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Abstract

Hyperspectral imaging in the visible and near-infrared (400–1000 nm) regions was tested for nondestructive determination of moisture
content (MC), total soluble solids (TSS), and acidity (expressed as pH) in strawberry. The spectral data were analyzed using the partial
least squares (PLS) analysis, a multivariate calibration technique. The correlation coefficients (r) with the whole spectral range (400–
1000 nm) for predicting MC, TSS, and pH were 0.90, 0.80, and 0.87 with SEC of 6.085, 0.233, and 0.105 and SEP of 3.874, 0.184,
and 0.129, respectively. Optimal wavelengths were selected using b-coefficients from PLS models. Multiple linear regression (MLR) mod-
els were established using only the optimal wavelengths to predict the quality attributes. The correlation coefficients (r) for predicting
MC, TSS, and pH using MLR models were 0.87, 0.80, and 0.92 with SEC of 6.72, 0.220, and 0.084 and SEP of 5.786, 0.211, and
0.091, respectively. Moreover, for classifying strawberry based on ripeness stage, a texture analysis was conducted on the images based
on grey-level co-occurrence matrix (GLCM). The higher classification accuracy of 89.61% was achieved using the GLCM parameters at
horizontal direction at angle of 0�.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fruit quality is defined as a measure of characters or
attributes that determine the suitability of the fruit to be
eaten as fresh or stored for reasonable period without dete-
rioration. Fruit quality could be considered as a multiple
concept encompassing the physical, physiological, nutri-
tional, and pathological attributes that affect fruit shelf life.
Quality of a fresh produce includes appearance (size,
shape, colour, gloss, and freedom from defects and decay),
texture (firmness, crispness, and toughness), flavor (sweet-
ness, sourness, aroma, and off-flavors), and nutritive value
(vitamins, minerals, nutrients and carbohydrates). Straw-
berry (Fragaria sp.) is one of the economically important
fruits which are more popularly eaten fresh, used for gar-
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nishing cakes and pastries, flavored for juices and milk
products, and processed into jams and others. Thus,
together with the recent concern for food quality and
safety, automatic technologies for judging the fresh quality
of strawberry are being sought.

Technologies that can sort fruit for appearance, texture,
taste, flavor and/or nutritive value would assure fruit qual-
ity and consistency, increase consumer confidence and sat-
isfaction, and enhance the competitiveness and profitability
of the fruit industry (Lu & Ariana, 2002). Currently, fruits
are sorted manually or automatically on the basis of their
external quality features. However, internal quality attri-
butes such as dry matter content, total soluble solids con-
tent, sugar content, and juice acidity are very important
in the modern quality evaluation industries. Most instru-
mental techniques to measure these properties are destruc-
tive and involve a considerable amount of manual work.
The development of nondestructive measurements of these
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quality attributes will be very useful for producers, proces-
sors, and distributors to ascertain fast evaluation. This
trend put a great challenge to utilize spectroscopic and
hyperspectral imaging for these tasks.

Spectroscopic and hyperspectral imaging systems have
many advantages compared to classical chemical and phys-
ical analytical methods. It has a short measuring time with
limited sample preparation, is chemical-free, and can be
applied to estimate more than one attribute at the same
time (Lammertyn, Nicolaı̈, Ooms, De Smedt, & De Baerde-
maeker, 1998). All these factors reduce energy require-
ments and costs of process, and provide more consistent
fruit to consumers. The spectroscopic method has a great
drawback compared with the hyperspectral imaging
because it acquires the spectral data from a single point
or from a small portion of the tested fruit. The hyperspec-
tral imaging, on the contrary, has advantages of receiving
spatially distributed spectral responses at each pixel of a
fruit image.

