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Abstract
Predicting forest development under varying treatment schedules forms the basis of forest management planning. The actual growth predictions

are made with a forest simulator which includes growth equations and additional models for predicting a number of varying tree, forest and site

properties. Forest growth simulators typically include either tree-level or stand-level growth models, but these two approaches have not been

thoroughly compared. We set out here to compare these two approaches with the SIMO simulator framework in a small data set from southern

Finland based on 60 sample plots in 30 stands, the development of which was known for 20 years. The stands chosen were very dense, so that the

simulators could be tested under extreme conditions. The results show that the stand-level model is more accurate in almost all cases and its

computational burden is much lower. It could therefore be advisable to use tree-level models for short-term predictions, which would ensure

detailed information on forest structure for planning the near-future operations. Stand-level models would be more advisable in longer term

predictions, especially when accurate volume estimates are considered more important than the forest structure. The errors observed in these

simulators were analysed further by quantile regression, which allows empirical estimates of confidence intervals to be obtained for the simulator.

# 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Predictions of forest development based on the use of forest

growth models of different types form the foundations for

decision-making in forest management planning. Inaccurate or

erroneous predictions of the future state of a forest holding can

lead to unfavourable decisions, which can reduce the possible

benefits for the forest owner. In order to make good decisions,

one needs to have reliable, accurate information on the future

situation.

In practice forest growth models are used for: 1. updating

previously measured data sets in accordance with the present

state and 2. predicting future forest development, in order to

evaluate silvicultural treatments, management planning and

harvest scheduling (Burkhart, 1993). The actual growth

predictions are made with a forest simulator which includes

growth equations and additional models for predicting a

number of varying tree, forest and site properties.
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Various types of forest growth model have been proposed, and

they can basically be either empirical models, which means that

they are estimated statistically from a measured data set, or

mechanical process models, which are based on ecological

theories and describe the eco-physiological processes of

individual trees in detail. Growth models can also be categorized

by their level of organization, which is usually that of either a

single tree or a stand (Munro, 1974). Tree-level models predict

the growth of an individual tree, and stand-level model predict the

increment in an aggregate variable such as mean diameter or

basal area. Tree-level models can then be further categorized as

spatial (distance-dependent) or aspatial (distance-independent).

Distance-dependent models use spatial indices, i.e. information

about neighbouring trees and their locations, when predicting the

growth of a single tree, whereas distance-independent models do

not (Tomé and Burkhart, 1989; Vettenranta, 1999).

Other types of growth models include diameter distribution-

based models (e.g. Bailey et al., 1981) and transition matrix

models (e.g. Buongiorno and Mitchie, 1980; Kolström, 1993).

The tree-level growth models that have been used in Finland

are mostly empirical and distance-independent, as it has been

too expensive to acquire spatial information on the forest
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structure for practical forest management planning purposes.

The most up-to-date tree-level growth models in Finland, those

presented by Hynynen et al. (2002), are based on extensive data

representing all the main tree species and forest sites in the

country. The history of stand-level growth models in Finland

goes back to the yield tables introduced in the 19th century.

Models of this type have been presented by Vuokila and Väliaho

(1980) for pine (Pinus sylvestris L.) and spruce (Picea abies)

and by Oikarinen (1983) and Saramäki (1977) for birches

(Betula pendula, Betula pubescens). Other stand-level growth

models for Finnish conditions include the models presented by

Gustavsen (1977), Nyyssönen and Mielikäinen (1978) and

Mielikäinen (1985). The old stand-level models have typically

been estimated with a group of independent models, but in

newer applications, simultaneous equations based on 3SLS, for

instance, are used (e.g. Eerikäinen, 2002).

Tree-level growth models have replaced the stand-level

models already in 1980s in Finland in practical forest planning

The trend is towards single-tree level models also in other

countries (e.g. HEUREKA, T and SILVA simulators developed

in Sweden, Norway and Germany in recent years). Generally

the concept of a tree-level model is considered to be simpler

than that of a stand-level model, as an individual tree is easy to

comprehend as a functional object. Tree-level growth models

are capable of taking account of tree-level competition better

than stand-level models, and they are needed when operating in

uneven-aged or mixed-species forests (Garcia, 2001; Porté and

Bartelink, 2002).

