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Abstract

The data of sensory trials often contain a large number of zeroes, due to the limited scale used. It therefore is clear that the data
are not normal. Out of concern that this might lead to problems with the application of ANOVA, Guillet et al. [Guillet, M., Methot,
S., & Rodrigue, N. (2001). Application of Tobit models to handle zero-valued attribute intensities. Presented at the Pangborn con-
ference in Dijon] proposed to use the Tobit model for the analysis of sensory trials. They demonstrated with a data set for a work-
shop at the fourth Pangborn Sensory Science Symposium that this model generally detects more significant differences between
products than ANOVA does.
It should be noted, however, that randomization theory provides a justification to use ANOVA for designed experiments, even

for non-normal data. On the other hand, the Tobit model has strict model assumptions itself, and the usual proof of the consistency
of the maximum likelihood estimate in the Tobit model does not work for sensory trials.
Using the same data set as Guillet et al. [Guillet, M., Methot, S., & Rodrigue, N. (2001). Application of Tobit models to handle

zero-valued attribute intensities. Presented at the Pangborn conference in Dijon], we compare the two models with the help of per-
mutation tests. Our results indicate that ANOVA allows to test without violating the nominal level, while the Tobit model rejects the
null hypothesis too often.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Analysis of variance (ANOVA) is a powerful and
popular tool in statistical inference for the comparison
of products. Its popularity, among other reasons, is
due to the well-established fact that it is quite robust
to non-normality of the data (cf. Conover, Johnson, &
Johnson, 1981). In general, ANOVA tends to be less af-
fected by violations of the model assumptions than
other methods.
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In this article, we deal with the situation in which
trained assessors quantify the intensities of sensory vari-
ables on a variety of products by using a limited scale.
Such a scale generally starts with a value of zero, mean-
ing that there is no intensity, and ends with a chosen
maximum number for a very high intensity. If some
products contain a very low intensity for a given vari-
able, this will cause even trained assessors to notice no
intensity at all, resulting in a large amount of zeroes.
An example for such data was used for a workshop at
the Pangborn Sensory Science Symposion in Dijon in
2001. This data set, which we call the Pangborn data
set in what follows, contains the assessments of 23 dairy
products with strawberry flavor by 13 assessors, evaluat-
ing 24 sensory variables. The workshop, in which the
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data was presented, contrasted several approaches to
analyse these data. The large amount of zeroes makes
it clear that the assumption of normality will be violated
in this case. But one of the participants, Meyners (2001),
showed by using a permutation test that despite this vio-
lation, the usual F-test from ANOVA for equality of all
products appears to keep the nominal level a, since the
empirical distribution of the F-test statistics matches
the appropriate F-distribution.
On the other hand, there was a contribution by Guil-

let, Methot, and Rodrigue (2001), who stress a number
of problems of the data, namely non-normality and het-
eroscedasticity. Therefore, they conclude that ANOVA
is not suitable for these data and propose to use the
Tobit model instead. The Tobit model (cf. Tobin, 1958
or Amemiya, 1985) was developed in econometrics for
analysing data of household expenses, which have a high
amount of zero data for luxury goods. It combines
regression analysis with a probit approach to get rid of
the disadvantages arising from using one of these meth-
ods alone. Guillet et al. (2001) state that the Tobit model
is a generalization of ANOVA: if there is a small number
of zeroes in the data, the results of ANOVA and Tobit
will be nearly the same. But if there is a large number
of zeroes in the data, the estimated differences among
the products will increase in the Tobit analysis. Hence,
the Tobit model has a greater ability to detect differ-
ences. The question arises whether differences found
by Tobit are reliable.
This article is structured as follows. In Section 2 we

describe the Tobit model as presented by Tobin (1958)
and Amemiya (1985). After giving a short summary of
the historical background of the model, we outline the
model with its assumptions. The Tobit model is not
widely known, so we give a brief summary of how to de-
rive the likelihood function of the model which is neces-
sary to estimate the parameter vector. Hypothesis tests
can then be performed by either using a likelihood ratio
test or by using the asymptotic variance of the estimates.
This asymptotic variance is derived by Amemiya (1985) if
a number of assumptions are fulfilled. In Section 3we give
a short description of the Pangborn data set. We describe
the experimental setting of the data and discuss whether
all assumptions of our two models are true for this
setting. In Section 4 we show the results of our analysis.
Finally, we give a summary of our findings in Section 5.
2. The Tobit model