The hyperspectral imaging technique has been imple-
mented in several applications such as inspection of poultry
carcasses (Chao, Chen, Hruschka, & Park, 2001; Park,
Windham, Lawrence, & Smith, 2004), defect detection or
quality determination on apples, eggplants, pears, cucum-
ber and tomatoes (Cheng et al., 2004; Kim et al., 2002;
Liu, Chen, Wang, Chan, & Kim, 2006; Li, Wang, & Gu,
2002; Polder, Van der Heijden, & Young, 2002) as well
as physical, chemical and mechanical properties estimation
in various commodities (Lu, 2004; Nagata, Tallada,
Kobayashi, & Toyoda, 2005). In addition, a significant
amount of research has been done in the area of spectros-
copy and hyperspectral imaging applied specially to fruit
analysis. The successful attempts to evaluate internal prop-
erties nondestructively were accomplished using spectral
technology for prediction sugar content (Bellon, Vigneau,
& Leclercq, 1993), soluble solids (Park, Abbott, Lee, Choi,
& Choi, 2003; Peiris, Dull, Leffler, & Kays, 1999), firmness
(Park et al., 2003; Peirs, Scheerlinck, Touchant, & Nicolaı̈,
2002), moisture content (Katayama, Komaki, & Tamiya,
1996), acidity (Lammertyn et al., 1998; Peirs et al., 2002)
and so many other applications. In strawberries, however,
there had been very limited literature on the use of spectro-
scopic technique for quality estimation. A preliminary
work was done by Ito (2002) to determine soluble solids
in the NIR range of 750–1100 nm. Nagata, Tallada,
Kobayashi, Cui, and Gejima (2004) conducted a hyper-
spectral investigation for soluble solids and firmness pre-
diction in strawberry in the visible range (450–650 nm).

The great power of hyperspectral imaging resides in its
capability to deal with spectral as well as spatial informa-
tion. To exploit this capability, researchers tend to imple-
ment their algorithms to deal with both information at
the same level of interest. One of the most important appli-
cations of this possibility is the classification processes
according to certain external characteristics, which has
been one of the targets in image processing applications.
However, it is important to differentiate between the exter-
nal texture which used to express roughness or smoothness
of fruit surface in an image and the real texture of the fruit
which used to express the mechanical properties and tough-
ness or firmness of the fruit. External texture has been used
for the analysis of different types of images, such as micro-
scopic, aerial and satellite. Textural features represent the
spatial distribution of tonal variations in an image at vari-
ous wavelengths such as the visible and infrared portions of
the spectrum (Kavdır & Guyer, 2004). The grey-level of co-
occurrence matrix (GLCM) is an important expression to
deal with external textural change in agricultural produces.
The co-occurrence matrix has been successfully used to
classify texture of agricultural produces (Létal, Jirák,
Šuderlová, & Hájek, 2003; Bharati, Liu, & MacGregor,
2004; Pydipati, Burks, & Lee, 2006). The texture analysis
for identifying roughness and ripeness stage of strawberry
will be one of the scopes of this work.

2. Objectives

The main aim of this research was to develop calibration
models based on hyperspectral imaging to estimate some
quality attributes of strawberry. This outmost goal was
achieved by meeting the following specific objectives:

(i) Developing partial least square (PLS) models to
quantitatively predict moisture content (MC), total
soluble solids (TSS), and pH in strawberry.

(ii) Selecting the lowest number of optimal wavelengths
which give the highest correlation between the spec-
tral data and the three quality parameters.

(iii) Developing multiple regression models using spectral
responses from only the optimal wavelengths and
then test and validate the prediction accuracy of the
developed calibration models.

(iv) Identifying ripeness stage of strawberry by texture
analysis using grey-level co-occurrence matrix
(GLCM) parameters.

3. Material and methods

3.1. Fruit samples

Strawberry was obtained from local retail stores. Good
appearance of the tested fruits is essential for the experi-
ments. All abnormal fruits were discarded. Seventy-seven
fruits free from any abnormal features such as defects,
bruises, diseases, and contaminations were selected. All
green calyxes were completely removed from the tested
fruits. To generate fruits with wide variations in their prop-
erties, some fruits were kept in room temperature for
2 days and other for 3 days, while other fruits were stored
in cold temperature (5 �C) for 3 days and other for 5 days.
The resulting fruits were varied in their ripeness and their
quality attributes. The tested fruits are randomly divided
into two major classes. Class 1 consists of 60 fruits used
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as a calibration/training set for developing the PLS model.
Class 2 consists of 16 fruits used for model validation and
to verify the prediction power of the calibration models.

