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Abstract

The potential of visible/near-infrared (Vis/NIR) diffuse transmittance spectroscopy, in combination with a variety of chemometrics
techniques, was investigated to examine the feasibility to non-destructively distinguish transgenic tomatoes from non-transgenic toma-
toes. One hundred tomatoes inserted with antisense ethylene receptor gene LeETR1 and the same number of their parents were scanned
in the Vis/NIR regions. Principal component analysis (PCA), soft independent modelling of class analogy (SIMCA) and discriminant
partial least squares (DPLS) regression based on PCA scores were applied to classify tomatoes with different genes into two groups.
The results show that differences between transgenic and non-transgenic tomatoes do exist and excellent classification can be obtained
after optimizing spectral pre-treatment. The correct classifications of the calibration as well as the validation data set for transgenic and
non-transgenic tomatoes were 100% using DPLS after second derivative spectral pre-treatment. The results in the present study show
that Vis/NIR spectroscopy together with chemometrics techniques could be a rapid tool to be used for differentiating transgenic toma-
toes from conventional tomatoes.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Tomato (Lycopersicon esculentum Mill) plays a signifi-
cant role in the agricultural market both for its large con-
sumption and for its richness in health-related food
components such as folate, vitamin C, and various carote-
noids and phytochemicals. The amounts involved in its
production and commercialization are impressive (Camp-
bell, Canene-Adams, Lindshield, & Boileau, 2004; Jha &
Matsuoka, 2004; Pedro & Ferreira, 2005). But tomato
quality decreases rapidly after harvest (Van Dijk, Boeriu,
Stolle-Smits, & Tijskens, 2006). A large annual loss due
to spoilage makes a means to control ripening of great eco-
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nomic importance (Hoeberichts, Van Der Plas, & Wolter-
ing, 2002). An antisense ethylene receptor gene LeETR1
is introduced into tomato through Agrobacterium tumefac-

iens-mediated method to delay tomato ripening. However,
there are global issues that arise from the use of genetic
modification techniques (Zafar & Asif, 2004; Perry,
2002). To monitor and verify the presence and the amount
of genetically modified organisms (GMOs) in agricultural
crops and in products derived, it has generated a demand
for analytical methods capable of detecting, identifying
and quantifying either the DNA introduced or the pro-
tein(s) expressed in transgenic plants (Anklam, Gadani,
Heinze, Pijnenburg, & Guy, 2002; Bonfini et al., 2001). Ide-
ally an identification technique should be rapid, easy to use
and of low cost (Belton et al., 1995).

Near-infrared (NIR) spectroscopy is a procedure that
can detect and measure the chemical composition of
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biological materials based on the absorption of NIR radi-
ation by bonds between light atoms (Tigabu & Odén,
2002). The advantage of NIR spectroscopy over other ana-
lytical techniques which have been developed, such as poly-
merase chain reaction (PCR), enzyme linked
immunosorbent assays (ELISAs), biosenso, microarray,
chip, electrophoresis, X-ray fluorescence, mass spectrome-
try, etc. (Zafar & Asif, 2004) in that it is nondestructive,
simple to apply, fast, requires no sample pre-treatment
and can easily be automated (Chen, Arnold, & Small,
2004; Gestal et al., 2004). Though NIR spectrometers are
not precise enough to detect compounds at the DNA con-
centration level (parts per trillion), spectral differences
caused by larger structural changes (if any) accompanying
the modification might be measurable. Recently, this tech-
nique has been used to distinguish transgenic products
from conventional ones. Roussel, Hardy, Hurburgh, and
Rippke (2001) detected and segregated Roundup ReadyTM

soybeans from conventional soybeans using partial least-
squares (PLS), locally weighted regression (LWR) and arti-
ficial neural networks (ANN) models by NIR spectros-
copy. 93% accurate classification was obtained using a
database of approximately 8000 samples with LWR
method. Rui, Luo, Huang, Wang, and Zhang (2005)
applied a back propagation (BP) algorithm to discriminate
transgenic corns and their parents by continuous wave of
NIR diffuse reflectance spectroscopy ranged from 830 to
2500 nm. Xie, Ying, Ying, Yu, and Fu (2007) used Vis/
NIR diffuse reflectance spectroscopy combined with multi-
variate analysis to differentiate 70 transgenic tomatoes and
94 of their parents. Partial least-squares discriminant anal-
ysis (PLSDA) model with the leave-one-out cross-valida-
tion technique after the second derivative pre-treatment
was proved to have the best satisfactory calibration and
prediction ability.