As tree-level growth models operate with individual trees,

the stand has to be represented as a set of trees, and if the

individual trees have not been measured, a list of them can be

predicted from stand-level mean variables or laser scanning

data by means of a theoretical size distribution model (e.g.

Maltamo, 1997; Gobakken and Næsset, 2005). The number of

additional models that are needed to predict the set of trees and

all the independent variables for tree-level growth models is

quite substantial. Although tree-level models can capture inter-

tree processes in detail, the interactions between individual

trees in a stand can be so complicated that tree-level models

cannot necessarily take them all into account (Zeide, 1993).

The sample plot size affects the measures of competition in

tree-level growth models (Hynynen and Ojansuu, 2003) which

can result in unexpected behaviour of the models and lead to an

accumulation of errors, especially under extreme conditions,

e.g. in very old or dense forests.

Stand-level models are usually simple, the computational

cost is substantially lower than with tree-level models and they

can predict forest growth with sufficient detail for many

applications (Vanclay, 1995; Atta-Boateng and Moser, 2000).

As the forests in the stand-level approach are presented by a

number of aggregate mean variables, the heterogeneity inside

stands cannot be assessed. One way to assess the stand’s inner

structure is to utilize diameter distribution models for

predicting some of the stand variables. An argument in favour

of stand-level models is that they are generally seen as being

more stable, especially under extreme conditions. Even though

it has been shown that tree-level growth models produce very
good projections of forest development, stand-level models

could provide a good complement for them under certain

conditions (Garcia, 2001). It has also been noted that tree-level

models may not be as accurate as stand-level models (Burkhart,

2003).

According to Vanclay and Skovsgaard (1997), the evaluation

of a growth model should include at least evaluations of its

logical and biological foundation, evaluation of its statistical

properties, error characteristics and residuals, together with a

sensitivity analysis. Gustavsen (1988, p. 151), in his

comparison of stand-level growth models with the previous

version of the MELA simulator based on tree-level models,

found that the stand-level models were in general more accurate

(RMSE% of volume 31.8 vs. 39 for tree-level models), but that

the tree-level model was more accurate in some sub-regions.

Shortt and Burkhart (1996) reported that merchantable volume

projections with tree-level models were more accurate at short

projection periods (3–6 years), but the stand-level model

projections were more accurate at longer periods (9 years).

There has been no extensive comparison of the performance of

the finnish tree-level and stand-level growth models to date,

however.

The aims of this study were (I) to examine the differences

between predictions made with tree-level and stand-level

growth models for a 20-year time period in dense sample plots,

and (II) to test the use of quantile regression analysis for

examining growth model prediction errors.

2. Materials and methods

2.1. Simulations

The simulations for study were produced using both tree-

level and stand-level growth models for a time period of 20

years with reference data from sample plots. The simulators

used were the SIMO simulation framework (Tokola et al.,

2006) and the MOTTI stand simulator (Hynynen et al., 2002).

SIMO (SIMulation and Optimization for next-generation forest

planning), which was used as the test bench for the growth

predictions obtained with both tree-level and stand-level

growth models, is a flexible, adaptable and extendable

simulation framework that has been developed at the University

of Helsinki (Tokola et al., 2006; Rasinmäki et al., 2007). The

term simulation framework is used here rather than simulator as

SIMO works as a platform for implementing different forest

simulators.

The framework consists of programmatic components

which form the application itself, an XML (eXtensible Markup

Language, McGrath, 2003)-based syntax that is used to define

the simulation logic and an extendable model base which

includes all the models and equations used in the simulations.