3.2. Hyperspectral imaging system

A laboratory hyperspectral imaging system was con-
structed as shown in Fig. 1. It is composed of the following
four components: (1) an illumination unit which consists of
two 50 W halogen lamps adjusted at angle of 45� to illumi-
nate the camera’s field of view, (2) a fruit holder sur-
rounded by a cube tent made from white nylon to diffuse
the light and provide a optimum lighting condition, (3) a
spectrograph (ImSpector V10E, Optikon Co., Canada)
coupled with a standard C-mount zoom lens, and (4) a
CCD camera (PCO-1600, Pco. Imaging, Germany). The
assembly disperses the incoming line of light into the spec-
tral and spatial matrices and then projects them onto the
CCD. The optics, spectrograph and the camera, has high
sensitivity from 400 to 1000 nm and the exposure time
was adjusted at 200 ms throughout the whole test. The dis-
tance between the lens and the surface of the strawberry
being imaged was fixed at 40 cm. After finishing the scans
on a fruit, a three-dimensional (x,y,k) spatial and spectral
data space was constructed. Images were binned during
acquisition in spatial direction to provide images with spa-
tial dimension of 400 � 400 pixels with 826 spectral bands
from 400 to 1000 nm. The hyperspectral imaging system
was controlled by a PC with a software called Hypervisual
Imaging Analyzer� (ProVision Technologies, Stennis
Space Center, USA) for image acquisition.

3.3. Preprocessing of hyperspectral images

All the acquired hyperspectral images were processed
and analyzed using Environment for Visualizing Images
c
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Fig. 1. Hyperspectral imaging system: (a) a CCD camera, (b) a spectro-
graph with a standard C-mount zoom lens, (c) a halogen lighting unit, (d)
a white nylon tent, and (e) a PC supported with an image acquisition
software.
(ENVI 4.2) software (Research Systems Inc., Boulder
Co., USA).

The hyperspectral images were firstly corrected with a
white and a dark reference. The dark reference was used
to remove the effect of dark current of the CCD detectors,
which are thermally sensitive. The corrected image (R) is
estimated using Eq. (1):

R ¼ R0 � D
W � D

� 100 ð1Þ

where R0 is the recorded hyperspectral image, D the dark
image (with 0% reflectance) recorded by turning off the
lighting source with the lens of the camera completely
closed, and W is the white reference image (Teflon white
board with 99% reflectance).

The corrected images will be the basis for the subsequent
image analysis to extract information about the spectral
properties of each fruit for optimizing surface characteris-
tics identification, selection of effective wavelengths and
texture analysis purposes.
4. Data analysis

4.1. Spectral analysis for predicting quality attributes

4.1.1. Recording spectral data
Due to physiological and chemical variations among

tested fruits, each fruit reflects, absorbs, and emits electro-
magnetic energy in distinctive patterns at specific wave-
lengths. In essence, these spectral responses can be used
to uniquely characterize and identify the fruits. To collect
the spectral response of each fruit, a binary mask was first
created to produce an image containing only the fruit in the
middle of the image, avoiding any interference from the
background. Image at 500 nm-bands was picked up for this
task because the fruit appeared opaque compared with the
background and can be segmented easily by simple thres-
holding. All active pixels in the segmented image were used
as a mask and act as an area of interest (AOI). At each
pixel of AOI, the relative reflectance was recorded at each
wavelength from 400 to 1000 nm. Then, an average reflec-
tance spectrum was determined by averaging the relative
reflectance spectra of all pixels in the AOI. In total, 76 aver-
age spectra (400–1000 nm) representing all the tested 76
fruits were recorded and stored in the PC for wavelengths
selection and calibration model development.

