havelock were observed under the
HADCM2 scenario.

Once the surface was obtained in the area of the optimum from the second order

model, further simulation runs on the ridge of steepest ascent were conducted to

check the sensitivity of the simulated yield. In all cases, only slight changes in yield

were observed around the optimum. It is also important to note that the optimum
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points identified in this study were within the ranges of the genetic coefficients for all

the winter wheat cultivars given in the DSSAT manual and had a harvest index of no

more than 0.5. To evaluate the validity of this approach (the path of steepest ascent),

an optimal cultivar was obtained based on the characteristics of Karl 92 for 100

years of simulated weather data for the normal CO2 conditions. These simulated
weather data, generated using LARS-WG, had the same statistical distributions as

the current weather data for Alliance, NE. The resulting simulated yield was

3447 kg/ha (data not shown here). The mean value of the observed yields for the four

highest yielding cultivars over the last five years at Alliance, NE was 2753 kg/ha, on a

dry weight basis. CERES-Wheat does not deal with abiotic (except for high temper-

atures and water stress) or biotic stresses nor does it deal with harvest losses. Thus

this difference, about 25% relative to the simulated value, is quite reasonable when

taking into account the assumptions found in CERES-Wheat and the realities of
the observed values.

The optimum values obtained for the genetic factors indicated that the optimal

cultivar for the future high CO2 conditions should have less photoperiod sensitivity

(P1D), long grain filling duration (P5) and a high kernel filling rate (G2) (Table 6).

These results agreed with Hall and Allen (1993) who found that cultivars for future

climatic conditions should extend the grain filling period, shorten the duration of

vegetative growth (which would also improve harvest index) and be adapted to pho-

toperiod. Our results also agreed with Lawlor and Mitchell (2000) and Rawson and
Richards (1992) who claimed that control of photoperiod and vernalization sensitiv-

ity would be necessary for future climatic conditions.

For each location, agronomic results are presented for three cases: Karl 92, un-

der normal CO2 conditions, Karl 92 under high CO2 conditions and the new cul-

tivars determined by RSM under high CO2 conditions (Table 5). The effect of

elevated CO2 on Karl 92 was not observed in this study, which may have been

due to the negative effect of warmer temperatures and changes in precipitation pat-

tern. Mitchell et al. (1995) and Wheeler et al. (1996) found that the increased tem-
perature reduced harvest index and grain yield proportionately. However, within

the optimum temperature range, the beneficial effects of CO2 enrichment may be

sufficient to counterbalance the negative effects of rising temperature if other fac-

tors are not limiting.

In all three cases, increasing trends of yield were observed from semi-arid (Alli-

ance, NE), transitional (Dickens, NE) to subhumid (Lincoln, NE) environments (Ta-

bles 5). Overall, the results indicated that the �optimal� cultivar under high CO2

conditions produced 1.65–2.5 times more yield than Karl 92 under normal CO2 con-
ditions (Fig. 2 for Alliance, other two locations are not shown). This study also re-

vealed that the optimal cultivar had 1.2–1.35 times more kernel weight and 1.35–1.9

times more kernels m�2 than Karl 92 under normal CO2 conditions (Fig. 2). In addi-

tion, the optimal plant density under high CO2 conditions was from 1% to 19% less

than the currently used plant densities. At all locations, the optimal cultivars under

high CO2 had shorter days to flower, grew faster, and had more grain m�2 than Karl

92 under normal CO2 conditions, and yield was improved under high CO2 condi-

tions by sowing three weeks later than normally practiced (Table 5).



Table 5

Wheat plant and required management for maximum yield at Lincoln, Dickens and Alliance, NE under high CO2 and current climatic conditions

(Karl92 = �Karl 92�; New = �optimal cultivar�; 360 = �normal CO2 conditions�; 720 = �high CO2 conditions�)

Variable Lincoln Dickens Alliance

Karl92-360 Karl92-720 New-720 Karl92-360 Karl92-720 New-720 Karl92- 360 Karl92-720 New-720

Seeding date 26 September 17 October 17 October 18 September 09 October 09 October 08 September 29 September 29 September

Plant population

(m�2)

260 260 238 200 200 198 160 160 132

Flowering date 26 May 18 May 19 May 1 June 21 May 18 May 05 June 23 May 13 May

Physiological

maturity

25 June 17 June 21 June 4 July 21 June 19 June 07 July 24 June 17 June

Grain yield (kg/ha) 3370 3370 5810 2870 3100 5110 1990 2610 5090

Weight/grain (mg) 30.4 30.1 37.2 30.1 29.3 37.78 28.3 28.9 38.1

Grains (m�2) 11,100 11,200 15,600 9500 10,600 13,500 7000 9000 13,300

Leaf area index

(m2/m2)

3.37 3.18 2.96 2.48 2.73 2.64 2.34 2.89 2.64

Biomass at

anthesis (kg/ha)

6660 6120 6560 5150 5290 5280 4920 5170 5320

Biomass at

harvest (kg/ha)

10,300 10,200 11,600 8300 9300 10,000 6900 8300 9900

Stalk at harvest

(kg/ha)

6900 6820 5770 5470 6230 4880 4890 5730 4780

Harvest index

(kg/kg)

0.33 0.33 0.5 0.34 0.33 0.5 0.28 0.31 0.50
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Fig. 2. Grain and biomass components, as proportion of Karl 92 under normal conditions at Alliance, NE

for four cases: Karl92; New = �optimal cultivar�; 360 = �normal CO2 conditions�; 720 = �high CO2

conditions�.