The main idea behind the framework is that different types of

simulator can be implemented on the same platform without the

need for tedious programming. The simulation logic can be

defined without any programming, and the extendable model

base makes it very easy to re-use existing models. So far the

SIMO model base includes approximately 400 empirical
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models describing forest properties and growth and yields at

both the individual tree and stand level. The model base also

includes a number of forest operation models, including

thinnings, final harvests and other operations.

Two different simulators had been implemented in the SIMO

framework and were used for the present purpose: a tree-level

simulator and a stand-level simulator. These shared certain

generic models, but the growth models were aspatial individual

tree models for the tree-level simulator and stand models for the

stand-level simulator. The forest management scenarios

including different forest operations were disabled for the

present purpose in the case of both simulators.

2.1.1. Tree-level simulator implementation

The growth and yield models that were used in the tree-level

simulator were mainly the same as in the MOTTI and MELA

simulators (Hynynen et al., 2002) and the simulator included

growth models for all Finland’s main tree species and forest

types. As a large portion of these forests grow on peatlands,

there are separate growth models for trees growing on mineral

soil and peatlands. This group included a total of 21 individual

growth models.

The dependent variables in these models were growth in

height and basal area, while the independent variables included

a substantial number describing the characteristics of a single

tree, the stand, the geographical area and the competition

factors, e.g. diameter and height of the tree, dominant diameter

of the stand, growth in dominant height, crown ratio, dominant

growth ratio, relative density factor, latitude of the stand, site

class and site index.

As the tree-level models operate on individual trees, the trees

have to be measured in the field or predicted with a distribution

model. The tree-level simulator can construct trees by using a

diameter or height distribution, but in this study the trees

measured in the field were used to construct tree lists for the

simulator. As the tree-level growth model predicts growth and

new values for the individual tree variables, new stand level

variables were aggregated from the tree list.

2.1.2. Stand-level simulator implementation

The growth models for pine and spruce used in the stand-

level simulator were those of Vuokila and Väliaho (1980) and

the growth models for birches those of Oikarinen (1983) and

Saramäki (1977). These stand-level models included a number

of individual regional models, as growth conditions vary across

Finland. The models predicted the growth in a number of

variables, including the basal area of the stand, basal area under

bark, volume or dominant height, depending on the model and

tree-species. The independent variables in these stand-level

models included basal area, basal area under bark, stand age,

site class, dominant height, length of growth period, stand

volume, number of trees, mean diameter at breast height,

temperature sum, etc. Other variables, some of which were used

in the analyses of this study, were predicted from the growth

models’ results. For example, the mean height was predicted

from dominant height values and mean diameter was predicted

from mean height, mean age, temperature sum and site class in
the predictions. In the beginning, mean height and diameter

were assumed to be known. Although the growth of the stand in

SIMO stand simulator was predicted with pure stand level

models, the number of stems was calculated with a model that

uses diameter distribution. However, the SIMO stand simulator

can be considered a pure stand-level simulator as the growth is

predicted at stand level. On average, a single stand-level model

has 2 or 3 independent variables. This is quite a small number,

and the variables have traditionally been fairly easy to measure

or estimate. The total number of individual growth models in

this group was 43.

2.1.3. MOTTI stand simulator

As a reference for the simulator implementations on the

SIMO platform, the growth of the sample plots was also

simulated with the MOTTI simulator (version 1.1), which is a

well-established and validated forest simulator for Finnish

conditions (Hynynen et al., 2005; Salminen et al., 2005).

MOTTI is a stand level decision support tool which can be used

to evaluate different forest management scenarios. Forest

growth is evaluated with distance-independent tree-level

models that predict the growth in tree diameter and height

for a 5-year period. The models used in the core of the MOTTI

simulator, described in detail by Hynynen et al. (2002), are

based on an extensive, representative data set from across

Finland, so that it is able to produce a reliable reference

simulation for the present purposes. The MOTTI simulator was

used mainly to validate the SIMO tree-level simulator

implementation, and the main emphasis in the analysis was

on comparing the tree-level and stand-level growth models

when implemented in the SIMO framework.