4.1.2. Measurement of quality parameters

Three attributes of each fruit (moisture content, total
soluble solids and pH) were measured and used as indica-
tors of fruit quality. After acquiring the spectral images,
each fruit was divided into two equal halves. One half
was used for moisture content determination and the other
half was juiced using a juicing machine to determine pH
and total soluble solids.

The moisture content was determined in the first half by
oven-drying method using forced-air convection oven
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(Model no. OV-5206-2, Blue M Electric Company, Blue
Island, IL, USA); meanwhile, the pH of the strawberry
juice was determined with a pH meter (Orion, model
250A, Beverly, MA, USA), and total soluble solids (�Brix)
was determined using a refractometer (Model no. ATC-
1090, Atago Co., Ltd., Japan).

4.1.3. Spectral data analysis and building the calibration

models

To develop a model between spectral responses of the
tested fruits and their quality attributes, partial least
squares (PLS) analysis was applied to build the model of
prediction. PLS analysis between one attribute (moisture
content, soluble solids or pH) and the spectral data (aver-
age spectra with 826 wavelengths in the range from 400
to 1000 nm) was conducted using GRAMS/AI (Thermo
Electron Corp., Salem, New Hampshire, USA). Generally,
PLS is implemented to transfer a large set of highly corre-
lated and often collinear experimental data (826 wave-
lengths or variables) into independent latent variables or
factors. When applied to spectra of the calibration set (60
fruits), the aim of PLS analysis is to find a mathematical
relationship between a set of independent variables, X

matrix (N60 fruits � K826 wavelengths), and the dependent vari-
able, Y matrix (N60 fruits � 1). The values of one attribute
(moisture content, soluble solids or pH) of the calibration
set were used to represent the dependent variable (Y).
Meanwhile, the reflectance values at 826 wavelengths of
the 60 fruits represented the independent variables or the
predictors (X). Typically, most of the variations can be cap-
tured within the first few latent variables/factors while the
remaining latent variables describe random noise or linear
dependencies between the wavelengths/predictors.

The PLS algorithm according to Geladi and Kowalski
(1986a, 1986b), Haaland and Thomas (1988a, 1988b),
Osborne, Jordan, and Künnemeyera (1997) determines a
set of orthogonal projection axes W, called PLS-weights,
and wavelength scores T. Then, regression coefficients b
are obtained by regressing Y onto the wavelength scores
T as follow:

bY ¼ XW �
ab ¼ T ab ð2Þ

W � ¼ ðW ðP 0 � W Þ�1Þ ð3Þ

where bY is the predicted value of the attribute of interest, a

is the number of PLS factors, and P0 is the wavelength
loadings. PLS analysis yielded the calibration model, the
optimal number of latent factors, and the predicted value
of the attribute under concern in each sample in the cali-
bration set.

The input spectra were preprocessed using mean-center-
ing and automatic baseline correction. Other preprocessing
treatments such as Savitzky–Golay smoothing, multiplica-
tive scatter correction (MSC), and first and second deriva-
tives were tested, but did not enhance the calibration
model. Mean-centering is a process of calculating the aver-
age spectrum of the training set spectra (60 spectra) and
then subtracting the average spectrum from each individual
spectrum. Same procedure was performed on the measured
values of each attribute. Automatic baseline correction was
chosen to remove the baseline effects from the spectra
occurred during spectral collection. No outliers were
detected using both spectral and concentration residuals.
The optimal number of latent factors for establishing the
calibration model was determined using the minimum
value of predicted residual error sum of squares (PRESS).
The quality of the calibration model was evaluated by the
standard error of calibration (SEC), standard error of pre-
diction (SEP) and the correlation coefficient (r) between the
predicted and measured value of the attribute. A good
model should have a low SEC, a low SEP, a high correla-
tion coefficient, and a small difference between SEC and
SEP. These criteria are defined as follows:

SEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

IC � 1

XIC

i¼1

ðŷi � yiÞ
2

vuut ð4Þ

SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ip � 1

XIp

i¼1

ðŷi � yi � biasÞ2
vuut ð5Þ

bias ¼ 1

Ip

XIp

i¼1

ðŷi � yiÞ ð6Þ

where ŷi, predicted value of an attribute in fruit number i;
yi, measured value of an attribute in fruit number i; IC,
number of fruits (spectra) in the calibration set (60); and
Ip, number of fruits (spectra) in the validation set (17).