The work undertaken in this current study was designed
to examine the feasibility of using the visible and near
infrared (Vis/NIR) spectroscopic techniques, in combina-
tion with a variety of chemometrics techniques, to distin-
guish transgenic tomatoes with antisense LeETR1 from
non-transgenic tomatoes.

2. Materials and methods

2.1. Samples

The tomato samples were grown in a standard green-
house and marked at the fruit color-breaking time. Two
sets of samples with similar sizes for both varieties
(n = 200) were obtained. One set had 98 samples (50 trans-
genic tomatoes with antisense LeETR1 and 48 of their par-
ents, non-transgenic ones) and the other had 102 samples
(50 transgenic and 52 non-transgenic ones). The experi-
ments were conducted in different days. The samples in
each set were picked and measured on the same day and
they were all at the sixth stage (USDA, 1976) with the same
interval from color-breaking to ripe. All the samples were
cleaned and laid at room temperature (25 �C, 60% relative
humidity) for two hours to equilibrate to experiment envi-
ronment before Vis/NIR diffuse transmittance spectra col-
lection. One hundred and forty samples (70 transgenic
tomatoes and the same number of non-transgenic ones)
were used for calibration, and the remaining 60 ones for
validation. The samples for calibration and validation sets
were chosen randomly.

2.2. Spectral measurement

Diffuse transmission spectra of tomato samples were
collected by a fiber spectrometer system with the range
from 350 to 1289 nm which consisted of a light source
(Ocean Optics Inc., USA), a sample holder, an adjustable
collimating len, a fiber spectrometer (Ocean Optics Inc.,
USA), a bifurcated optic fiber cable (Ocean Optics Inc.,
USA), and a computer. The light source installed in a spe-
cial arc lamp-chimney was four 50 W tungsten halogen
lamps which were placed at four locations, 90� apart.
The sample holder acted as both a position fitting and as
a flexible support to accommodate samples with different
sizes, as well as a light seal against light source. The spec-
trometer was equipped with a 2048-element linear silicon
CCD array detector.

Spectrometer parameters setting, spectra data obtaining
and storing were carried out via software OOIBsae32
(Ocean Optics Inc., USA). The Integration time was
150 ms, and the resolution was 1 cm�1 in this work. Sam-
ples were analyzed at room temperature. The measurement
was expressed as percent transmission (%).Three replicates
of each sample were taken and their mean value was calcu-
lated using OMINIC 6.1a (Thermo Electron Corp., Madi-
son, WI, USA). Reference spectrum for air and dark
spectrum were measured and stored prior to sample spectra
measurement.

2.3. Spectral data pre-treatment

Vis/NIR spectra are often pre-processed to reduce unde-
sirable systematic noise, such as baseline variation, light
scattering, path length differences and so on, and enhance
the contribution of the chemical composition (Tigabu &
Odén, 2002). In this study, three types of pre-processing
were employed: multiplicative scattering correction
(MSC), Savitzky–Golay first and second derivative (Geladi,
Macdougall, & Martens, 1985). In our case, the possible
sources of systematic variation could be due to the path
length slight difference arising from the positioning of indi-
vidual tomato with slight different sizes during scanning.

2.4. Chemometrics methods

Chemometrics methods can obtain direct information
from the NIR spectra, highlight the chemical differences
between samples and reduce variation due to physical
effects. The combination of spectroscopy and chemomet-
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rics methods was investigated for quantitative and qualita-
tive analysis. Principal component analysis (PCA), soft
independent modelling of class analogy (SIMCA) and dis-
criminant partial least squares (DPLS) have proven to be
effective in many applications (Andre, 2003; Chen, Zhao,
Zhang, Liu, & Fang, 2005; Cozzolino, Smuth, & Gishen,
2003; Sáiz-Abajo, González-Sáiz, & Pizarro, 2004), and
were therefore used in the present study to classify toma-
toes with different genes. All the chemometrics analysis
was carried out using the commercial software package,
TQ Analyst v6.2.1 (Thermo Nicolet Corporation, Madi-
son, WI, USA).