2.2. Reference data

The reference data included 60 sample plots from 30 stands

in central Finland measured in 2005. The stands were selected

so that all of them were relatively dense compared with a

normal commercially managed forest. Such a data set was

selected in order to analyse the models under extreme

conditions, where their accuracy has been questioned by users.

Thus, the results do not provide unbiased estimate of RMSE in

average Finnish forests, but they do give further insight to the

behaviour of the models with respect to initial basal area.

Another requisite for the selected stands was that there should

not have been any human impact such as thinnings or other

forestry operations during the past 20 years. Both spruce and

pine-dominated stands were well represented, as also were

mixed stands. Different age classes and site types were also well

represented in the data.

The sample plots were divided into two types: sample tree

plots and tally tree plots. All of the sample plots were circular,

with a radius depending on the density of the stand (stems/ha),

so that the maximum radius was 15.45 m and the minimum

4.89 m. Both the sample and tally tree plots had the same centre

point, but the radius of a sample tree plot was half of that of a

tally tree plot. The trees in the plots were labelled as sample

trees and tally trees, respectively.
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The total number of trees in the sample and tally plots was

2070, of which 490 were sample trees. The tally trees were

measured for dbh (diameter at breast height) and their species

was recorded. In the case of the sample trees the height, crown

height, thickness of bark and health of the tree were also

recorded. Every sample tree that was either pine or spruce was

also cored at breast height to determine its exact age and to

reconstruct its actual past growth. By analysing the annual rings

in the core, the development of the tree’s dbh during the past 20

years could be measured accurately. Plot level mean variables

were calculated for the sample trees (Table 1). Dead trees were

also measured and their time of death estimated, in order to

form a reliable description of the mortality, i.e. decrease in the

number of trees, in the dense stands.

The preprocessing of the reference data included predicting

the heights, diameters and ages of the tally trees for the present

time and for the past 20 years. This was done so that all of the

trees, both tally and sample trees, could be used as input data in

the tree-level simulations. For this purpose a multitude of mixed

linear models were constructed and applied to produce the

missing values. These models have been presented in more

detail by Välimäki (2006). After this pre-processing, the

reference data included 60 sample plots with 2070 trees for

which the diameter at breast height (dbh), height (h), age (a)

and thickness of the bark (tb) were measured or predicted for the

present time and for points in time 5, 10, 15 and 20 years ago.

Stand-level aggregate values were computed from these tree-

level variables for the same points in time.

2.3. Analysis of growth model performance

The performance of the tree-level and stand-level growth

models was assessed by examining the differences between the

simulated growth predictions and the reference data at different

points in time during the 20-year simulation period. The

analysis took place at sample plot level and the aggregate

variables that were used in the comparisons were basal area per

hectare (BA), number of trees per hectare (N), mean diameter at

breast height (DMEAN) and mean height (HMEAN). As the stand

level values in the reference data were considered correct, the

prediction error for the simulated variables was DY, where Y is

one of the variables of interest (Eq. (1)).

DY ¼ YREFERENCE � YSIMULATED: (1)

The prediction error DY was analysed statistically with basic

statistical measures including the mean and standard deviation

(S.D.). The prediction error DY was also modelled with quantile
Table 1

Mean values for plot-level variables aggregated from the sample trees in the

reference data

Mean Standard

deviation

Min Max

Basal area (m2/ha) 36.9 7.6 23.1 54.5

Mean diameter (cm) 21.0 4.2 13.1 30.2

Mean height (m) 18.9 4.2 10.3 26.6

Mean age (years) 63.0 17.0 31.0 90.0
regression analysis. Regression analysis is usually employed

for investigating possible relationships between variables, but

Koenker and Bassett (1978) introduced an extension, known as

quantile regression, which is a method for estimating the

conditional quantiles of the distribution of a dependent variable

in a linear regression model. Normal regression models can be

problematic in cases where the variance is heterogeneous, as

they may imply that there is no predictive relationship between

the dependent and independent variables. There may actually

be a close relationship in some parts of the distribution of the

dependent variable, however, but normal regression can only

provide models for the conditional mean function derived from

the total distribution of the dependent variable. With quantile

regression one can obtain models for the whole range of

conditional quantile functions (Koenker and Hallock, 2001).