2.1. Background

The Tobit model was created by Tobin (1958) as a
solution for problems with certain econometric data.
This data contained the results of a survey comparing
household incomes and expenses for a number of goods.
For luxury goods, it is observed that households with a
low income will spend no money on them at all. There-
fore, trying to model the relationship between income
and expenses for luxury goods by using one linear
regression for both low and high incomes leads to a very
poor fit. Furthermore, the regression line becomes nega-
tive for households with a very low income, which
clearly makes no sense.
A possible alternative might be a probit analysis, sim-

plifying the data to a zero–one variable, simply measur-
ing whether the household has spent money for this
luxury good or not. The drawback of this method is
the loss of information, since it neglects the size of the
observations which are not zero.
A local regression with two lines, one at zero for low

incomes and one with an appropriate slope for high in-
comes, seems to be preferable. Therefore, Tobin�s pro-
posal is to combine both approaches. The next
subsection outlines his model in detail, using the nota-
tion of Amemiya (1985).

2.2. The model

For n observations, the Tobit model consists of latent
variables y�i and observed variables yi. Formally, the la-
tent variables y�i , i = 1,2, . . . ,n, fulfill a linear model

y�i ¼ x0ib þ ui; ð1Þ
while the observations yi, i = 1,2, . . . ,n are derived as

yi ¼
y�i ; if y�i > 0;

0; if y�i 6 0.

�
ð2Þ

Here, the ui are i.i.d. normally distributed random vari-
ables with expectation 0 and unknown variance r2,
b 2 Rk is the unknown vector of parameters that we
want to estimate and xi 2 Rk is a known vector of regres-
sion variables for the ith observation.
It is visible that this model is a hybrid model, consist-

ing of a regression in (1) and a threshold component in
(2), very similar to a probit model.
Consider the matrix X 2 Rn�k whose ith row is x0i. To

derive asymptotic properties of the maximum likelihood
estimate b̂, Amemiya (1985) made the following
assumptions:

(T1) The xi are uniformly bounded.
(T2) The limit limn!1n

�1X 0X exists and is positive
definite.

(T3) Assume h = (b 0,r2) 0 and let h0 ¼ ðb0
0; r

2
0Þ

0 be the
true value for h. The parameter space H is then
compact, does not contain the region with r2 6 0
but contains an open �-neighbourhood around h0.

We will discuss these assumptions in detail in Section 3.3
and discuss the asymptotic properties later in this sec-
tion. First we show a way how to calculate b̂.
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2.3. Fitting the model using maximum likelihood

estimation

Since the model (1) and (2) contains a probit compo-
nent, it seems sensible to use the maximum likelihood
estimates for b and r2. From Eqs. (1) and (2) the likeli-
hood function can be derived as follows. For given i we
have

P ðyi ¼ 0 j xi; b; r2Þ ¼ P ðy�i 6 0Þ ¼ P ðx0ib þ ui 6 0Þ

¼ P ðui 6 �x0ibÞ ¼ P
ui
r
6

�x0ib
r

� �
¼ U

�x0ib
r

� �
ð3Þ

and similarly for ai > 0

P ðyi 6 ai j xi; b; r2Þ ¼ P ðui 6 ai � x0ibÞ ¼ U
ai � x0ib

r

� �
.

ð4Þ
Combining (3) and (4) we get the distribution function
of yi

F ðyi j xi; b; r2Þ ¼

0; if yi < 0;

U
�x0ib

r

� �
; if yi ¼ 0;

U yi�x0ib
r

� �
; if yi > 0.

