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Abstract

This paper attempts to assess the impact of improved estimates of areal potential evapotranspiration (PE) on the results of two

rainfall–runoff models. A network of 42 PE stations was used for a sample of 62 watersheds and two watershed models of

different complexity (the four-parameter GR4J model and an eight-parameter modified version of TOPMODEL), to test how

sensitive rainfall–runoff models were to watershed PE estimated with the Penman equation.

First, Penman PE estimates were regionalized in the Massif Central highlands of France, a mountainous area where PE is

known to vary greatly with elevation, latitude, and longitude. The two watershed models were then used to assess changes in

model efficiency with the improved PE input. Finally, the behavior of one of the model’s parameters was analyzed, to

understand how watershed models cope with systematic errors in the estimated PE input.

In terms of model efficiency, in both models it was found that very simple assumptions on watershed PE input

(the same average input for all watersheds) yield the same results as more accurate input obtained from regionalization.

The detailed evaluation of the GR4J model calibrated with different PE input scenarios showed that the model is clearly

sensitive to PE input, but that it uses its two production parameters to adapt to the various PE scenarios.
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1. Introduction

What knowledge on the evaporative demand is

necessary to model the rainfall–runoff relationship?

This question is crucial for watershed modelers

since, at the watershed scale, atmospheric loss

through evaporation and transpiration is an obvious

and very often an important component of the

water balance. Until now, studies on the sensitivity

of rainfall–runoff (or watershed1) models to the

uncertainty of their inputs have focused quite

exclusively on rainfall. Although the attention

devoted to rainfall is understandable, it is

striking that so few studies have focused on the

sensitivity of watershed models to potential

evapotranspiration (PE) estimation. As a possible

explanation, we can list the following specificities

of PE estimates
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1. Watershed models need watershed-scale (or grid-

scale) evaporation estimates, and obtaining such

estimates is far from simple. As Brutsaert (1982,

p. 2) points out, ‘the regional estimation of the

other phases in the (hydrological) cycle, such as

precipitation or streamflow, involves formidable

sampling problems. But in the case of evapor-

ation beside sampling, there is also the problem

of simply determining it at a point location’.

2. With PE formulations such as Penman’s, there

often is a problem of data availability. The

Penman formula requires data on air tempera-

ture, total radiation, relative humidity, and wind

speed. As such data are relatively scarce, the

sensitivity of rainfall–runoff models to PE data

is difficult to investigate.

3. Most watershed models can cope numerically

with imperfect PE estimates (note that this

ability exists to a much lesser extent with

rainfall estimates, e.g. Andréassian et al.,

2001). The quite surprising adaptability of

watershed models may have numbed modelers

and led them into believing that estimating the

evaporative demand was not important.

As PE plays a major role in the long-term

watershed water balance, it was feared2 that imperfect

estimates could either impede the calibration of

watershed model parameters or modify their optimal

values, and have a detrimental influence on model

simulations. Therefore, a sensitivity study, whose

aim was to determine the impact of imperfect PE

knowledge on the efficiency and the parameters of

watershed models, was done. It was limited to

Penman estimates, since this formulation is

considered the most physically satisfactory by many

hydrologists (Beven, 2001, p. 60; Shuttleworth,

1993), as well as being the formulation selected by

most meteorological services internationally. After a

review of relevant literature in Section 2 and a

presentation of the study area in Section 3, a three-step

approach will be developed to test the sensitivity of

rainfall–runoff models to PE

(a) First, improved Penman PE estimates are sought

in the Massif Central highlands of France, a

mountainous area where PE is known to vary

rapidly with elevation, latitude, longitude, and

aspect (Section 4).

(b) Two models of different complexity (described

in Section 5) are used to assess changes in model

efficiency with improved PE input quality

(Section 6).

(c) Finally, parameter behavior in one of the models

is analyzed to understand how it copes with

biased estimations of PE input (Section 7).

The above analysis involves a network of 42

meteorological stations, a sample of 62 watersheds,

and two watershed models of different complexity (the

four-parameter GR4J model and an eight-parameter

modified version of TOPMODEL, Table 1).