The normal linear regression function is of the form

Y = b0 + b1X1 + b2X2 + � � � + bpXp + e, where the dependent

variable Y is estimated with a constant value b0, p independent

variables and a random parameter e. The linear quantile

regression method estimates a number of linear functions,

where the t refers to the parameters of the t quantile and

t 2 [0,1] (Eq. (2)). Thus t = 0.95, Qy(0.95jX) would denote the

95th percentile of the distribution of y conditional upon the

values of X (Cade and Noon, 2003).

QyðtjXÞ ¼ b0ðtÞx0 þ b1ðtÞc1 þ b2ðtÞc2 þ � � �b pðtÞx p: (2)

We used quantile regression here to examine the prediction

error DY of the variables BA, DMEAN, HMEAN and N as a

function of the field measurements of Y and as a function of the

length of the simulation. Quantile regression was employed

instead of normal regression analysis in order to find out the

possible relationships that cannot be determined with normal

regression analysis. In this case, as the dependent variable was

the prediction error, the quantiles could be used to model the

confidence limits for the model: i.e. 90% of the observed errors

lie between the 95th and 5th quantiles and 50% between the

75th and 25th percentiles. This gives more insight into the error

distribution and behaviour than does the RMSE of the errors.

The aforementioned variables were chosen for the analysis

because reference field measurements were available for them

and because they have highly significant roles in both the tree-

level and stand-level simulators. We used polynomial functions

in which the model takes the form Y = b0 + b1X + b2X2 +

b3X3 + � � � + bpXp. All the models were fitted as second-order

polynomial functions. The analysis was carried out with R

software (http://www.r-project.org).

3. Results

3.1. Prediction errors

The mean prediction error DY for all the variables of interest

showed notable variation when studied against the length of the

simulation period. There was also a considerable difference in

the mean prediction error between the SIMO tree-level

simulator (SIMO tree), SIMO stand-level simulator (SIMO

http://www.r-project.org/


Table 2

Relative mean prediction errors (mean) and standard deviations (S.D.) for simulations with tree-level (tree) and stand-level (stand) growth models implemented on the

SIMO platform and with the MOTTI simulator

Simulation

length (years)

HMEAN (%) DMEAN (%) BA (%) N (%)

Motti Simo

tree

Simo

stand

Motti Simo

tree

Simo

stand

Motti Simo

tree

Simo

stand

Motti Simo

tree

Simo

stand

5

Mean �3.2 �4.5 �4.0 0.1 �2.3 �0.2 �4.8 �4.6 0.4 �9.0 �6.1 �3.0

S.D. 5.9 6.0 8.9 4.6 4.4 3.4 14.1 11.1 19.4 11.8 7.5 7.1

10

Mean �5.3 �6.2 �4.9 �0.8 �2.3 �0.3 �9.5 �6.3 �3.8 �12.6 �9.6 �3.9

S.D. 8.5 8.6 11.2 5.3 5.2 4.4 15.5 14.0 13.3 13.6 10.4 9.6

15

Mean �6.1 �6.7 �5.2 �0.1 �1.6 0.0 �8.7 �4.3 �3.4 �12.2 �8.7 �0.3

S.D. 10.1 10.3 12.9 6.5 5.4 4.9 17.4 16.4 12.0 15.9 13.7 12.8

20

Mean �6.4 �6.6 �5.2 1.2 �0.6 0.3 �5.3 �0.3 �0.2 �10.3 �6.1 �6.3

S.D. 11.4 11.6 14.3 9.6 5.5 5.2 19.4 17.9 12.8 16.7 14.3 17.8

Fig. 1. Relative mean error in predicting the number of trees per hectare (N)

plotted against the length of the simulation period with the SIMO tree, SIMO

stand and MOTTI simulators.
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stand) and MOTTI simulator (MOTTI). Despite the differences,

comparable trends could be seen in the results of all three

simulators. They all systematically underestimated the values

of most of the variables examined, this effect being more

pronounced with the tree-level simulator than with the stand-

level simulator. The absolute value of the relative mean

prediction error of all variables increased when the length of the

simulation period was extended from 5 to 15 years, but the

underestimation in the mean prediction error generally

decreased, or in some cases changed to an overestimation,

when the simulation period was 20 years. The overall

underestimation trend can be seen in Table 2, which shows

the prediction errors for all the variables of interest.