8>>><
>>>:

The distribution of yi therefore is a mixture between a
discrete and a continuous distribution. All y�i below 0
are aggregated at 0, leading to a jump of the distribution
function at 0. For all yi > 0 the distribution function is
continuous and we have the continuous density function

f ðyi j xi; b; r2Þ ¼
1

r
/

yi � x0ib
r

� �
;

while at yi = 0 we have the discrete density

f ð0; xi j b; r2Þ ¼ U
�x0ib
r2

� �
¼ 1� U

x0ib
r2

� �
.

Here U is the distribution function and / is the density of
the standard normal distribution. Given a sample of yi
for i = 1, . . . ,n, the likelihood can therefore be written as

Lðb; r2Þ ¼
Yn
i¼1

f ðyi j xi; b; rÞ

¼
Y
yi¼0

1� U
x0ib
r

� �� �

Y
yi>0

1

r
/

yi � x0ib
r

� �
. ð5Þ

We have used an iterative algorithm to find the maxi-
mum of (5), namely the Newton–Raphson-algorithm
with step-halving and Fisher scoring. The first and sec-
ond derivates of the logarithm of (5), which must be cal-
culated to use Newton–Raphson, can be found in
Amemiya (1985). There are some discussions on how
to find an optimal starting point for the algorithm.
Tobin (1958) himself used an estimator, which is based
on an approximation of Mill�s ratio. Amemiya (1973)
shows that this estimator is inconsistent and proposes
a consistent estimator based on quadratic regression.
Fair (1977) proposes to simply use b = 0 and r = 1 as
starting point.
Note that the ML-estimates in the Tobit model can

also be calculated using commercial software. For in-
stance, SAS can fit the Tobit model using PROC
LIFEREG.

2.4. Hypotheses tests

The question whether some independent variables
have an impact on the dependent variable, can be an-
swered by a likelihood ratio test. The test problem can
be formulated as

H 0 : bi1 ¼    ¼ biq ¼ 0 vs

H 1 : at least two of the bij are not equal;

given that q 6 k and the set of numbers {i1, . . . , iq} is a
subset of {1, . . . ,k}. Let Lfull be the maximum value of
the likelihood function from a full model including all
bi. Accordingly, let Lrest be the maximum value of the
likelihood function from the restricted model, in which
all bi mentioned in H0 are set to zero. Then the test sta-
tistic is

k ¼ �2 lnðLfull � LrestÞ
and the null hypothesis can be rejected at the level a if
k > v2q;1�a, where v2q;a is the a-quantile of a v2-distribu-
tion with q degrees of freedom.

2.5. Properties of the maximum likelihood estimator

The following theorem contains some properties of
the maximum likelihood estimator of the parameters
in (1) and (2).

Theorem 1. Assume model (1) and (2) holds. Let L be the

likelihood function given in (5). Furthermore, let ĥn be a

solution maximising lnL. If the Jacobian-matrix of lnL is

not singular and the assumptions given in Section 2.2 are

fulfilled, then the following properties of ĥn are true:

(1) ĥn is a strongly consistent estimator for the true h0.

(2) lnL has a unique maximum at ĥn.

(3) The asymptotic distribution of ĥn is normal, more

precisely

Lð
ffiffiffi
n

p
ðĥn � h0ÞÞ!wN 0; � 1

n
o
2 ln Lðh0Þ
ohoh0

� �1 !
.

The proof of property (1) and (2) can be found in
Amemiya (1973), property (3) was proved by Olsen
(1978). It follows that all starting points of an iterative
procedure like the Newton–Raphson-algorithm will lead
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to the same unique estimator. However, the results are
only true if the assumptions of the Tobit model in Sec-
tion 2.2 are fulfilled. In Section 3.3 we discuss whether
this is the case for the Pangborn data. Note that part
(3) of the theorem can be used to approximate the var-
iance of estimates ‘0ĥ.
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Fig. 1. Percentages of judgements equaling zero (dark shade) and
judgements being lower than 0.3 (dark + light shade) for all variables.
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Fig. 2. Plot of residuals against predicted values of the attribute
MILK2 for an ANOVA using assessor and product effects.
3. The Pangborn data set and its problems

