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Abstract

The external appearance of an olive’s skin is the most decisive factor in determining its quality as a fruit. This work tries to establish a
hierarchical model based on the features extracted from images of olives reflecting their external defects. Seven commercial categories of
olives, established by product experts, were used: undamaged olives, mussel-scale or ‘serpeta’, hail-damaged or ‘granizo’, mill or ‘rehus’,
wrinkled olive or ‘agostado’, purple olive and undefined-damage or ‘molestado’. The original images were processed using segmentation,
colour parameters and morphological features of the defects and the whole fruits. The application of three consecutive discriminant anal-
yses resulted in the correct classification of 97% and 75% of olives during calibration and validation, respectively. However the correct
classification percentages vary greatly depending on the categories, ranging 80-100% during calibration and 38-100% during validation.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The presence of skin damage in olives is the most deci-
sive factor in determining their external quality as fruit.
Traditionally, olives have been sorted manually. Only
recently have some research institutes and manufactures
been looking for techniques allowing for automatic classi-
fication. Such research has worked towards the develop-
ment of prototype devices for fruit classification based
either on artificial vision (Diaz et al., 2000, 2004; Mateos
et al., 2005) or on sorting techniques like fruit rebound
(Barreiro et al., 2003).

Recently, Brosnan and Sun (2004) presented an exten-
sive review of the different image processing techniques
for food products, which are increasingly used technolo-
gies. Many applications have been developed using artifi-
cial vision as a technique for fruit classification: peaches
(Cordero et al., 2006), citrus (Blasco et al., 2007; Kondo
et al., 2000), cherries (Rosenberger et al., 2004; Uthaisom-
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but, 1996) and especially apples (Cheng et al., 2003; Kavdir
and Guyer, 2004; Mehl et al., 2004). However, there is a
lack of studies focused on discriminating a large number
of external defects in olives based on the commercial cate-
gories established by product experts, as proposed in this
paper. In all refereed works the following steps are used
for image processing: acquisition, pre-processing, segmen-
tation, measurement (extraction features) and interpreta-
tion. The segmentation process is an essential step in
image analysis. Flawed segmentation can cause interpreta-
tion errors. According to Du and Sun (2004), there are sev-
eral segmentation techniques available for food quality
evaluation, which may be grouped into four different cate-
gories: histogram, region, edge and classification-based.
The selection of one method or the other depends on the
case. This work examines whether the combination of col-
our parameters and histogram features extracted from an
image might enhance classification.

Leemans and Destain (2004) used a hierarchical grading
method and k-means clustering for a real-time grading
system, achieving correct apple classification with a success
rate of 73%. Also Kleynen et al. (2005) introduced a defect
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Nomenclature

A maximum (r,g,b)

r,g,b  normalized RGB coordinates

B minimum (r,g,b)

Bi selected B of gray level “i” for the blue compo-
nent

Centroid position (x,y) of the center of mass of the
region

ConvexArea number of pixels in the polygon which cir-
cumscribe the region, consisting of the tangents
of its border.

Eccentricity ratio of the distance between the foci of the
ellipse and its major axis length

EquivDiameter diameter of a circle with the same area
as the region (4 - area/n).

FilledArea actual number of pixels in the region with all
holes filled in

Gi selected G of gray level

(1332
1

for the green compo-

nent

H hue, colour type

Hi selected H of gray level “i” for the hue compo-
nent

MajorAxisLength length in pixels of the major axis of
the ellipse

MinorAxisLength length in pixels of the minor axis of
the ellipse

Number of objects in our case, number of objects in the
image (the labeling only identifies one element,
although there may be various regions of interest

Orientation angle (degrees) between the x-axis and the
major axis of the ellipse

Perimeter number of pixels in the length of the outline
of the defect’s region

Solidity proportion of the pixels in the smallest polygon
which contain the regions, which are also in the
region (area/convexarea)