2. Relevant literature

2.1. Model sensitivity to PE: a neglected area

of watershed model research

One of the first studies of watershed model

sensitivity to errors in PE input was published by

Parmele (1972). The author used three models and a

sample of nine watersheds to assess the impact of PE

errors on model efficiency. He compared streamflows

simulated with erroneous PE to ‘perfect’ synthetic

streamflow, obtained with ‘true’ PE. He used several

rainfall – runoff models tested on a quite large

watershed sample. However, this methodology was

constrained by the available computing power

(models were most often calibrated manually) and

by the excessive optimism prevalent at the time as to

the ability of the largely overparametrized watershed

models used in this study to represent the hydrological

cycle with unique representative parameters. Today,

this approach would not be acceptable, since much

more is known about the detrimental impact of

2 For example, it seems that calibrating a model on a watershed

whose mean elevation is 1000 m a.s.l., with PE data from a

meteorological station located at an airport at an altitude of 300 m,

might introduce a water deficit in the modeling phase that would

only be an artifact. It is believed that, at least in France, this is not an

uncommon engineering practice: most automatic meteorological

stations used for PE computations are located at airports, and some

hydrologists consider that French PE data are representative of an

airport microclimate and not really of their surroundings (C. Scherer,

personal communication).
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overparametrization on the nonuniqueness of the

optimum parameter set, and on the limited but

nonetheless real ability of models to cope with input

errors (Andréassian et al., 2001; Paturel et al., 1995).

However, Parmele was aware of some of these

problems. He recognizes ‘the nonuniqueness of the

model parameters’, and agrees that confronted with

what he calls ‘biased PE data’, a hydrologist can

change model parameters to cope with them. For

Parmele, however, this would lead to ‘accepting a set

Table 1

Characteristics of the 42 weather stations used to regionalize Penman PE in the Massif Central highlands

Station Easting (km) Northing (km) Elevation (m) Mean annual

Penman PE (mm)

Code Name

03060001 CHARMEIL 682 2130 249 771

03155003 LURCY-LEVIS 647 2191 225 722

03185006 MONTLUCON 621 2151 207 809

03200001 NEUVY 673 2173 250 764

03248001 SAINT-NICOLAS-DES-BIEFS 714 2118 1022 578

07068001 COLOMBIER-LE-JEUNE 784 2005 585 937

07131001 LANAS 762 1951 280 1168

11004001 ALAIGNE 581 1790 293 991

11069001 CARCASSONNE 598 1801 126 1080

12145001 MILLAU 655 1902 715 961

12145011 MILLAU-BARRY 657 1900 409 892

12194002 QUINS 604 1915 632 820

12208004 SAINT-AFFRIQUE 641 1885 365 867

12300004 VILLEFRANCHE-DE-ROUER 575 1930 345 804

15014004 AURILLAC 607 1989 639 746

15187006 SAINT-FLOUR 658 2003 909 666

19031008 BRIVE-LA-GAILLARDE 532 2017 111 832

26198001 MONTELIMAR 791 1956 73 1119

30132003 LA GRAND-COMBE 734 1915 288 1144

30189001 NIMES 767 1875 59 1289

30339001 VALLER-MONT AIGOUAL 700 1903 1567 628

30341003 VAUVERT 759 1853 50 1294

34151005 MARSILLARGUES 748 1849 2 1001

34154001 MAUGUIO 731 1843 3 1157

42005001 ANDREZIEUX-BOUTHEON 753 2061 400 850

43046001 CHADRAC 723 2007 714 806

43062001 CHASPUZAC 709 2010 833 715

43096001 FONTANNES 685 2034 435 838

43111002 LANDOS 719 1986 1148 629

46127001 GOURDON 525 1972 259 776

48030001 BRENOUX 695 1946 1019 711

48095005 MENDE 689 1949 932 789

63098001 CHASTREIX 634 2059 1385 625

63113001 CLERMONT-FERRAND 664 2088 329 897

63319002 SAINT-ANTHEME 720 2064 1260 543

63354004 SAINT-GERVAIS-D’AUV 637 2115 705 734

63399001 SAINT-SULPICE 621 2072 850 672

69029001 BRON 802 2084 198 901

69174001 TARARE 759 2107 720 714

69299001 COLOMBIER-SAUGNIEU 814 2087 235 943

82039001 CAYRAC 533 1902 132 718

87085001 LIMOGES 510 2093 402 719

Latitude and longitude are expressed in the extended Lambert II coordinate system.
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of parameters that are not representative of the

hydrologic process being modelled’.