3.1. The experimental setting

The Pangborn data set (provided by Danone in 2001)
was derived from an experimental setting as follows. A
total of 23 dairy products with strawberry flavor were
presented to a panel of 13 trained assessors. The order
of the products was randomized for each assessor. In
the data set, the products are labelled by a four-digit
codeword, consisting of letters and numbers. Each asses-
sor evaluated the intensity of the products for 24 sensory
attributes. This was performed by marking the experi-
enced intensity on an unstructured scale from 0 (no
intensity) to 9 (maximum intensity). The assessors per-
formed up to two replications on all products. To sim-
plify the analysis, we only considered the first replicate
for our analysis, meaning that we could work in the sim-
ple block model with assessors as blocks.
As is usual in sensory profiling, the meaning of the

attributes is not understandable for an outsider. Some
attributes have an intuitively appealing name, e.g.,
CREAMY, CITRUS or JAM. The names of some other
variables seem to be clear, but are split into sub-vari-
ables, e.g., MILK and MILK2, the difference between
these two is not clear. Finally, there are variable names
which have no intuitive appeal at all, e.g., GREEN and
VEFR. However, this is not a problem for the purpose
of our study. The assessors themselves were trained by
giving some physical reference for all attributes.

3.2. Problems with the assumptions of ANOVA

For regression analysis, many textbooks recommend
to analyse the residuals ‘‘to check whether the assump-
tions of regression analysis are met:

(i) the errors are independent,
(ii) the errors have zero mean,
(iii) the errors have a constant variance,
(iv) the errors follow a normal distribution’’,

see, e.g., Draper and Smith (1981, p. 141ff).
Due to the similarity between ANOVA and regres-

sion analysis, we might want to check the same four con-
ditions for the Pangborn data set. We immediately get
doubts about the normality of the data. As shown in
Fig. 1, a certain percentage of the data is zero. This per-
centage varies among variables and only two attributes
(FRUI.INT and MILK.INT) have nearly no zero data.
In other attributes, the percentage of zero data can reach
up to 40%. Taking account of the fact that the intensities
were marked on an unstructured scale, it is possible that
the markings for null values could get slightly out of
place. If we count all values below 0.3 as ‘‘no intensity
found’’, the percentages of zero values are even higher.
Hence, it is clear that the data and, therefore, the errors
are not normal.
To check the other three conditions, we might pro-

duce a plot like Fig. 2. The figure plots the residuals
against the predicted value for the variable MILK2 in
the simple block model with assessors as blocks. The
diagonal in Fig. 2 is formed by the observations at 0.
It can be seen that the residuals are clearly not indepen-
dent of the predicted value. In regression analysis, such
a residual plot would cause the statistician to not use
this model.
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A final point stressed by Guillet et al. (2001) is the
heteroscedasticity of the data. Using Hartley�s test for
homogenity of variance, Guillet et al. (2001) show that
the test rejects the homogenity for nine attributes. Espe-
cially for attributes with a high amount of zeroes, the
values of the test statistic can be enormous (the highest
value of the test statistic is 2209 for variable CHERRY2,
whereas the critical value of the test for a test level of
a = 0.05 is 4.8).
Note, however, that the data come from a designed

experiment, in which the order of presentation of the
products to the assessors was randomized. It then can
be shown under a randomization theory viewpoint that
the first three points required for regression analysis are
not a problem. If we use a model that fits to the random-
ization used, this guarantees that the usual estimates of
product differences from ANOVA are unbiased, no mat-
ter whether the data are normal or not. Furthermore,
the estimate of the variance of such an estimate is also
unbiased, see e.g., Bailey (1981) for details. This does
not guarantee, however, that the test statistics derived
from ANOVA have the v2-distribution or t-distribution
that they should have under normality. There is some
robustness to nonnormality, though, due to the central
limit theorem. The estimates derived by ANOVA gener-
ally are the means over a number of observations. It
therefore is no surprise that Kunert, Meyners, and Erd-
brügge (2002) could show for sensory data that in most
situations with non-normal data the distribution of the
test statistics is very near to the required distribution.
But they have also found instances, when the non-nor-
mality of the data gets too extreme. This may happen
if a vast majority of the data are all the same number,
while there are only a few outliers.