2.4.1. PCA
PCA is a method applied to get an overview of the data

by extracting the main information in the Vis/NIR spectra
recorded on tomato samples, reduce the number of vari-
ables, build up new variables, known as principal compo-
nents (PCs) and detect possible spectral outliers. Each
spectrum will have its own unique set of scores; therefore,
a spectrum can be represented by its PCA scores in the fac-
tor space instead of intensities in the wavelength space
(Park, Abbott, Lee, Choi, & Choi, 2003). The PCA trans-
forms the original independent variables (wavelengths) into
new axes, or PCs. The PCs and thus the axes are uncorre-
lated, but the data presented on these axes will still be cor-
related (Martens & Naes, 1989). By plotting the PCs, one
can view interrelationships between different variables,
detect and interpret sample patterns, groupings, similarities
or differences (Mouazen, Karoui, De Baerdemaeker, &
Ramon, 2006).

PCA either on the pure spectral data or the pre-treated
data can provide very important information regarding the
potential capability of separation of objects. As PCA is fit-
ting a subspace with respect to the optimized maximum
variance of the data structure, a further analysis has been
applied for an improved separation of the groups (Andre,
2003).

2.4.2. SIMCA

SIMCA is an elaborate method based on PCA (Sáiz-
Abajo et al., 2004). With SIMCA, each sample type is mod-
eled independently of the others and the process does not
attempt to maximize inter-cluster distances. New samples
are treated separately by each cluster model and an assess-
ment is made of cluster membership on the basis of the dis-
tance to the cluster centroid. Additionally, an evaluation of
the likelihood of an unknown to samples in each cluster
concerned may be made on the basis of an F-test (Blanco
et al., 2001); this compares the sum of squares of a residual
spectrum (the difference between the actual spectrum of a
sample and the spectrum produced by the model) to the
variance within a class, thus providing a measure of cer-
tainty which may be attached to each identification.
SIMCA was reported to produce very high correct classifi-
cation rate in the separation of very similar materials
(Downey, McIntyre, & Davies, 2002).
2.4.3. DPLS

Leverage diagnostic was applied to detect the outlier
sample and provide the information that how much influ-
ence each sample had on the method standards. The diag-
nostic routine calculates the mean spectrum for all the
standards and then measures the distance between the
mean spectrum and the spectrum of each standard. If a
sample had leverage value that was noticeably different
from the leverage values of other samples, it was examined
closely in order to know whether it provided any useful
information or it must be removed. The information can
help to identify samples that might be outliers and select
useful standards.

Once the outlier detection was performed, DPLS
together with Vis/NIR spectra was used to establish models
for quantifying transgenic and non-transgenic tomatoes. It
is a PLS application for the optimum separation of classes
and each sample was assigned a dummy variable as a refer-
ence value, which is an arbitrary number or letter indicat-
ing whether the sample belongs to a particular group or
not (Cozzolino et al., 2003). In this case, samples of trans-
genic tomato were assigned a numeric value of 2, and those
of non-transgenic tomato assigned 1. The DPLS model was
then developed by assigning the reference value (dummy
variable) for each sample. A sample was considered to be
correctly categorized if the predicted value lay on the two
sides of the assigned values, 0.5 is the cutoff criteria which
is similar to those reported by others (Cozzolino et al.,
2003; Andre, 2003). The optimum number of factors used
in DPLS was determined by minimum value of predicted
residual error sum of squares (PRESS). Statistics calcu-
lated for the DPLS calibration models included root mean
square error of calibration (RMSEC), root mean square
error of prediction (RMSEP) and correlation coefficient
r. It is expected to have ideal models with the lower
RMSEC and RMSEP as well as the higher r.