The standard deviation of the estimation error also had

definite trends that were clearly present in the results of both

the tree-level and stand-level simulators, becoming system-

atically larger as the length of the simulation period

increased. The standard deviation of the prediction error

was greater with the tree-level simulator than with the stand-

level simulator in respect to BA and DMEAN, and larger with

the stand-level predictions for HMEAN and N. The standard

deviations of the prediction errors can also be seen in

Table 2.

The prediction error for variable N was notably different

from the general trend of underestimation which is visible in

almost all of the results. As seen in Fig. 1, the predictions made

with the SIMO stand simulator behave in a quite different

manner from the MOTTI and SIMO tree-level predictions.

Whereas the latter invariably underestimated the variable N, the

stand-level simulator yielded underestimates for the first 15

years of simulation but overestimates thereafter. Also the

standard deviations of SIMO stand simulator’s estimates of N

were notably high. It should also be noted that the SIMO tree

and MOTTI tree simulations behaved slightly differently. Thus,

although the models are in principle similar, the results are not.

This is due to differences in the implementation of the

simulators.
3.2. Quantile regression of prediction error

The prediction error DY was modelled as a function of the field

measurements of the variable Y by the quantile regression

method, estimating the conditional quantile functions as second-

order polynomial functions of the field values or simulation

times. The behaviour of the prediction error as a function of the

field measurements varied greatly between the variables and

between the three simulators. The prediction error DDMEAN

showed quite different behaviour when estimated with the tree-

level and stand-level simulators. The relative mean prediction

error is very small for both simulators, as can be seen in Table 2,

but the error estimated by linear regression varies as a function of

the field measurements specifically in the case of the tree-level

simulator, implying a bias with respect to DMEAN (Fig. 2). The

normal fitted regression line for the prediction error with the

stand-level simulator does not change noticeably as a function of

the field measurements, implying non-biased predictions.



Fig. 2. Relative error in predicting the variable DMEAN as a function of field measurements of DMEAN for the SIMO tree (left) and SIMO stand (right) simulators. The

red dotted line is a polynomial function estimated with normal regression, the blue line is the function for the quantile Qy(0. 5jX) and the thin black lines are the

quantiles Qy(0. 05jX), Qy(0. 25jX), Qy(0. 75jX) and Qy(0. 95jX) (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of the article.).
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Another clearly visible difference concerns the conditional

quantile functions, which are quite different for the tree-level

and stand-level simulator prediction errors. The conditional

quantile functions for the DDMEAN predicted with the SIMO

tree simulator are all ascending and have relatively similar

slopes, which points to fairly equal variance in the distribution

of the prediction error. The SIMO stand simulator prediction

error, however, does not show much change in the mean, but

entails considerable changes in the slopes of the conditional

quantile functions, which suggests unequal variance in the

distribution of DDMEAN. The variance of DDMEAN clearly

decreases as the field measurements of DMEAN increases, which

indicates that stand-level growth models yield more precise

results in older stands or stands with a higher mean diameter.