Ratio Perimeter/Area
Ratio ‘Area of defect’/’Area of olive’.
Ri selected R of gray level “i” for the red compo-

nent

Roundness perimeter2/4 - n - area

S saturation, colour intensity

Si selected S of gray level “i” for the saturation
component

Subtraction ‘Area of olive’ from ‘Area of defect’.
T threshold

14 value, colour brightness
Vi selected V of gray level “i” for the value compo-
nent

segmentation procedure consisting in a pixel classification
algorithm based on the Bayes’ theorem and non-paramet-
ric models of the sound and defective tissues, where seg-
mentation of russet defects and colour transition areas of
skin were problematic. Recently, Blasco et al. (2007) pro-
posed region-based segmentation based on unsupervised
techniques for detecting the most common external citrus
defects; in this segmentation algorithm, the contrast
between different areas in the image becomes more impor-
tant than the individual pixel colour. Some researchers
combine several segmentation techniques for defect detec-
tion, like for example Bennedsen and Peterson (2005): three
threshold segmentation routines and another based on arti-
ficial neural networks and principal components.

For histogram-based methods, thresholding can be
applied locally to calculate different thresholds for each
pixel within a neighborhood (Niblack, Sauvola, etc.) or
to globally calculate one single threshold for the whole
image (isodata, entropy, etc.). However, histogram-based
thresholding is still the most referenced among segmenta-
tion methods (Barreiro et al., 2008; Unay and Gosselin,
2006) based on the method described in Otsu (1979).
Researchers continue studying and comparing the different
techniques for the detection of external defects on fruits;
Unay and Gosselin (2006) obtained better performance
by applying thresholding for the segmentation of apples
when compared to local segmentation.

Usually colour is the main focus in artificial vision sys-
tems, as it is an important quality parameter in fruits and
vegetables. Different colour coordinate spaces are used
for the description of colour. Frequently CIE L*a*bh* is
used, as it shows the objective colour with fidelity. How-
ever, in the artificial vision field, colour is defined by
RGB coordinates or HSI coordinates, the latter being
equivalent to cylindrical coordinates (CSI) of L*a"b*. The
HSV model is very similar to the HSI colour model. The
main difference between the two is the calculation used to
produce brightness values. In the HSI model, a pixel’s
brightness (I) is derived from the mean of its three (R, G
and B) colour values. In the HSV model, a pixel’s bright-
ness (V) is determined by the mean of the minimum and
maximum of its three colour values. However, colour is
one of the most uneven aspects when dealing with olives.

There are commercial systems that allow the packer to
sort olives automatically according to their external
appearance, based on optical properties and image analy-
sis. These systems use different colour spaces, although
the expectations of the producer, the packer and the man-
ufacturer of the classification device do not match exactly
the results obtained in terms of the percentage of correct
classification. Standards are needed as well as reference
methods to verify the performance of such systems.

The present work tries to obtain classification functions
to sort olives into different quality classes, according to the
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external flaws on olives of the Spanish “Manzanilla sevill-
ana” variety. The final methodology could be useful to
evaluate the performance of commercial systems, but it is
not aimed at replacing them.

2. Materials and methods
2.1. Fruit

A representative sample of the 260 olives of the “Man-
zanilla sevillana” variety was selected to define the mathe-
matical model (Table 1). Olives were previously classified
by a set of product experts (Fig. 1) at several processing
factories using common terms. The Alvarado et al.
(2001), FAO (1987), Trapero and Blanco (2001) and
USDA (1967), provide definitions for the commercial cate-
gories available for olives:

e Undamaged olives: Fruits harvested during the ripeness
cycle, before seasonal colour changes, and with their
varietal characteristics. Free of defects.

o ‘Serpeta’ or mussel-scale (Lepidosaphes ulmi L.): This
kind of cochineal is very widespread throughout the
world and causes damage to pome fruits and olives.
The damaged olives show dry and elongated scars on
the epidermis.

e ‘Granizo’ or hail-damaged: This meteorological phenom-
enon can cause serious damage to the olive’s epidermis
due to strong impacts (round marks).

e ‘Rehus’ or mill: specific term for rejectable olives.

o Wrinkled olive or ‘agostado’: There are several external
factors (temperature, humidity, etc.) which can influence
the dehydration of green olives; the fruits have shrunk
and present a dry appearance.

e Purple olive: Colour is an indicator of fruit ripeness. In
the case of purple olives is the colour for full-ripeness,
which is present in the skin as well as in the pulp. This
commercial group includes olives whose colour diverges
greatly from the commercial characteristics required for
the fruit.