Andersson (1992) used the HBV watershed model

(Bergström, 1995) and compared seven different

methods of computing PE input. He used the same

set of calibrated parameters in each case, allowing

only the precipitation correction factor to compensate

for PE over or underestimates to obtain, over the

calibration period, the same total runoff amount for all

the formulae. Expressed in terms of model efficiency,

the differences between methods were very small. In

terms of model sensitivity, however, we consider that

the actual result of this study is that the HBV model

can probably compensate for PE estimation biases by

adapting its precipitation correction factor without

noticeable efficiency loss. It is interesting to note here

how the author dealt with model adaptability and with

the need to compare the effect of differences in

PET time modulations rather than differences in PET

mean values.

Joukainen (2000) also used the HBV model and

modified the routine for computing actual evapotran-

spiration (AE) from PE to achieve a better represen-

tation of rainfall interception by trees, adding eight

new parameters to the model. She found a very slight

improvement in the calibration results, although she

nearly doubled the degrees of freedom of the model.

Clearly, the HBV model is not sensitive to such

refinements of its AE computation routine.

Paturel et al. (1995) assessed the sensitivity of the

GR2M monthly watershed model to systematic PE

errors. Initially using the same approach as Parmele

(1972), without parameter recalibration, they found

that, compared to errors in rainfall, systematic PE

errors induced much smaller output errors. Then they

studied the ability of the model to compensate for

errors by calibration. They concluded that watershed

models have a certain capacity to ‘absorb systematic

input errors’.

Nandakumar and Mein (1997) studied the effects

of random systematic errors in pan coefficients and

model parameters on the predictions of a rainfall–

runoff model. They used a model with 13 optimized

parameters, into which they introduced a 14th

parameter to adjust potential evaporation from pan

measurements. They found that a bias in the potential

evaporation estimate does not have as great an effect

as one in the rainfall estimate, but that it remains

significant (10% bias in potential evaporation can

cause up to 10% bias in runoff predictions).

Incidentally, the authors noted that the 14th parameter

could take ‘exceptionally high’ values, and suggested

that it was because of ‘moisture leakage from the

catchment (i.e. unknown water losses)’. This illus-

trates how a parameter initially meant for PE

adjustment can be used in a different way by the

calibration process.

In an exercise aimed at demonstrating the adaptive

ability of the IHACRES conceptual watershed model,

Kokkonen and Jakeman (2001) modified the formu-

lation used to compute AE from PE. The modification

resulted in an increase in the contrast in evapotran-

spiration losses as computed by the model: values

were much higher in summer and much lower in

winter. However, this modification did not affect the

ability of the conceptual rainfall–runoff model to

adequately represent the rainfall–runoff relationship.

This is another example of the adaptability of

watershed models: they can use some of their internal

degrees of freedom to balance the inflated amplitude

of evaporative losses and produce acceptable stream-

flow simulations.

Vázquez and Feyen (2003) tested three different

PE formulations as input to the MIKE-SHE model

and calibrated this model with each of the formulae.

The authors report large differences, not only in

control mode (Nash ¼ 76, 44, 39%), but also in

calibration mode (Nash ¼ 73, 66 and 63%). These

substantial differences seem rather surprising, since

the model should have enough degrees of freedom

to adapt to differences in PE estimation. These

results on the sensitivity of a watershed model to PE

input would tend to contradict the rest of the

literature on the subject.

To study the possible advantage of using real

time series instead of long-term averages for PE,

different solutions have been tested with the GR4J

watershed model. Edijatno (1991) used a sample of

ten watersheds, where he compared long-term

averages of 10-day PE and actual 10-day PE as

input in the rainfall–runoff model. He found that

using actual PE could result in a higher as well as a

lower efficiency. Moreover, the mean absolute

change in model efficiency was very slight. With a

different sample of three watersheds and daily PE

data, Kribèche (1994) obtained similar results.
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Fowler (2002) used a daily soil water balance

model, for which he compared simulations made

using actual PE and long-term average PE. He

found that the substitution of actual values with

long-term averages produced a soil water regime

very similar to that derived using actual PE values,

including over relatively extreme periods. All the

above-mentioned results support Burnash’s (1995)

conclusion: ‘in many areas an average annual

evapotranspiration curve appears to be as mean-

ingful as any readily available discrete information’.

Therefore, in this paper, the focus is put on the

evaluation of the long-term averages of PE in

watershed models.

2.2. Two different approaches to the sensitivity

analysis of watershed models

Let us start this discussion by defining what we call

Sensitivity Analysis (SA). SA has several different

meanings: in its broader sense, it studies how the

variation in the output of a model can be apportioned,

qualitatively or quantitatively, to different sources of

variation. SA aims to ascertain how the model

depends on the information fed into it, its structure,

and the framing assumptions made to build it (Saltelli

et al., 2000).