3.3. Problems with the assumptions of the Tobit model

In the preceding paragraph we found that there might
be problems with the application of ANOVA on the
Pangborn data set. We now check whether the assump-
tions of the Tobit model outlined in Section 2.2 are real-
istic for these data.
The strongest assumption certainly lies in Eq. (1)

which assumes that the latent observations y�i should
be normally distributed with constant variance. At first
sight, already, this does not seem very realistic, if we
consider the high proportion of observations between
0 and 0.3 in Fig. 1. We therefore decided to take the
same approach as Guillet et al. (2001) and consider all
such observations as 0.
The proof of Theorem 1 further needs assumptions

(T1)–(T3). These assumptions could easily be satisfied
if we drew a sample from a given population. But in
the Pangborn data we have a given number of assessors
and of products, and each combination of assessors and
products appears exactly once. The only possibility to
let the sample size n go to infinity would be to add more
products or more assessors. In this case, however, the
number of parameters would increase as well. If n tends
to infinity, the dimension of X 0X therefore will also go to
infinity. This implies that the limit in (T2) does not exist.
In all, the assumptions (T1)–(T3) cannot be used for

our setting. But these standard assumptions for the To-
bit model are needed in Amemiya (1985) to prove the
asymptotic properties of the maximum likelihood esti-
mator outlined in Section 2.5. Hence, we have no proof
that the maximum likelihood estimator is consistent,
unique and asymptotically normally distributed.
Actually, things are even worse than that. It is well-

known, see e.g., Section 10.5.3 in Amemiya (1985), that
even if the conditions (T1)–(T3) are fulfilled, the asymp-
totic distribution of the estimate works only if the
assumptions of the Tobit model, namely the normality
of the latent variable y* in (1), holds. Therefore, the
Tobit model depends more on the normality of the data
than ANOVA does!
The last two subsections showed that both methods,

ANOVA and the Tobit model, may have problems
due to the specific data structure of sensory data. It
therefore is not clear that the model assumptions which
ensure reliable results are satisfied. Nevertheless, it is
possible that the violation of the model assumptions
does not impact the reliability of the results, as outlined
by Conover et al. (1981) or Meyners (2001) for
ANOVA. A possibility to determine the reliability is
the application of permutation tests.
4. Simulation study

4.1. The permutation strategy

To see whether significant differences between prod-
ucts derived with a statistical test are reliable or not,
we might check how often this test falsely declares differ-
ences, if in reality there are none. One method to esti-
mate this false discovery rate for real situations would
be to apply the test on a large number of uniformity tri-
als, that is on data derived from experiments where all
products were in fact identical. There are two problems
connected with this approach. Firstly, at least in the case
of a sensory experiment, a uniformity trial would not
produce realistic data. The assessors would realize that
all products are the same and, therefore, they would be-
have differently. A way out of this problem is to mimic
uniformity data by taking the response from an experi-
ment with non-identical products and to permute the
data for each assessor. For this permuted data, any dif-
ferences between the products are due to chance. If we
calculate the test statistic for the permuted data set,
any significant result therefore is an observation of a
false discovery.
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A second problem with uniformity data is that, even
in cases where uniformity trials are possible, we can
never produce a large number of uniformity trials—this
would be too costly. However, by permuting the same
data set repeatedly, we can produce a large number of
uniformity data sets. The empirical distribution function
of the test statistics derived from this large number of
permuted data sets is an estimate of the true distribution
function of the statistics under the null hypothesis.
Here, we use this permutation strategy and the Pang-

born data set to check whether the theoretical distribu-
tions of the test statistics for ANOVA and for the
Tobit model match the empirical distributions derived
from the permuted data. If the distributions are the
same, we can conclude that the test statistic is well suited
for analysing the data. Otherwise, counting the number
of permuted data sets resulting in a significant test statis-
tic enables us to compute an empirical test level for a
given test. From this empirical test level we can conclude
whether this test is conservative or not.