Table 1
Damage types identified in olives by product experts at processing
companies

Damage types (commercial categories) Calibration Validation
Undamaged olives 16 14
‘Serpeta’ or mussel-scale 5 6
‘Granizo’ or hail-damaged 7 5
‘Rehus’ or mill 5 18
Wrinkled olive or ‘agostado’ 16 3
Purple olive 27 41
‘Molestadol’ or undefined-damage 20 29
‘Molestado2’ or undefined-damage 27 21
Total 123 137

The set was divided for the calibration and validation test.

a b 'c
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Fig. 1. Damage types identified in olives by expert technicians at
processing companies: (a) undamaged olives, (b) ‘serpeta’, (c) ‘granizo’,
(d) ‘rehds’, (e) ‘molestadol’, (f) wrinkled, (g) purple olive and (h)
‘molestado2’.

e ‘Molestado’ or undefined-damage: All external defects
that do not affect the olive pulp are included in this com-
mercial-group: direct hit, bruises, scratches, superficial
marks of different shapes and sizes, etc. These damages
are typical of poor handling during harvest. This cate-
gory has been divided in two groups to facilitate classi-
fication: ‘molestadol’ (round shape bruises) and
‘molestado?’ (elongated shape bruises). Mateos et al.
(2005) in a study with olive images, also identify two
types of ‘molestado’.

The calibration set was built with those samples which
only had one category of defect in the skin (N = 123 for
calibration), while the rest of olives with a mixture of
defects were used for the validation set (N = 137). This
work aims to study a wide population containing all of
the defects defined above. However, some categories are
represented by a small population (‘serpeta’ and ‘granizo’),
variable, depending on harvest and environmental condi-
tions. As a result, it is difficult to obtain a larger sample
in some cases.

2.2. Reference data

Reference tests include destructive and non-destructive
experiments: weight, fruit size (height and equatorial diam-
eter per fruit), fruit colour as determined by a Minolta
Spectrophotometer (CIE L*a*b*), and by using an RGB
image camera. RGB values were transformed into HSV
using an algorithm of Matlab (version 7.0; Math Works,
Inc., USA), as the online sorting device works in this
colour space. The different damages were characterized
for each fruit following a previous study of olives (Barreiro
et al., 2003).
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2.3. Imaging system

Olive images in RGB were acquired under static condi-
tions with a single-sensor (one CCD: charge-coupled
device) colour camera (model JVC-TK 1270E; JVC, Victor
Company of Japan). The camera spatial resolution is
0.1 mmz/pixel.

The colour camera was installed on a mobile column.
The sample was placed inside an hemispheric integrating
sphere of white expanded polystyrene foam, in order to
generate an homogeneous diffuse lighting to get rid of
shadows during image acquisition. Samples were lit with
fluorescent lights with high colour rendering index (CRI)
(model TL/95; Phillips, Royal Philips Electronics of the
Netherlands), that is, providing colour reproduction equiv-
alent to 95% of that afforded by sunlight).

2.4. Image processing

To facilitate the acquisition process, all original RGB
images contained two olives. It was necessary to perform
three consecutive segmentations over the original images:
the first segmentation to leave out the background, then
to identify one olive per photo, and finally a segmentation
of external defects inside each fruit area.

Some researchers, like Bennedsen and Peterson (2005)
agree to use a combination of different threshold segmenta-
tion routines for better extraction of fruit and defect
features.

The algorithms used were developed with the image pro-
cessing toolbox, version 6, of Matlab (Mathworks, 2005).