So as not to confound different entities, we propose

to classify the input-related sensitivity analyses of

watershed models into two categories: (1) static and

(2) dynamic.

1. Static sensitivity studies are those that explore

model sensitivity to PE estimates by first obtaining

a calibration considered to be optimal and then

leaving it unchanged. Model sensitivity is assessed

by comparing flows simulated with ‘erroneous’ PE

and flows simulated with ‘perfect’ PE.

2. Dynamic sensitivity studies involve a reference

calibration (and a corresponding reference

streamflow simulation), using a reference PE.

But model recalibration is allowed with erro-

neous PE, and the reference simulation is then

compared to the flow simulated with the

recalibrated watershed model.

Many of the studies described in the literature

follow approach (1) Parmele (1972), Andersson

(1992), Nandakumar and Mein (1997) and Joukai-

nen (2000). The study by Paturel et al. (1995) uses a

mixed approach. The studies by Edijatno (1991),

Kribèche (1994), Fowler (2002) and Vázquez and

Feyen (2003) adopt exclusively approach (2), which

also was chosen in this paper to assess the impact of

imperfect PE knowledge on watershed model

efficiency.

Several authors identified shortcomings in their

static approach to SA: by adapting the precipitation

correction factor of the HBV model, Andersson

(1992) carried out a sort of rainfall re-adjustment to

the change in PE. Similarly, Joukainen (2000)

stated that her approach ‘assumes that other

parameters of the model are not dependent on

the calculation of evapotranspiration’. Since her

conceptual model required calibration, she acknowl-

edged that ‘the changes in any calculation routines

may have an impact on the optimal parameter

values of other routines’.

The proposed classification might also reveal a

more fundamental difference in modeling philos-

ophy: with static sensitivity studies, modelers may

assume implicitly that the true parameters are

watershed-specific (with no decisive influence from

the climatic input data), while with dynamic

sensitivity studies, modelers acknowledge explicitly

that the calibrated watershed parameters are

dependent on climatic input data.

2.3. Which way to go?

It is remarkable that none of the studies reviewed in

this section identified a line of research to improve the

treatment of evapotranspiration in watershed models.

Several explanations are possible

† First, with some notable exceptions (Paturel et al.,

1995; Fowler, 2002), hydrologists interested in

model sensitivity to PE seem to have under-

estimated the adaptive capacity of watershed

models (Bras and Rodriguez-Iturbe, 1976; Bras,

1979; Storm et al., 1989; Andréassian et al., 2001).

They focused on static sensitivity studies, invol-

ving calibration on one type of PE estimate, and

evaluation of several types of alternative PE

formulations without recalibration. Therefore, a

possible explanation for the relatively uninspiring
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results of most previous studies is the static type of

analysis.

† Second, another possible explanation for the

relative insensitivity of watershed models to the

type (actual time series as opposed to long-term

average time series) of PE data is that they vary

little from year to year. In the Massif Central

highlands, for example, the coefficient of variation

of annual PE time series is very low (mean value of

0.08, on a sample of 15 locations).

† Third, it seems that given the data requirements

of the Penman formula, appropriate data are

available only at a few locations. This problem is

particularly acute in mountainous areas, where

PE may vary rapidly in space. If models are fed

with input that does not represent the reality of

climatic forcing at the watershed scale, there

would be little difference in relevance between

actual and average input data.

The investigation reported in this paper focused on

the possibilities of improving watershed modeling

through a better regionalization of mean interannual

PE, and the case of the Massif Central highlands in

France was studied. This region is considered crucial

for water resources, since it covers the headwaters of

several large French rivers such as the Loire, the

Dordogne, and the Tarn, with large hydroelectric

reservoirs as well as important low-flow issues

downstream.

In Section 3, the network of meteorological

stations whose data were used to establish regional

relationships is described, as well as the watershed

sample used to assess the impact of improved regional

PE knowledge on model efficiency.

3. Study area

3.1. Meteorological stations for PE computation

The study area covers the central mountainous part

of France (Massif Central highlands). Elevation

ranges between 100 and 1900 m a.s.l. (median:

700 m). Since the beginning of the 1990 s, the French

Meteorological Service (Météo France) has installed

new automatic weather stations, and the number of

locations where Penman PE is available rose from 14

to more than 50, with an improved representation of

higher elevations. The data from 42 of these stations,

where at least 5 years of data were available (Fig. 1),

were used in this study (Table 1). The elevation of the

stations ranges between 2 and 1567 m (median:

400 m). From daily Penman PE values, annual

and monthly long-term PE averages were produced

for each station and used in the regionalization

(Section 4).