4.1.4. Selection of optimal wavelengths and multiple

regression model development

Researchers are often interested in finding vital few
wavelengths that would be most influential on the quality
evaluation of the product and eliminate wavelengths hav-
ing no discrimination power. The selected wavelengths
reduce the data dimensionality while preserving the most
important information contained in the lower dimensional
data space. These selected wavelengths depend on the
behaviour of spectral responses of the fruits under study
and the differences among them. Therefore, to establish
consistent multispectral imaging systems, several essential
spectral bands are first sought through a variety of strate-
gies, such as general visual inspection of the spectral curves
and correlation coefficients (Keskin, Dodd, Han, & Khalil-
ian, 2004), analysis of spectral differences from the average
spectrum (Liu, Windham, Lawrence, & Park, 2003), step-
wise regression (Chong & Jun, 2005), principal component
analysis (Kim et al., 2002; Mehl, Chen, Kim, & Chan,
2004; Xing & De Baerdemaeker, 2005), and other tech-
niques (Hruschka, 2001).

After proving the good performance of the PLS models
on predicting the attributes of interest, the next step is to
reduce the dimensionality of the spectral data to its lowest
level by selecting only the essential wavelengths that carry
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Fig. 2. RGB image for (a) unripe, (b) ripe, and (c) overripe strawberries. The cropped small square for texture analysis is depicted at the bottom left corner
of each image. (d) Extraction of GLCM at different directions (0�, 45�, 90�, and 135�) and distance (D) for each pixel in the cropped square image.
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version of this article.
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the maximum spectral information. In this study, b-coeffi-
cients resulting from the best PLS calibration model were
used for identifying the optimal wavelengths. The wave-
lengths that correspond to the highest absolute values of
b-coefficients were considered optimal wavelengths. These
optimal wavelengths that carry the maximum spectral
information could be implemented in multispectral imag-
ing in further studies for on-line applications. Wavelengths
which correspond to the lowest absolute values of b-coeffi-
cients were completely neglected because they have no or
very little contribution in prediction.

Only the selected optimal wavelengths were used to
establish multiple linear regression (MLR) models instead
of using the whole spectral range. This step was conducted
using MATLAB (MATLAB 7.0, Release 14, The Math-
Works Inc., Natick, MA, USA) to produce a model as

bY ¼ a0 þ
XK

k¼1

akRkk

where bY , predicted value of the attribute; K, number of
optimal wavelengths (number of X-variables or predictors);
a0, ak, regression coefficients, and Rkk, reflectance at a
wavelength k corresponding to the kth term in the model.

Once the linear regression model was determined, the
equations were used to predict the attributes of samples
in the calibration and validation sets. Actual values of
the attribute were plotted to visually evaluate the perfor-
mance of the models. To quantify the predictive ability of
the models, the correlation coefficient (r), SEC, and SEP
were determined.

4.2. Texture analysis for identifying ripeness stage

Due to large variations found in fruits in terms of sur-
face textures, texture analysis was conducted to identify
the ripeness stage of strawberry. As shown in Fig. 2a–c,
the tested fruits contained three ripeness categories: unripe,
ripe and overripe. In this work, the fruits containing equal
or more than 30% green area were classified as unripe
fruits. RGB image was constructed for each fruit by pick-
ing up the Red (650 nm), Green (500 nm) and Blue
(450 nm) bands from the corrected hyperspectral image
to form a colour image.1 Small window (50 � 50 pixels)
as shown in the bottom left corner of Fig. 2 was cropped
from the middle of each colour image to discover the tex-
ture change from fruit to fruit. Texture analysis character-
izes regions in an image by their texture content in terms of
smoothness, roughness, silkiness, or bumpiness in the con-
text of an image. In this case, these characteristics refer to
variations in the brightness values, or grey levels. The most
commonly used texture measures are derived from the
grey-level co-occurrence matrix (GLCM). A co-occurrence
matrix is a square matrix with elements corresponding to
the relative frequency (Pi,j) of occurrence of pairs of grey
level of pixels separated by a certain distance (D) in a given
direction (0�, 45�, 90�, or 135�) as shown in Fig. 2d. Each
entry (i, j) in GLCM corresponds to the number of occur-
rences of the pair of grey levels i and j which are a distance
D apart in the image. The following GLCM parameters
were calculated using a program developed by MATLAB
to express texture:

Contrast ¼
XN�1

i;j¼0

P i;jði� jÞ2

Homogenity ¼
XN�1

i;j¼0

P i;j

1þ ði� jÞ2

Angular second moment ¼
XN�1

i;j¼0

P 2
i;j

Correlation ¼
PN�1

i;j¼0ðijÞP i;j � lxly

rxry

where lx, ly, rx, and ry are the means and standard devi-
ations, respectively, of the sums of rows and columns in the
GLCM matrix.

The textural parameters mentioned above were first
described by Haralick and Shanmugam (1974) used in
spectral and spatial image analysis for remote sensing
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applications, and then these parameters were widely used
in texture classification in agricultural produces by Tsheko
(2002), Kavdır and Guyer (2004), and Pydipati et al.
(2006). Generally, contrast is used to express the local vari-
ations in the GLCM. Homogeneity usually measures the
closeness of the distribution of elements in the GLCM to
its diagonal. Correlation is a measure of image linearity
among pixels and the lower the values, the less linearly cor-
relation. Angular second moment (ASM) provides the sum
of squared elements in the GLCM. Energy is another
expression that usually used instead of ASM, and it equals
the square roots of ASM. The above-mentioned parame-
ters were determined at different distances (from D = 1 to
D = 10) for each pixels in the GLCM and then averaged
to give only one value at each direction.

In addition, discriminant analysis was conducted by a
MATLAB program using the four texture features as dis-
crimination parameters (X-variables) and the ripeness stage
as Y-variable. The discriminant analysis was compared
under four directions (0�, 45�, 90�, and 135�). The overall
classification efficiency for each direction was calculated
as the number of fruits which correctly classified to the
total number of fruits. The cross-validation by leaving
one fruits out each time was considered to validate the
discrimination.
5. Results and discussion

5.1. Spectral analysis for predicting quality attributes

5.1.1. Reflectance spectra

Fig. 3 shows the average reflectance spectra in a range of
400–1000 nm of strawberries collected at different ripeness
stages. The presence of water in the fruit gave a rise to the
characteristic absorption bands that appear as localized
minima. The samples containing higher moisture contents
had lower reflectivity across their spectra. In spite of ripe-
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Fig. 3. A typical reflectance of VIS/NIR spectrum (400–1000 nm) of
strawberries at different ripeness stages.
ness stage, the reflectance curves of strawberry were rather
smooth across the entire spectral region. In case of unripe
fruit, the reflectance curve had three broadband absorption
regions around 500, 680, and 960 nm in addition to small
absorption region at 840 nm. The regions around 500
and 680 represent anthocyanin and chlorophyll pigments
which represent the colour characteristics in the fruit
(Abbott, Lu, Upchurch, & Stroshine, 1997; Seeram, Lee,
Scheuller, & Heber, 2006). The absorption regions in the
NIR at 840 and 960 nm represent sugars and water absorp-
tion bands.

The reflectance from both ripe and overripe fruits was
consistently lower than that from the unripe one over the
entire spectral region. The chlorophyll absorption band
at 680 nm was absent in case of ripe and unripe fruits
due to the degradation of chlorophyll in these fruits. Mean-
while, the relative reflectance at anthocyanin and sugar
absorbance bands (at 500 and 840 nm, respectively) were
much lower than those in unripe ones, meaning that the
anthocyanin and sugars in the ripe and overripe fruits are
much higher.