2.4.1. Image pre-processing

First of all, the fruit area was separated from the
background with the algorithm of Otsu (1979), which is a
nonparametric and unsupervised method of automatic
threshold selection for picture segmentation, based on
statistical and space information of histograms (Gaussians
distributions). Using the Matlab function ‘graythresh’, a dis-
criminant criterion makes it possible to obtain the optimal
threshold of an image that maximizes the group variable (¢?).

The procedure is very simple: when the threshold (T) is
applied, the image is converted automatically into binary
values (black and white), where ‘1’ means background
and ‘0’ foreground (object):

[ lefly)<T
g(x’y)_{OHf<x,y)>T} W

Thus, the thresholding level obtained after applying Otsu’s
algorithm is a normalized intensity value that lies in the
range [0,1]. The thresholding was performed on the three
colour components together, as the Matlab routines ana-
lyzed them as one single matrix. The images were converted
into binary using automatic thresholding.

It was found that a simple thresholding was not enough,
as the binary images showed two big elements (olive areas),

and in some occasions, several little elements (due to shad-
ows under poor light) in the background part of the
images. Thus, a filter was applied to remove small objects
from the image. A morphological opening operator was
used with a disk-shaped structuring element considering a
six-pixel radius (0.6 mm in the image). Thus the objects
with a radius lesser than the selected value were eliminated.
Afterwards another morphological operator (object filling)
was used to fill in the possible holes presented in the seg-
mented binary images.

2.4.2. Defect extraction

In order to segment the defects from the sound olive
area, images were readjusted for each RGB channel so as
to fulfil the intensity values 0-255; this increases the con-
trast of the output image. However the Matlab function
‘imadjust’ works with intensity values between 0 and 1
(double), therefore the images to adjust were previously
transformed to this scale. In order to select the upper and
lower limits for this process all the olive images were stud-
ied; in our case, the specific ranges set — so as to include
99% of pixel values — resulted in the lower (Red 0.6, Green
0.2, Blue 0) and upper (Red 0.7, Green 0.9, Blue 1) inten-
sity levels. Values below low-in and above high-in are
clipped.

The rest of the algorithms applied for defect extraction
were similar to those used for whole fruits: thresholding,
eliminating small elements, filling in holes (disk-shape with
a radius of four-pixels (0.4 mm in the image), and labelling
objects. The labeling operation was similar to that
described for isolating olives in the image.

2.4.3. Characterization of fruit images

After segmentation, the olives were characterized by dif-
ferent features taken from each fruit from all filtered
images (both whole-fruits and the defect extracted).

e Parameters extracted referring to the olives:The colour
coordinates analyzed were RGB and HSV. The RGB
image is transformed into HSV with the ‘rgb2hsv’ rou-
tine of the image processing toolbox, version 6, of Mat-
lab (Mathworks, 2005), which uses the following
equations:

If 4=r; H:(Eg) S=A4—R
_ V = A
N =) 5
If A=g H ] 4 — maximum 2)
If A=g H= (4+2’B) B = minimum

Each colour parameter was separated: Red, Green,
Blue, Hue, Saturation and Value. When the correspond-
ing histograms are studied, the intensity level distribu-
tion contributes to the general description of the
images. Histograms were filtered by a moving average
in order to decrease noise: a window with size of 15 data
were used.
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The following descriptive statistics were used to charac-
terize each histogram: Mean, Median, Maximum,
Mode, Kurtosis, Skewness, Quartile, and Quintile.

e Parameters extracted referring to defects:
Several geometrical parameters were defined and quan-
tified, defined in the nomenclature table.

2.5. Statistical analysis

A covariance matrix for each of the histogram matrices
(123 olives x 256 gray levels) corresponding with the histo-
gram of each colour parameter (R, G, B, H, S and V) was
studied. Note that the diagonal of the matrix corresponds
to the variance of the corresponding gray intensity levels.
Fig. 2 shows an example of the visualization of the covari-
ance matrix.

Significant differences between categories of olives were
determined using variance analysis (one-way ANOVA) was
performed by Statistica (version 6.1; StatSoft, Tulsa,
OK, USA). Next, a Fisher’s least significant difference
(LSD) test was used to determine the significant differences
between group means in an analysis of variance (p < 0.05).
This test was applied to all parameters in order to reduce
the huge amount of parameters analyzed.