3. Results and discussion

3.1. The diffuse transmittance spectra of tomatoes

Fig. 1 shows the diffuse transmittance raw spectra and
second derivative of average spectra on two varieties of
tomatoes. There are many crossovers and overlapping
among these samples in the Fig. 1a which means the spec-
tra are very similar. Therefore, it is difficult to discriminate
the varieties directly based on diffuse transmittance raw
spectra. Fig. 1b indicates the variations in the second deriv-
ative of the average spectra and the transmission percent
for averaged spectrum of transgenic tomatoes at 750–
820 nm, which is related to the third and forth overtone
of C–H stretching vibrations and the first overtone of
C@C stretching vibration, is remarkable lower than that
of non-transgenic tomatoes. Differences in composition
and/or structure among samples with different genes can
be reflected in the Vis/NIR spectrum, which can theoreti-
cally be used to develop a classification method.
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Fig. 1. Vis/NIR raw spectra (a) and second derivative of average spectra (b) recorded on transgenic (- - -) and non-transgenic (—) tomatoes.
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3.2. PCA

PCA is an effective data mining technique and it can find
an alternative set of coordinate axes. PCA was performed as
the first attempt to extract and visualize the main information
in multivariate data to examine qualitative differences
between the two kinds of samples. MSC, Savitzky–Golay first
and second derivative pre-processing were employed and the
second derivative of the spectra which has turned out to be
the best data pretreatment for optimum separation of both
groups in this study was used. The number of smoothing
point is seven. All the spectra of samples were used for
PCA. The initial 10 PCs, which account for the most spectral
variations 90.410% and indicated as positive or negative, are
used to make differentiation clearer. Vis/NIR spectra in deriv-
ative model in the range from 600 to 1200 nm were found to
be the most important and the spectral data with low signal
to noise ratio on both sides were removed.



Fig. 2. PCA score plots for the first three principal components.
Triangular marks represent transgenic samples and circles represent
non-transgenic samples.

Table 1
Performance of SIMCA models

Data pre-
treatment

No. of incorrectly classified samples

Non-transgenic tomatoes
(n = 100)

Transgenic tomatoes
(n = 100)

None 1 5
1st derivative 5 4
2nd derivative 5 2
MSC 23 1
MSC + 1st

derivative
33 0

MSC + 2nd
derivative

27 0
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Fig. 2 shows the two-dimensional (2D) principal compo-
nent score plot using first three score vectors, PC1, PC2,
PC3 derived from the second derivative spectra of the sam-
ples and indicates how these principal components are able
to separate the objects. From this figure, we can find that
the samples are divided clearly into three or four groups
without overlapping each other. It can also be found that
samples originating from the same gene in two picked sets
appear to separate between themselves into two corre-
sponding groups because they might not be picked on the
same days and had biological variation and different chem-
ical ingredients. Fig. 2 also shows that non-transgenic sam-
ples have scores between �2.81–1.04 to 0.88–1.36 except a
sample with 0.55 score in the first component, between
0.09–1.89 and �0.55–0.20 in the second and third compo-
nents, respectively, however, transgenic samples from
0.02 to 0.67, �1.61 to �0.35, �1.36–0.81 to 1.16–1.73 in
the first three components, respectively. Fig. 2a also shows
that non-transgenic tomatoes forming two groups are
located on the top half of the plot while transgenic ones
also composing of one cluster are observed on the reverse
half, which indicates that non-transgenic samples have
positive scores in the second component and transgenic
ones have the negative ones. The non-transgenic sample
appearing among the transgenic ones in the first compo-
nent could have been an outlier detected through leverage
diagnostic that will be discussed later. In general, the figure
clearly indicated a potential for distinguishing between the
groups and that no more components than the first three
principal components were needed to differentiate more
clearly between groups due to no overlapping of the
samples.

The result suggests the discrimination between trans-
genic and non-transgenic tomatoes is possible and that dif-
ferent spectral attributes of samples are associated with
characteristics of the sample. As PCA only indicates the
visualizing dimension spaces, a further quantitative analy-
sis was utilized for an improved separation.

3.3. SIMCA

A summary of SIMCA results obtained is shown in
Table 1. It can be seen in this table that models discriminat-
ing tomatoes with a degree of accuracy range from 83.5%
to 97%, which demonstrated the good discriminatory
power to differentiate the two varieties. The most successful
model, using the first three principal components, was
derived from raw spectral data. In this case, 99 of the
non-transgenic tomatoes (99% accurate classification) were
correctly identified as were 95 out of the 100 transgenic
tomatoes (95% accurate classification). MSC process can
not improve accuracy but deteriorate it for non-transgenic
tomatoes but do yield a better classification of transgenic
ones compared with raw spectra. The identification of
transgenic tomatoes was more constant, ranging from a
low of 95 to a high of 100 out of 100 samples. That is to
say, SIMCA method may be sufficiently sensitive to be of
practical utility. However, compared with PCA (Fig. 2),
SIMCA method couldn’t achieve 100% accurate classifica-
tion although it is based on PCA.