Another variable with a prediction error that behaved

differently as a function of the field measurements was the

number of stems N. Both SIMO tree and stand simulators

underestimated N markedly when a larger number of stems

were measured in the field. SIMO stand simulator yielded

considerable overestimates when the field measurement of N

was small. This can be seen in Fig. 3, where the mean of the

prediction error steadily decreases and the slopes of all of the

conditional quantile functions are negative. The mean of the
Fig. 3. Relative error in predicting variable N as a function of field measurements of N

is a polynomial function estimated by normal regression, the blue line is the function

Qy(0. 25jX), Qy(0. 75jX) and Qy(0. 95jX) (For interpretation of the references to col
prediction error for N decreases strongly also in the SIMO stand

simulator results, but the slopes of the conditional quantile

functions vary from positive to negative, which indicates

greater variation in DN.

When the prediction error DY for all the variables was

modelled as a function of simulation length, all three simulators

showed comparable behaviour. The general trend was that the

variance in the prediction error DY increased as a function of

simulation length. It can be seen in Fig. 4 that the DDMEAN for

the SIMO tree simulator is an underestimate at the beginning of

the simulation but tends towards zero as the simulation length

increases. The prediction error associated with DMEAN in the

SIMO stand simulator results shows an even mean value but

increasing variance, which is visible in the slopes of the

quantile regression functions. One slight departure from the

general trend is that the tail of the distribution is longer in the

upper quantiles, or overestimates, of the DDMEAN obtained with

the SIMO stand simulator. This is clearly visible in Fig. 4,

where the interval between the upper quantiles is notably larger

than between the lower quantiles. Most of the other results show

the opposite behaviour, in which the distribution of DY is

skewed so that the lower quantiles, representing under-

estimates, have a longer tail.
with the SIMO tree (left) and SIMO stand (right) simulators. The red dotted line

for the quantile Qy(0. 5jX) and the thin black lines are the quantiles Qy(0. 05jX),

or in this figure legend, the reader is referred to the web version of the article.).



Fig. 4. Relative error in predicting the variable DMEAN as a function of simulation length with the SIMO tree (left) and SIMO stand (right) simulators. The red dotted

line is a polynomial function estimated by normal regression, the blue line is the function for the quantile Qy(0. 5jX) and the thin black lines are the quantiles Qy(0.

05jX), Qy(0. 25jX), Qy(0. 75jX) and Qy(0. 95jX) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the

article.).
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4. Discussion

Our aim here was to find possible differences between the

predictions made with tree-level and stand-level growth

models, especially when simulating the development of dense

and unmanaged forest stands. We also wanted to test the

quantile regression method for analysing prediction errors.

The errors in the prediction of all the variables of interest, i.e.

basal area, mean diameter, mean height and number of stems,

showed fairly similar behaviour, and with only a couple of

exceptions, all three simulators produced systematic under-

estimates for all the variables of interest. The mean prediction

error varied from �3.2 to �6.8% for HMEAN, from 1.2 to

�2.3% for DMEAN, from 0.4 to �9.5% for BA and from 6.3 to

�12.6% for N. Another marked trend was for the variance in DY

to increase as a function of simulation length. The predictions

made with the SIMO stand simulator were generally more

accurate and precise than with the SIMO tree or MOTTI

simulators for BA and DMEAN, but less accurate and precise for

HMEAN and N, which had a higher standard deviation in its

prediction error in the SIMO stand simulations. The most

striking difference between the three simulators was in the error

in predicting N, which was a definite underestimate in the

SIMO tree and MOTTI simulations, but an overestimate with

the SIMO stand simulator. The MOTTI and SIMO tree

simulators, which both use tree-level growth models, yielded

comparable predictions for all the variables of interest.

The mean error in predicting N showed somewhat different

behaviour from the other variables, especially in the SIMO

stand simulations, which yielded overestimates rather than

underestimates. The reason for this is that the stand-level

simulator does not include any explicit self-thinning model,

which would ‘‘kill’’ trees in the stand under certain competition

conditions. Tree deaths due to competition are only implicitly

present in stand-level simulator, more specifically through the

diameter distribution model used for predicting stem numbers

with given BA and DMEAN. With an underestimated DMEAN,

these models would yield a larger N for a given BA. The tree-

level simulator does have a self-thinning model, however,

which is driven by DMEAN and N, so that underestimation of
DMEAN should produce less self-thinning and thus also a larger

N. The situation is nevertheless complicated by the interactions

between all models. In tree-level models, over-estimated self-

thinning in the first period, based on true value of DMEAN, is

probably the main reason for constant underestimates for the

other studied variables.