The significant variables were introduced into a forward
stepwise discriminant analysis (DA) to obtain the classifi-
cation functions in successive steps. The a priori probability
to belong to each group was set as equal in all cases. The
canonical function obtained is a linear combination of dis-
criminating attributes, being the sum of raw canonical
coefficients multiplied by the coefficients for each function
(StatSoft, 2007).

Three different discriminant analyses (DA) were per-
formed in this work to segregate among defects (N = 123
calibration set). The validation of the model was performed
with a sample of N = 137. Thus, the first DA classified the

-
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Fig. 2. Covariance matrix cov (x;) for the red channel. Areas where
covariance is higher (red) were used to extract two gray levels (x,y) in each
graph as discriminatory variables. (For interpretation of the references to
colour the reader is referred to the web version of this paper.)

olives into two categories: global defects and local defects.
For each group obtained, two successive DA were required
in order to segregate all defects.

3. Results and discussion
3.1. Characterization of fruits

Table 2 shows an ANOVA for the reference values. Let-
ters correspond to the LSD test. Data was arranged
according to fruit weight. Three groups of olives were
found according to the weights: purple olives (5.0 & 1.0
g/fruit), wrinkled olives (1.9 4 0.6 g/fruit), and the rest
(3.5-4.4 g/fruit). Also, the wrinkled olives have a smaller
caliber, as expected in keeping with their weight. With
the characterization of the olives, reference tables were cre-
ated for directed users of the image analysis technology in
order to clarify commercial agreements. As a confidential
result of this study, such tables with the image, colour, size
and firmness of each defect type are now in the hands of
manufactures and producers (Riquelme et al., 2004).

Regarding colour change with ripeness it was verified
that: darker, more red and less yellow olives presented
lower L*, higher a” and higher 5" values, respectively. Thus,
the colour parameters correctly separate the global defects
with a purple colour of skin (‘rehus’, wrinkled, and purple)
from the rest.

Although some catalogued defects are well segregated
by the characterization parameters (Table 2), this is not
sufficient to separate defects in the different commercially
established categories. We thus used the characterization
parameters extracted from the images and their histo-
grams to go on with the classification process by image
analysis.

3.2. Image analysis: calibration and validation

As a first approach, the shape and distribution of the
histograms were enough to indicate that the external
defects can be grouped visually into four classes (Fig. 3):
Skewed Left histogram (‘granizo’ and ‘serpeta’); Normal
(undamaged); Bimodal (‘molestado’) and Skewed Right
(purple, wrinkled, and rehus). This categorization is used
for further discrimination purposes.

Fig. 2 shows the covariance of histogram intensity levels
(256) for the Red channel. Similar figures were created for
the other channels (not shown). The graph shows the sym-
metry of the matrix where both the rows and columns are
reflected by gray levels. The intensity bar on the right
shows the covariance magnitude as represented by the col-
ours in the plot. Higher covariance magnitude indicates a
positive covariance while a lower magnitude indicates a
negative covariance between the pairs of variables. Two
gray levels (x, y) in each graph were selected corresponding
to the highest variance. The resulting variables are
(expressed with the initial letter of the colour parameter
and the number of the gray level selected): Red: R70,
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Table 2

Results of ANOVA for “Manzanilla Sevillana” olives classified into damage type studied