5.1.2. The PLS models using the whole spectral range of

400–1000 nm

The PLS calibration models were established using the
average spectra from 60 fruits in the calibration/training
set utilizing the whole spectral range consisting of 826
wavebands. The models were validated using the average
spectra of 17 fruits in the validation set. The number of
latent factors for PLS model of each attribute is determined
at the lowest value of predicted residual errors sum of
squares (PRESS) as shown in Fig. 4a. As depicted in
Fig. 4a, PRESS had high values at the beginning and
decreased rapidly with the increase of the number of latent
factors in the model until its lowest value which corre-
sponds to the ideal number of latent factors. With the
increase of the number of latent factors, the PRESS starts
to increase again and the performance of the model
decreases accordingly. The number of latent factors to pre-
dict MC, TSS, and pH were nine, four, and six factors,
respectively. Measured values of such attributes from
chemical test (destructive) and its predicted values resulting
from PLS models (nondestructive) are shown in Fig. 4b–d.

Table 1 shows that the model was very accurate for pre-
dicting moisture content with r of 0.90 and 0.96 for training
and validation sets, respectively. The SEC and SEP were
6.085 and 3.874 for calibration and validation sets, respec-
tively. TSS was predicted with r of 0.8 and SEC of 0.233 for
the training set. The accuracy of the model in the validation
set for predicting TSS was with r of 0.85 and SEP of 0.184.
The pH was predicted with r of 0.87 and SEC of 0.105 for
the training set and r of 0.87 and SEP of 0.129 resulted
from the validation sets. It is obvious for the three attri-
butes under study that the validation tests gave similar
results as the calibration set indicating good performance
of the models for predicting these quality components
nondestructively.
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Table 1
PLS models for predicting MC, TSS and pH in strawberry

Attribute No. of latent factor Calibration Validation

SEC r SEP r

MC 9 6.085 0.90 3.874 0.96
TSS 4 0.233 0.80 0.184 0.85
pH 6 0.105 0.87 0.129 0.87

104 G. ElMasry et al. / Journal of Food Engineering 81 (2007) 98–107
5.1.3. Multiple linear regression models using only the

optimal wavelengths

Based on the b-coefficients of PLS, the optimal wave-
lengths for moisture content prediction as explained in
Table 2 were found to be 480, 528, 608, 685, 753, 817,
Table 2
Performance of MLR models for predicting MC, TSS, and pH using only the

Attribute Optimal wavelengths Calibration

SEC

MC 480, 528, 608, 685, 753, 817, 939, 977 6.72
TSS 421, 520, 581, 683, 847, 950 0.220
pH 421, 521, 585, 646, 681, 840, 950, 990 0.084
939, 977 nm. It is clear that, the major absorbance bands
of water at 760 and 970 nm were found in the selected
range. For predicting TSS, common spectral regions were
found in six optimal wavelengths at 421, 520, 581, 683,
847, 950 nm. This result is comparable with the finding of
Ito (2002) who found that the optimal wavelengths for sol-
uble solids prediction in strawberry were 882 and 907 nm.
In addition, eight optimal wavelengths of 421, 521, 585,
646, 681, 840, 950, 990 nm were found to be responsible
for discrimination between fruits in terms of their pH
(Table 2).

Fig. 5a shows an example for the procedure of extract-
ing the optimal wavelengths from b-coefficient plot of
PLS calibration model of pH. The extracted wavelengths
optimal wavelengths extracted from b-coefficients of PLS analysis

Validation

r SEP r

0.87 5.786 0.91
0.80 0.211 0.80
0.92 0.091 0.94
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were corresponded to the highest absolute values of b-coef-
ficients in the plot in spite of its sign.

For each attribute, the optimal wavelengths were used
to build a multiple linear regression (MLR) model between
the reflectance at these wavelengths (as X-variables) and
the measured values of this attribute (as Y-variables). Same
as above, the calibration set was used to develop the MLR
models for predicting the attributes, while the validation
set was used to validate these models.

The accuracy of the MLR models for predicting MC,
TSS, and pH are shown in Fig 5. The performance of these
models is evaluated by SEC, SEP and correlation coeffi-
cient (r) as shown in Table 2.