3.4. DPLS

Leverage diagnostic result shows that there are several
samples with leverage values that are noticeably different
from those for the other samples. After reexamination,
these samples would be removed as outliers according to
various models.

Table 2 shows the calibration and validation statistics
for the number of incorrectly classified samples with
MSC and derivative spectra pre-treatment using region
from 600 to 1200 nm. The derivative can increase classifica-
tion accuracy compared with raw spectra and MSC pro-
cess. The optimum models involved the use of spectral



Table 2
Tomato classification results of DPLS models

Data pre-treatment No. of incorrectly classified samples Correct percent

Non-transgenic tomatoes Transgenic tomatoes

Calibration set Validation set Calibration set Validation set

None 9 (1) 2 (2) 8 (1) 3 88.8
1st derivative 9 (2) 5 (1) 6 3 88.3
2nd derivative 0 0 (1) 0 0 100
MSC 7 3 13 8 84.5
MSC + 1st derivative 10 3 4 (1) 2 90.5
MSC + 2nd derivative 0 (1) 0 0 (1) 0 (3) 100

The numbers in brackets represent the number of outlier samples.
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data after the second derivative data pre-treatment step
and the percent correct classifications of the calibration
as well as the validation data set for transgenic and non-
transgenic tomatoes were 100%.

Table 3 is the statistics for tomato samples using DPLS
models on the raw spectra and spectra with various pre-
treatment. The results indicate that the DPLS models devel-
Table 3
The statistics for tomato samples using DPLS models on the raw spectra
and spectra with various pre-treatment

Data pre-treatment r RMSEC RMSEP Factors

None 0.73584 0.339 0.317 1
1st derivative 0.78161 0.312 0.308 1
2nd derivative 0.98412 0.0887 0.0961 1
MSC 0.70509 0.355 0.355 1
MSC + 1st derivative 0.76590 0.321 0.342 1
MSC + 2nd derivative 0.95389 0.150 0.148 1

Fig. 3. Plot of actual vs calculated values of transgenic and non-transgenic tom
set).
oped on the derivative spectra showed the better statistics
compared with raw spectra. During development of PLS
regression models, some samples were removed as outliers
from all further data analysis. The best prediction results
were obtained using the raw spectra with the second deriva-
tive pre-treatment, with r = 0.98412, RMSEC value of
0.0887, RMSEP value of 0.0961 with one outlier removed.

Fig. 3 shows the Vis/NIR predictions of tomato varieties
in the validation set using the DPLS model with the spectra
after second derivative treatment. It reveals two distinct
groups. The diagonal line represents ideal results (actual =
calculated value) and so the closer the points are to this, the
better is the model. The transgenic sample was classified
correctly if the value was between 1.5 and 2.5, else the
sample was classified wrong. And it was non-transgenic
sample if the value was between 0.5 and 1.5. That is to
say, the samples using a predicted value of ±0.5 as a cut-
off were all considered to be correctly classified by the
atoes using DPLS model and second derivative (calibration and validation
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model. Based on the vibrational responses of chemical
bonds to Vis/NIR radiation, the model can discriminant
or identify varieties (Fig. 3). It is probable that the higher
the variability between sample types in those chemical enti-
ties, which respond in these regions of the spectrum, the bet-
ter the accuracy of the model (Cozzolino et al., 2003). This
suggests that DPLS models with spectra after second deriv-
ative treatment contain enough information for discrimi-
nating the samples.

4. Conclusion

In conclusion, initial attempts to detect and classify
transgenic and non-transgenic tomatoes using Vis/NIR
spectroscopy were successful. The correct identification of
100% of tomatoes is a highly encouraging result using the
DPLS model with the spectra after second derivative treat-
ment. These results suggest that the methods may have
commercial and regulatory potential to avoid time-con-
suming recalibration work for each sample and costly
and laborious chemical and sensory analysis.
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