Defect type N Olives/kg g/fruit Height (mm) Equatorial diameter (mm) L a b

Purple 68 200 5.0 (1.0)* 19.3 (1.5)° 22.5(1.9) 28.1 (2.7)¢ 8.1 (3.7)° 2.20 (2.4)°
‘Rehiis’ 23 227 4.4 (1.0)° 18.9 (1.6)*° 22.5(1.7) 42.2 (7.8)° 6.0 (5.8)*° 17.49 (9.2)¢
‘Molestadol’ 49 250 4.0 (0.7)> 17.9 (1.3)° 214 (1.5)° 53.2(6.8)°  —0.2(8.2)° 29.58 (9.2)°
‘Serpeta’ 11 263 3.8 (0.8)°¢  17.9 (1.4) 20.1 (1.5)° 58.7 (5.4  —3.4(6.6) 36.18 (8.7)*°
“Molestado2’ 48 278 3.6 (0.8)¢ 17.0 (1.5)4 20.6 (1.9)° 59.6 (5.2  —5.4 (6.5 37.31 (7.3)*
Undamaged 30 278 3.6 (0.7)¢ 17.0 (1.4)¢ 20.8 (1.3)> 59.8 (3.8)"  —8.0 (2.6)° 39.47 (3.9)
‘Granizo’ 12 286 3.5 (0.7)% 17.3 (1.5) 20.5 (1.6)" 56.6 (1.3  —2.9 (8.0)¢ 34.65 (10.1)°
Wrinkled 19 526 1.9 (0.6)° 13.6 (1.5° 17.0 (1.8)¢ 29.7 (2.4)¢ 3.3 (2.8)° 245 (2.3)°
F of Fisher 36.8 39.7 25.1 253.0 38.3 197.1

Mean (standard deviation).

Note. Different letters (a—e) determine the significant differences between group means; same letters in the same columns, there is no statistical significance

between the defects (p > 0.5).
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Fig. 3. Example of histograms obtained for all gray levels (256) in the red channel, for the different categories of olives with calibration sets. Each curve
corresponds to an olive. The shape of distributions was used to establish groups.

R158; Green: G66, G168; Blue: B71, B110; Hue: H59,
H199; Saturation: S30, S102; and Value: V72, V168.

A Fisher LSD test was used to determine the significant
differences between group means in an analysis of variance.
The purpose of this test was to reduce the number of
parameters analyzed, eliminating those variables which
were totally interrelated within homogeneous groups.

Other authors (Diaz et al., 2004) have used different
grading techniques to sort olives into four classes, getting
the best results with neural networks (90%) compared to
partial least squares and Mahalanobis distance (70%).
However in this work the discriminant analysis technique
(DA) was used because it requires a low number of vari-
ables to create the functions, a low computational power
and it has yielded good results in previous studies (Valero
et al., 2004; Hernandez-Sanchez et al., 20006).

Consecutive DAs in our work included combinations of
colour and morphological features in agreement with sev-

eral authors, to improve discrimination (Kondo et al.,
2000; Leemans and Destain, 2004; Mateos et al., 2005;
Unay and Gosselin, 2006). Until now the image analysis
of small fruits has been based on colour appearance (Utha-
isombut, 1996; Diaz et al., 2004) or just fruit shape. In this
work, the blended use of parameters related to defect
shapes, fruit colours, and histogram curves was proposed
for olives.

In a first discriminant (DA1), the features with the high-
est discriminatory power between global defects and local
defects were included in the resulting linear model:

— One histogram feature: Olive Area
— Several colour features: S30, G66, V72, B110 and B71.

The calibration model was developed with 123 olives:
48 global defects and 75 local defects, with an excellent
percentage of correct classification for both types of
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Discriminant Analysis 1
/ \ Local Defects

CAL 100%
VAL 100%

Global Defects
CAL 100%
VAL 100%

| Discriminant Analysis 3 |

/ | N

Discriminant Analysis 2

Undamag “Granizo” "Molestado2®
“Rehiis” Wrinkled Purple CAL 100% it iy
CAL80% CAL100%  CAL96% | VAL100% VALA0% VAL38%
VAL94% VAL100% VAL 73%
*Serpeta” “Molestado1”
CAL 100% CAL 100%
VAL 50% VAL 86%

Fig. 4. Classification into different categories of olives for three DAs
performed. The percentages refer to fruit classification success rates:
Calibration (CAL) and Validation (VAL).

defects (Fig. 4). The model was validated using the whole
set of olives (N = 137), also with all fruits correctly classi-
fied. Kavdir and Guyer (2004) also worked with histo-
gram features and statistical classifiers, but their results
in apples were significantly lower. However, in our work
histogram features have enhanced discriminatory power
when combined with other parameters in the DAI, as well
as in consecutive DAs, as explained in the following
paragraphs.