In Table 2, the MLR models produced high perfor-
mance not only in the training set but also in the validation
set. The MLR model of the training set in predicting MC,
TSS, and pH had correlation coefficient of 0.87, 0.80 and
0.92 with SEC of 6.72, 0.220, and 0.084, respectively. On
the other hand, the correlation coefficient of the validation
sets for MC, TSS, and pH prediction were 0.91, 0.80, and
0.94 with SEP of 5.786, 0.211, and 0.091, respectively.

Compared with PLS models, MLR models had higher
performance in prediction in terms of SEC, SEP and corre-
lation coefficient although only few numbers of wave-
lengths were utilized. This is attributed to the fact that
the problems of colinearity and overfitting were alleviated
in MLR models that utilize only the essential wavelengths
and neglect the useless wavelengths that do not carry much
spectral information.

5.2. Texture analysis for identifying ripeness stage

5.2.1. Texture parameters extracting from GLCM

Fig. 6 shows the means of the four texture parameters
(contrast, homogeneity, energy, and correlation) of straw-
berry at different ripeness stages. Contrast of unripe fruits
was much higher compared with ripe and overripe fruits,
which means that unripe fruits contain high local varia-
tions in all directions (0�, 45�, 90�, and 135�). The same
conclusion obtained when looking to the homogeneity val-
ues. The unripe fruits were less homogeneous, while the
overripe fruits had the highest homogeneity for all direc-
tions. The low correlation values of overripe fruits indicate
that this stage had rough texture compared with unripe
fruits (highest correlation values) which are smooth in their
texture. Generally, no intersections were noticed among all
parameters for all direction under all ripeness stages. That
means the interferences among ripeness classes would be
small, which leads to the possibility for discrimination
between these stages using the texture features.
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Fig. 6. Strawberry texture parameters at different ripeness stage using GLCM.

Table 3
Confusion matrix for ripeness classification using discriminant analysis
with cross-validation at 0� direction

From/to Unripe Ripe Overripe Total % Correct

Unripe 0 2 7 9 77.78
Ripe 5 14 0 19 73.68
Overripe 48 1 0 49 97.96

Total 53 17 7 77 89.61
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5.2.2. Classification of fruit ripeness based on texture

parameters
The discrimination efficiency at different directions of 0�,

45�, 90�, and 135� were found to be 89.61%, 77.62%,
81.82%, and 79.22%, respectively. It is clear that, the hori-
zontal direction at angle 0� had the highest discrimination
efficiency (89.61%) compared with the other directions.
Only the confusion matrix at this direction for fruit classi-
fication is shown in Table 3.

6. Conclusions

The above results indicated the possibility of developing
a nondestructive technique using hyperspectral imaging for
measuring strawberry quality parameters. The PLS models
were established between reflectance spectra and the qual-
ity parameters. The models for the moisture content
(r = 0.97, SEC = 6.085, SEP = 3.874, and nine latent fac-
tors), the total soluble solids (r = 0.85, SEC = 0.233,
SEP = 0.184, and four latent factors) and pH (r = 0.87,
SEC = 0.105, SEP = 0.129, and six latent factors) show
good prediction performance.

The optimal wavelengths were extracted using the b-
coefficients from PLS models. Multiple linear regression
(MLR) models using only the reflectance at these optimal
wavelengths were established. The MLR models for the
moisture content (r = 0.91, SEC = 6.72, SEP = 5.786, and
eight optimal wavelengths), the total soluble solids
(SEC = 0.220, SEP = 0.211, r = 0.80, and six optimal
wavelengths) and pH (r = 0.94, SEC = 0.084,
SEP = 0.091, and eight optimal wavelengths) demon-
strated good prediction performance.

Texture measures were derived from the grey-level co-
occurrence matrix (GLCM) of strawberry images to iden-
tify its ripeness stage. High classification accuracy of
89.61% for correctly identifying strawberry ripeness stage
was achieved using the GLCM parameters at horizontal
direction at angle of 0�.
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