4.2. Simulation

All simulations were performed using the software
packages S-PLUS 2000 and R (2004). To avoid prob-
lems with random or fixed subjects, we decided to use
only the first replicate from each assessor, resulting in
299 judgements of 13 assessors for 23 products. The
data set was randomized according to the experimental
setting, meaning that all scores given by one assessor
in one variable were permuted between the products.
The scores of different assessors and for different vari-
ables were not permuted. To get an impression how a
varying percentage of zeroes affects the empirical distri-
bution of the examined test statistics, the permutation
study was performed for all 24 variables in the data
set. For each attribute, 4000 permutations were per-
formed as described above.
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Fig. 3. Comparison of the empirical and theoretical distribution function
theoretical distribution of the F-test statistic is the F-distribution with 22 and
worst fit for variable CHERRY2.
For ANOVA, we then assumed the simple block
model with assessors as blocks. That is, we assumed that
the rating of a given attribute of the jth product by the
ith assessor could be written as

yij ¼ sj þ ai þ uij;

where the ui,j are i.i.d. errors, sj is the effect of product j
and ai is the effect of assessor i.
For the Tobit model, we first changed all observa-

tions less than 0.3–0, similar to the way the Tobit anal-
ysis was performed by Guillet et al. (2001). This was
done to improve the plausibility of Eq. (1), assuming
that maybe a marking in that narrow area was indeed
meant to be 0. We then specified Eq. (1) in the same
way as for ANOVA, i.e.,

y�ij ¼ sj þ ai þ uij.

For each of the permutations, we computed a number of
corresponding test statistics of interest. Taking all these
simulated statistics, empirical distribution functions of
the test statistics can be calculated. Each empirical func-
tion can be compared to the theoretical distribution
function that the corresponding test statistic should
have. Furthermore, an empirical test level can be ob-
tained by calculating the relative frequency of simulated
test statistics which are in the rejection area of this test,
for some given nominal level a.

4.3. Results

4.3.1. Tests for equality of all products

In the case that we want to test whether all products
have the same intensity for one of the attributes, we use
a standard F-test for ANOVA and the likelihood ratio
test as outlined in Section 2.4 for the Tobit model.
The closed lines in Figs. 3 and 4 show the empirical

distribution function of the test statistics that we ob-
tained from the permuted data sets. We also included
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for the test for equality of all products when using ANOVA. The
264 degrees of freedom. Left: best fit for variable STRAWBE1. Right:
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Fig. 4. Comparison of the empirical and theoretical distribution function for the test for equality of all products when using the Tobit model. The
theoretical distribution of the v2-test statistic is the v2-distribution with 22 degrees of freedom. Left: best fit for variable STRAWBE1. Right: worst fit
for variable CHERRY1.
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a dotted line with the distribution function that we
would expect in theory. These theoretical distributions
are the F-distribution with 22 and 264 degrees of free-
dom in the case of ANOVA and the v2-distribution with
22 degrees of freedom in the case of the Tobit model.
The figures display the best and worst fit that can be
found among all 24 variables.
Fig. 3 gives an impression of the robustness of

ANOVA. The best fit, measured by the average horizon-
tal distance between the two curves, can be found for the
variable STRAWBE1. As shown on the left hand side of
Fig. 3, the theoretical and empirical distribution func-
tion agree very well, so that there is no visible difference
between the curves. For most of the other variables, the
comparison of the two distribution functions results in a
very similar picture. Some slight differences are visible
only for the variables CHERRY1 and CHERRY2.
The worst fit can be seen in the variable CHERRY2,
which is the variable with the highest percentage of zero
data in the data set (cf. Fig. 1). Note, however, that
when performing an F-test, we are only interested in
the quantiles of 0.9 or higher (based on your level a).
In this region, the match between the curves seems to
be very well. The main differences occur for quantiles
below 0.25 or between 0.7 and 0.9. It seems that the
F-test might be a good choice, although some conditions
of ANOVA are not fulfilled.
The same analysis for the Tobit model shows a com-

pletely different situation. As shown in Fig. 4, the empir-
ical distribution is clearly shifted to the right. This gap is
visible even in the best case which is the variable
STRAWBE1 and grows with increasing percentage of
zeroes, until the worst case which is the attribute
CHERRY1. It implies that the critical value of the v2-
test is reached too often and is an obvious indication
for an anti-conservative test.
In order to strengthen these results, we counted the