A second discriminant analysis was performed (DA2)
trying to distinguish between the global defects. The vari-
ables selected for the linear model with higher discrimina-
tory power between global defects were V72, B71, H59
and Olive Area. The addition of a morphological feature
(Area) in DA2 was very positive. In accord with the find-
ings of Unay and Gosselin (2006), the addition of a local
feature (the intensity of pixels in their case) improved
defect segmentation.

The correct classification percentage of global defects
(Fig. 4) show that Wrinkled olives are the only well-classi-
fied category in this group, probably due to the inclusion of
the ‘olive area’ variable in the model (these fruits are smal-
ler) and their dark colour. The purple olives are sometimes
difficult to segregate from ‘rehds’ when they have several
hits on their skin surface. This is why in Fig. 4, the valida-
tion score of ‘rehds’ shows a percentage increase, as some
purple olives are included.

Table 3 shows the correlation between the features ulti-
mately selected by the DA2 model. There are higher corre-
lations between V72 and B71 of r = 0.94, and also between
B71 and Area olive of r =0.78. Despite these correlation
levels indicate a certain association between the corre-

Table 3
Correlations between colour features for the DA2
V72 B71 H59 Area olive
V72 1
B71 0.94 1
H59 0 —0.01 1
Area olive 0.67 0.78 0.08 1

10 - - r - = . T r

Root 1

Fig. 5. Plot of canonical discriminant function for the DA2. Calibration
(solid symbol) and Validation values (empty symbol) for global defect. (J
Wrinkled, O Purple and A Rebhis.

sponding variables, they were included in the model
because they fulfil the tolerance value set (0.01).

Fig. 5 represents the olives studied in DA2, on a two
canonical function space (root 1 and root 2). As the num-
ber of defect categories to classify in the DA2 is three,
two root functions are necessary. The three categories
are reasonably well segregated by the function lines in
the graph.

Table 4 show the > test results for both successive
roots of DA2, in order to analyze which discriminant
canonical function gives better discrimination. The table
contains the significance test for the two roots (p <0.01),
being both significant. More parameters were also com-
puted, as the eigenvalues (meaning the cumulative propor-
tion of the variance explained by each root), as well as the
canonical correlation, Wilks’ lambda (contribution of each
root to the overall performance) and degree of freedom.
The first function yields a discrimination rate of 76%
between groups while the second function yields one of
90%. Both are highly effective at discrimination. Fig. 5
shows the three groups of defects sorted in this DA2,
which are separated reasonably well according to the per-
centages in Fig. 4.

A third discriminant analysis (DA3) was necessary to
classify among the local defects. In this case the variables
introduced in the stepwise discriminant analysis belong to
colour features and defect features. Finally, the attributes
with higher discriminatory power between global defects
and local defects were ‘Eccentricity’, ‘EquivDiameter’,
‘MinorAxisLength’, ‘Solidity’, ‘Roundness’, ‘MajorAxis-
Length’, ‘Number of objects’ and the olive gray level
V30.

The percentages of correctly classified olives are summa-
rized in Fig. 4, both via calibration and validation. The
calibration of all categories, with the exception of ‘molesta-
do2’, have a 100% score. For validation, only undamaged
olives kept this value.
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Table 4 Table 6
2 tests with successive roots extracted for the DA2 +* tests with successive roots extracted for the DA3
Eigen Canonical Wilks’ »? Degrees of p-Level Eigenvalue Canonical Wilks' »° Degrees of -
value R A freedom R A freedom Level
1 4.06 0.90 008 10771 8 0.000 1 25537 1.00 000  523.68 32 0.000
2 1.35 0.76 0.43 37.15 3 0.000 2 341 0.88 0.11 149.28 21 0.000
3 0.81 0.67 0.48 49.14 12 0.000
4 0.14 0.35 0.87 9.02 5 0.108
Some fruits presented a combination of various defects,
which explains the difficulty of separating them by catego-
ries. However, observations of the original classification
matrix indicate that the olives included in the ‘molestado’
groups are almost always well classified. The reason for
the weak classification with the rest of the defects could
be the poor observation numbers.
For ‘serpeta’ and ‘molestado2’, both defects have similar -