3.2. Test watersheds

A sample of 62 watersheds was used, all of them

situated in the Massif Central area (Fig. 1). The

watershed size varies between 5 and 89 km2

(median: 46 km2). The mean watershed elevation

ranges between 300 and 1430 m a.s.l. (median:

880 m). The watershed land cover is mixed (mainly

forest and pasture). For each watershed, daily

rainfall and runoff over a period of 6 years were

used (3 years for model calibration and 3 years for

model validation).

In Section 4, the initial step of the sensitivity study,

i.e. the regionalization approach by which an

improved watershed-scale estimate of Penman PE

can be obtained and used as input in the rainfall–run-

off models, is described.

4. Improved estimation of potential

evapotranspiration (PE) in the massif central

highlands

Since we suspected that the lack of sensitivity to

the PE input could be attributable to its lack of

accuracy, we initially tried to improve the PE data fed

into rainfall–runoff models for watersheds where PE

estimates could be deemed unsatisfactory because of

the great variation in elevation. First, the results of

regression equations are discussed at annual and

monthly time steps. Then a Fourier series develop-

ment for the monthly time step is presented, and it is

shown how, with a simple time-scale change, the

monthly equation can be adapted to yield long-term

daily averages.
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4.1. Regionalization of annual PE and its climatic

interpretation

The investigation was started with a standard

multiple regression on annual long-term averages, to

see if, at least at that time step, PE totals could be

explained by longitude ðXÞ; latitude ðYÞ and elevation

ðZÞ; as proposed in Eq. (1)

PE ¼ a þ bX þ cY þ dZ þ 1 ð1Þ

The results of the regression with an annual time step

proved encouraging: the three independent variables

were significant (Table 2), and thus explain 84% of

the PE variability in the Massif Central highlands.

The results show that in the study area, PE

decreases by 29 mm/100 m of elevation, decreases

by 82 mm/100 km northwards, and increases by

92 mm/100 km eastwards. This last trend can be

interpreted as an effect of continentality, as the main

moisture source is the Atlantic Ocean, to the west of

the area.

4.2. Regionalization of monthly PE

The same kind of regional relationship can

be established at a monthly time step, as shown in

Fig. 1. Location of the 62 test watersheds and the 42 weather stations. The weather stations for which data presented are noted by a letter:

Clermont-Ferrand (a), Lyon (b), Brives (c), Saint Flour (d), Mont Aigoual (e), and Carcassonne (f).

Table 2

Parameter estimates for the linear regression in Eq. (1)

Parameter a bðXÞ cðYÞ dðZÞ

Unit mm mm/km mm/km mm/m

Estimated value 2015 0.92 20.82 20.294

Student ratio (estimated

value/standard deviation)

7.9 5.9 26.9 29.4

Significance level .99 .99 .99 .99
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Eq. (2) below

PEi ¼ ai þ biX þ ciY þ diZ þ 1i

with i ¼ 1 to 12

ð2Þ

Parameters and regression results are given in Table 3,

which shows that geographic variables provide a good

explanation of the spatial variations in monthly

Penman PE from February to October, but a less

satisfactory explanation during the three winter months

(November through January). Explanatory variables,

however, remain highly significant throughout the

year. Note that elevation is the variable whose weight

varies the most during the year (in a ratio of 1:7), while

the weights of X and Y vary in a 1:3 ratio only.

4.3. Fourier series development

The regularity of the evolution of monthly

parameters in the course of a year (Table 3) suggested

that a Fourier series development might be used to

reduce the number of parameter. We followed

Fennessey and Vogel (1996), who proposed a

development of the second order for the northeast of

the United States. For xi; successively equal to

ai; bi; ci; and di (from Eq. (2)), this development can

be written

xi <
A0

2
þ

X2

n¼1

An cos
nip

6
þ Bn sin

nip

6

� �
ð3Þ

with

An ¼
1

6

X12

i¼1

xi cos
nip

6
ð4Þ

Bn ¼
1

6

X12

i¼1

xi sin
nip

6
ð5Þ

A0 ¼
1

6

X12

i¼1

xi ð6Þ

The Fourier series development parameters are given

in Table 4.