Table 6

Genetic coefficients for Karl 92 and new varieties for each location (New = �optimal cultivar�; 720 = �high
CO2 conditions�)

Factors Karl92 New_720

Alliance Dickens Lincoln

P1V 6 6 6 6

P1D 2.9 1 2.3 1.9

P5 1.5 2 1.6 4.7

G1 4 5.5 5.2 5.5

G2 2.1 4.8 3.5 6

G3 2 2 2 2

P1D = photoperiod sensitivity; P5 = grain filling duration, G1 = kernel number per spike parameter;

G2 = kernel filling rate; G3 = kernel weight parameter (Tsuji et al., 1994).

76 P. Dhungana et al. / Agricultural Systems 87 (2006) 63–79
The optimum values for the genetic factors of the best future cultivar make bio-

logical sense. The lower photoperiod response clearly will be needed since the pre-

dicted future warmer temperatures will delay sowing and make flowering earlier.

Wheat is generally planted after the Hessian fly (Mayetiola destructor Say) free date,

which is based upon the average, first fall freeze. With predicted warmer tempera-

tures, the freeze will occur later and the sowing should also be later. Cultivars with
a lower photoperiod requirement are needed to avoid warmer temperatures during

the current grain filling period. Cultivars with a greater (longer day) photoperiod re-

sponse would delay flowering until the warmer part of the growing season, which

would reduce potential grain yields. Historically, cultivars developed in Nebraska

are more photoperiod sensitive than cultivars developed in the southern Great

Plains. Presumably the photoperiod requirement was to avoid late spring freezes that

damage early flowering cultivars. With warmer temperatures, delayed flowering

would no longer be needed to avoid spring freezes. As expected, predicted earlier
flowering led to earlier maturity.
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In this study, we used Karl 92 for our model cultivar. Karl 92 is adapted to south-

eastern Nebraska (represented by Lincoln), less so to Dickens, and poorly adapted to

Alliance (as evidenced by the reduced grain yield at Dickens and Alliance when com-

pared to Lincoln). Hence it was not surprising to see the greatest grain yield differ-

ence between Karl 92 and the new cultivar at Alliance. One surprising result was the
predicted earlier physiological maturity at Alliance for the new cultivar at 720 lmol/

mol CO2 than at Dickens and Lincoln. Presumably this result was due to the drier

climate at Alliance than at the other two sites.

While these predictions are rough approximations, they do provide insights to fu-

ture wheat cultivars and cropping practices. For example, hard winter wheat is usu-

ally milled to produce bread flour. The protein requirements for such flour are 12%

(120 mg of protein per 1 g of flour). To increase grain yield by 65–150% while retain-

ing the protein content will require a greatly increased use of nitrogen fertilizers that
will have to be applied in an ecologically sound manner. Cultural practices that re-

duce water loss from the soil will be important in these new cropping systems. Sim-

ilarly, the increased straw production per hectare will require careful management.

Finally, the cropping system may need to change to reflect the greater time available

for a rotational crop. For example at Alliance, the new cultivar at 720 lmol/mol will

be planted 21 days later and harvested 20 days earlier than wheat is today. Hence up

to an extra 41 days would be added to the summer growing season, which may in-

crease the choices for rotational crops.
In this study, application of this methodology to winter wheat in the USA Great

Plains tended to support the conclusion that under high CO2 – high temperature con-

ditions, translocating more energy to produce more and heavier kernels and less en-

ergy to the vegetative parts of the plant could result in dramatically higher yields

without substantially changing crop management practices except planting dates.

This type of information can be only considered preliminary since it is strongly based

on the assumptions that the weather and plant simulation models produce good pre-

dictions. For example, CERES-Wheat responds to mean temperature, while crops
actually develop under sinusoidal day-night temperature of varying amplitude.

Regardless of this limitation, the approach can be a valuable tool in assessing how

climate changes may impact winter wheat production in the US Great Plains and

the type of germplasm that plant breeders will need to develop in the years to come.

Identifying appropriate agronomic technologies that may be needed for future cli-

matic conditions is difficult since (1) it is quite difficult to conduct field experiment to

approximate the long term selection process under future climatic conditions and (2)

experiments that approximate future climate conditions are by necessity quite small,
and can not be used to evaluate a large number of cultivars and/ or agronomic prac-

tices that would be needed in order to identify the optimal configuration of plant

traits and agronomic practices. Using response surface methodology in conjunction

with crop and weather simulation models may allow researchers to identify combi-

nations of plant traits and management practices that indicate needed changes in

managed field crop systems as a result of future climate scenarios. The approach

can be useful in understanding the complex relationships among crop genotypes, cli-

mate and management, for comparing various crop and weather models regarding
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the theoretical optima and can be a useful tool to agricultural scientists and policy

makers who are assessing how climate change may impact the agriculture and

society.
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