geometry and colour (Fig. 1: olives “b” and “‘i-left”). Thus,
classification scores of ‘serpeta’ and ‘molestado2’ reach
100% for calibration (50% validation) and 93% (38% vali-
dation). Regarding the ‘granizo’ group, the low score for
validation (40%) may be due to the scarce number of sam-
ples in both sets: 7 in calibration and 5 in validation. This is
one of the main limitations of the present study, and clearly
affects the final result.

In this third discriminant analysis (DA3), there are also
higher correlations between some features used (Table 5),
0.93 being the highest correlation coefficient, between
‘EquivDiameter’ and ‘MinorAxisLength’, followed by
0.89 between ‘Roundness’ and ‘Number of objects’. As in
DA2, the tolerance was set to 0.01.

As in DA2 (Table 4), Table 6 shows the values corre-
sponding to each canonical function extracted in DA3.
The numbers of defect categories to classify in the DA2
are five. Thus, four canonical functions are obtained. In
this case, all the functions explain the high percentage of
discrimination between groups. Fig. 6 shows the best repre-
sentation of a canonical discriminant analysis of global
defects for DA3, in a root 1 to root 2 space.

The undamaged olives are perfectly segregated from the
rest of the categories included in DA3; although apparently
in the Fig. 6, the “‘undamaged” samples seem to be fewer
than the real number (16 calibration, 14 validation), this
is only an optical effect. Almost all values of undamaged
olives were represented on the same point (with minimal
differences), due to the fact that all those fruits were free
of defects (being all fruit suitable to be marketed). There-

Table 5
Correlations between segmentation features for the DA3

Undamage

5 10 15 20 25 30
Root 1

Fig. 6. Plot of canonical discriminant function for the DA 3: Rootl and
Root2. Calibration (solid symbol) and Validation values (empty symbol)
for global defect. ¥ Undamaged, [0 ‘Molestadol’, & *Molestado2’,
O * Serpeta’ and A ‘Granizo’.

fore the algorithm used for defect extraction did not detect
any faulty area in them, and consequently all features
included in DA3 (“Eccentricity’, EquivDiameter’, ‘Minor-
AxisLength’, ‘Solidity’, ‘Roundness’, ‘MajorAxisLength’,
and ‘Number of objects’) had a value equal to cero (y axis
in Fig. 6, root 2) except the features ’olive gray level V30’ (x
axis, root 1). There were only some olives of the validation
set which did not fulfill the last conditions (i.e. small area of
purple colour in the skin, detected as a defect by the algo-
rithm), nevertheless the feature classified them as undam-
aged olives.

According to Fig. 4 and Table 6 the canonical correla-
tion value of root function 1 is 100%. Keeping in mind that
several olives presented a mixture of defects, ‘molestadol’
segregates reasonably well (100% calibration, 86%
validation).

Eccentricity Equiv. diameter MinorAxisLength Solidity Roundness MajorAxisLength Number of objects
Eccentricity 1
Equiv. Diameter 0.53 1
MinorAxisLength 0.46 0.93 1
Solidity 0.64 0.61 0.40 1
Roundness 0.49 0.53 0.69 0.08 1
MajorAxisLength 0.73 0.83 0.84 0.39 0.74 1
Number of objects 0.44 0.52 0.68 0.04 0.89 0.7 1
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4. Conclusions

A procedure is proposed that enables the identification
of sound olives as well as a variety of defects based on three
discriminant analyses. This methodology for the classifica-
tion of olives makes use of colour features of the fruit
together with several morphological characteristics of
external defects, which enhances the final performance.

Finally, olive classification into eight classes was ade-
quately achieved. The characterization of olives by means
of image sets aims to provide reliable references which will
be used to evaluate the vision devices of on-line classifica-
tion equipment.

It would be advisable to perform a specific study with a
larger number of samples, although is difficult find more
samples for some defect types.
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