number of test statistics exceeding the respective critical
value, using the theoretical levels a = 0.01, a = 0.05 and
a = 0.1. Since this number is binomially distributed with
parameters n = 4000 and p, where p is the true test level,
we can estimate the true test level and derive a 95% con-
fidence interval for it. The results are displayed in Fig. 5.
They confirm the results obtained by the comparison of
theoretical and empirical distribution function in Figs. 3
and 4. When applying ANOVA, the theoretical test
level lies in the 95% confidence interval for the true
level, for all variables except CHERRY2. For the Tobit
model, however, the empirical levels are twice to six
times as large as the respective theoretical levels. There
is only one exception of this rule, namely the variable
CHERRY2 for a theoretical test level of a = 0.01. In
this case only, the Tobit model performs better than
ANOVA. As the results for a = 0.1 look very similar
to the results for a = 0.05, we did not plot them. So in
general, the Tobit model is anti-conservative for our
data, while the ANOVA F-test still produces reliable
results. Especially for variables with a high amount of
zeroes (as CHERRY1, CITRUS, ESTERY and RED.-
FRUI, cf. Fig. 1), for which Guillet et al. (2001) point
out the high power of the Tobit model, the empirical
levels of the likelihood ratio test in the Tobit model
are much too high. So the higher power of the Tobit
model has a simple explanation: the associated test is
highly anti-conservative.

4.3.2. Tests for equality of two products

Another question of interest is to test whether two
products can be distinguished from each other. Without
loss of generality, we decided to compare the products
EPP2 and UCAI.
For ANOVA, we then could use the standard t-test.

For the Tobit-model, we used a test statistic, where the
numerator is the estimate of the difference si � sj and
the denominator is the square root of the approximate
variance of this estimate, derived from Theorem 1.
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Fig. 5. Empirical levels for the F-test (ANOVA) and the v2-test (Tobit model) for equality of all products with 95%-confidence intervals. Left:
a = 0.01. Right: a = 0.05.
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Assuming validity of Theorem 1, this statistic is approx-
imately standard normally distributed.
Our judgement then will be based on the same criteria

as chosen in Section 4.3.1.
The results for the t-test in ANOVA are very similar

to the results for the F-test. For most of the variables,
the comparison graphs look like the one for the variable
LACTONE (see Fig. 6), with only slight differences be-
tween the theoretical and the empirical distribution
function. Most of the differences of the worst fit (for var-
iable CHERRY2) are visible in the area of quantiles be-
tween 0.3 and 0.7 which is not of large interest for the
levels usually considered. There are only slight differ-
ences in the tails. So we can expect ANOVA again to be-
have well for this test.
Interestingly, the empirical and theoretical distribu-

tion function for the Tobit model seem to fit better for
the paired comparison than for the v2-test in Section
4.3.1. However, a closer look at the ACETALD attri-
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Fig. 6. Comparison of the empirical and theoretical distribution function
theoretical distribution of the t-test statistic is the t-distribution with 264 deg
for variable CHERRY2.
bute in the left hand side of Fig. 7 reveals that the empir-
ical distribution function is larger than the theoretical
distribution function for small values and smaller than
the theoretical distribution function for large values of
the test statistic. This structure can be seen for nearly
all attributes—and it means that the test becomes
slightly anti-conservative.
Surprisingly, the variables with a large number of zer-

oes, like e.g., the variable CHERRY1 in the right hand
side of Fig. 7, have an entirely different structure. Here,
we observe a large number of test statistics equal to zero.
Closer inspection shows that this does not happen if
both products have exactly the same observations, but
if one of the products has only responses equal to zero.
This phenomenon can already be seen when we ana-