Quantile regression proved to be a useful tool for analysing

the prediction errors in the simulations, providing more insight

into the nature of these errors, as the variance in the

distributions of DY was not equal but changed as a function

of X in most cases. It would have been difficult to take this into

account in a normal regression model, as instead of basic

regression models, it would have been necessary to employ

location scale models, which are regression models with

unequal variance (Cade and Noon, 2003).

The present data included stands which had been selected

because of their high densities or high basal areas, in order to

test how the growth models behave under extreme conditions.

Both the tree-level and stand-level growth models were

empirical and we presumed that they would show unexpected

behaviour when the data came close to the limits of the

application area of the models. All of the models in both tree-

and stand-level simulators are based on a representative data set

that covers the whole of Finland for all main tree species. The

modeling data probably did not have a lot of extremely dense

forests, which is apparent in the results when simulating the

development of such dense stands. The stand-level growth

models seemed to be slightly more robust in the face of extreme

data values than the tree-level growth models, for a number of

possible reasons. The simulators, especially the tree-level

simulator, are fairly complex systems with multiple data

aggregation levels and a large number of equations for

predicting growth and forest parameters. Even a single equation

or sub-model in the simulator which reacts unexpectedly to

extreme values of the variable can lead to an accumulation of

errors (Hynynen and Ojansuu, 2003). The stand-level simulator

is much simpler than the tree-level simulators, which may mean

that it can handle extreme values in a more robust manner.

The data set included tree-level data measured in the field,

which is not usually the case in practical forestry due to the high
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costs of field measurements. The presence of such input data

should be an advantage for the tree-level simulator, as it implies

accurate information about the stand structure and actual trees

rather than trees generated with a distribution model to form a

tree-list. In practise, however, the stand-level simulator still

proved to be more robust than the tree-level simulator.

The length of the simulation period affected the prediction

errors for all variables in all the simulators, with the variance in

the prediction error increasing as a function of time, so that the

predictions become less reliable and uncertainty attached to them

grew as the length of the simulation increased. This was to be

expected, as it can be regarded as normal behaviour for growth

models (e.g. Kangas, 1997). The mean of the prediction error

showed rather more inconsistent behaviour with respect to the

different variables. The mean prediction error DY for all the

variables increased during the first 15 years of simulation, but

then trended slightly towards zero, which may be due to the fact

that the stands had exceptionally high basal areas and the growth

models do not converge well towards extreme values at the limits

of their domains. This kind of underestimating behaviour is not

surprising as the statistical growth models were used at the upper

limits of their application domain, which is dictated by the

modeling data. After 15 years the actual growth in the stand

variables decreased more than the growth predicted by the

simulators, which led to a decline in the mean prediction error.

As the stand-level models proved to be more robust and

accurate, whereas tree-level models are more useful, e.g. for

predicting the effects of silvicultural treatments, it would be most

useful if these two approaches could be combined. One

possibility would be to use stand-level models for predicting

the level of growth and to distribute this growth among the

individual trees (e.g. Ritchie and Hann, 1997; Qin and Cao,

2006), or another approach would be to use the different

simulators consecutively, employing tree-level models for the

first 10 years to obtain better information for planning immediate

silvicultural measures and the more robust stand-level models for

longer-term predictions. Yet another possibility might be to use

the simulators in parallel, so that the development of stands that

have just been thinned would be predicted with stand-level

models, for instance, as accurate information in the stand

structure in the immediate future may not be needed, and tree-

level models could be used for stands that are approaching the

next treatment. In this way it would be possible to extract

maximum benefit from both simulator types. However, this topic

requires more studying and testing of the different approaches for

combining the two different simulator types. The availability of

the SIMO simulation framework will make it possible to test the

usefulness of these approaches in the future.
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