lyse the original un-permuted observations of CHER-
RY1. We find that each assessor observed less than 0.3
for the product IPIC. For the product IFMU all asses-
sors but one gave less than 0.3, while assessor 13 gave
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Fig. 7. Comparison of the empirical and theoretical distribution function for the test for equality of two products when using the Tobit model. The
theoretical distribution of the test statistic is the normal distribution. Left: best fit for variable ACETALD. Right: worst fit for variable CHERRY1.
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a 0.36 (which is just slightly above our limit 0.3). Now
compare both of these two products to product AFSE
which has some non-zero observations. For the compar-
ison of IPIC and AFSE the difference of the si gets
estimated as �25.3 with a standard error of 25,500,
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resulting in a test statistic of 0.00. Comparing IFMU
to AFSE, we get an estimate of �5.5 with a standard
error of 2.5 resulting in a test statistic of �2.2, which
is significant at the 5% level. Therefore, changing one
single observation slightly (from a value just below 0.3
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to a value just above 0.3) leads to an entirely different
test decision. This indicates a non-robustness of the
Tobit-model that definitely is a problem.
To examine whether the tests for equality of two

products keep the nominal level, we once more looked
at the empirical levels with their corresponding confi-
dence limits.
As visible in Fig. 8, the situation can be compared to

the test for equality of all products. Except for very
few cases, the 95% confidence intervals for the ANOVA
t-tests contain the theoretical levels a = 0.01 and
a = 0.05, respectively. Only in two cases (variable
STRAWBE2 for a = 0.01 and CHEESE1 for a = 0.05)
it might be doubted that ANOVA keeps the level. For
the Tobit model, however, the majority of the confi-
dence intervals are clearly above their respective theoret-
ical levels. So again, the t-test for the Tobit model will
lead to an anti-conservative test. For some variables
with a large proportion of zeroes (CHERRY1, CITRUS
and RED.FRUI), however, the test keeps the level. This
is due to the phenomenon described above.
For the variable CHERRY2 with a high amount of

zero values, we observed in many cases that the informa-
tion matrix in Theorem 1 was not invertible. Therefore
the test statistic could not be calculated, so that we omit-
ted this variable from our considerations.
The results for a = 0.1 are very similar to the results

for a = 0.05 and are therefore omitted.
5. Conclusions

In this article, we discuss the analysis of data from
sensory profiling if there is a large number of zeroes.
At the Pangborn conference in Dijon in 2001, two meth-
ods where proposed to test for differences between prod-
ucts for this kind of data: the well-known ANOVA
model and the Tobit model which has its origin in the
field of econometrics. It is possible to show for both
models that their underlying assumptions are not ful-
filled in the current experimental setting. For ANOVA,
the normality of the data and the residuals can be ques-
tioned because of the high amount of zero data. In the
Tobit model, the block structure of the Pangborn data
set implies that the usual proof for the asymptotic effi-
ciency of the estimate does not work. We performed a
permutation study for the tests of equality of all prod-
ucts and for the tests of equality of two products. The
comparison of the theoretical and empirical distribution
functions and the calculation of empirical test levels
both lead to the following conclusions. For ANOVA
the two distribution functions agree quite well for both
types of tests. There are only some slight deviations,
especially for the variable CHERRY2. The Tobit model,
however, shows a clearly visible distance between the
empirical and theoretical distribution function for the
test of equality of all products. If, however, we compare
two products, then only a slight deviation can be seen.
This is mainly due to the fact that in situations where
one of the two products to be compared produces only
observations that are zero, the test statistic becomes zero
in the Tobit model.
The calculation of empirical levels strengthens these

results: in general ANOVA gives tests that keep the
nominal level, while the Tobit model is anti-conserva-
tive. The tests for the ANOVA model can therefore be
assumed to be reliable, even though the underlying
assumptions are not fulfilled. The tests for the Tobit
model, however, are anti-conservative, especially when
testing for equality of all products. This can be con-
cluded from the fact that for the majority of all tests per-
formed, the empirical level is significantly larger than the
underlying theoretical level.
So we conclude that ANOVA is usable for sensory

experiments, even if there is a high proportion of zeroes
in the data. In contrast, the Tobit model appears too
often to find differences between identical products.
Therefore, we think that use of the more complicated
Tobit model seems not be sensible for sensory trials, at
least in its standard form. Maybe a combination of
Tobit estimates with a permutation test could become
useful. This, however, is a topic for further research.
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