The Fourier series development presents two

advantages

† First, it reduces the number of explanatory

parameters (20 instead of 48);

† Second, it makes interpolation (Eqs. (7) and (8))

easy and suggests a usable formula at a daily time

step, i.e. the time step used in our watershed

models.

PEj ¼ aj þ bjX þ cjY þ djZ þ 1j

with j ¼ 1; 2;…; 365

ð7Þ

Table 3

Parameter estimates for the linear regression in Eq. (2)

Month a

(mm)

bðXÞ

(mm/km)

cðYÞ

(mm/km)

dðZÞ

(mm/m)

R2

1 83 0.05 20.04 20.008 0.57

4.0 3.9 24.6 23.2

2 96 0.05 20.05 20.013 0.69

4.9 4.2 25.2 25.6

3 123 0.06 20.05 20.023 0.79

5.9 4.7 24.9 29.0

4 151 0.08 20.06 20.032 0.81

5.7 4.7 24.5 210.0

5 209 0.07 20.07 20.036 0.82

7.4 4.2 25.2 210.4

6 281 0.10 20.10 20.044 0.85

8.4 5.0 26.6 210.7

7 304 0.15 20.12 20.043 0.84

8.0 6.5 26.7 29.3

8 261 0.13 20.10 20.037 0.79

6.9 5.7 25.8 28.0

9 227 0.08 20.10 20.030 0.77

6.9 4.1 26.2 27.5

10 123 0.05 20.05 20.013 0.69

6.2 4.0 25.4 25.5

11 86 0.05 20.04 20.008 0.56

4.1 3.9 24.6 23.0

12 72 0.05 20.04 20.006 0.59

4.1 4.5 24.8 22.9

The student ratio—estimated value/standard deviation—is

given in italics.

Table 4

Parameters for the Fourier series development (Eq. (3)) to compute

monthly PE in the Massif Central highlands

Fourier series

parameter

a bðXÞ cðYÞ dðZÞ

A0 335.8 0.153 20.137 20.0490

A1 2100.4 20.036 0.030 0.0190

B1 245.2 20.018 0.019 0.0023

A2 4.7 0.003 20.002 0.0006

B2 25.3 0.019 20.013 20.0017
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With xj—successively equal to aj; bj; cj; and dj—com-

puted as

xj <
12

365:25

A0

2
þ

X2

n¼1

An cos
ðj þ 15Þ2pn

365:25

�"

þBn sin
ðj þ 15Þ2pn

365:25

��
ð8Þ

In Fig. 2, examples of fits for six sites spread

throughout the Massif Central area are presented.

4.4. Conclusion from the results of PE regionalization

in the Massif Central highlands

With a satisfactory regionalization formula for

Penman PE, the watershed models can be provided

with a PE estimate that takes into account the position

and mean altitude of each watershed in the area. This a

priori truer input should improve the ability to

represent the rainfall–runoff relationship on the

study watersheds: this is what will be checked in

Section 6, after a short presentation of the watershed

models (Section 5).

5. Models and methods

5.1. Models

Two simple, continuous lumped watershed models

were used at a daily time step

† The conceptual four-parameter GR4J model

(belonging to a family of models developed at

Cemagref, beginning in the early 1980 s and

widely used in France). Perrin et al. (2003) present

the model structure in detail.

† An eight-parameter modified version of TOPMO-

DEL (here, called TOPMO), which uses a

parameterized analytical expression of the soil-

topographic index distribution (Beven and Kirkby,

1979; Beven et al., 1995). Details of the model

structure can be found in Michel et al. (2003).

Here, both model structures were used in a lumped

mode and fed with the same data, i.e. rainfall–runoff

time-series and PE estimates. A detailed discussion of

model structures is not within the scope of this paper;

only their structures are shown in Fig. 3.

The models selected are fairly different: they use

their own parametrization of the rainfall– runoff

transformation, and have distinct flexibility levels.

We expect that by using these two different models,

more general results will be obtained.

In calibration, the commonly used Nash and

Sutcliffe (1970) goodness-of-fit criterion was used as

the objective function. A description of the automatic,

maximum-gradient optimization procedure used here

is given in Edijatno et al. (1999).

5.2. Method of comparison and expected results

To study the impact of a better regional knowledge

of PE on watershed model efficiency, the split-sample

test procedure recommended by Klemeš (1986) was

applied such that for each watershed, the model was

calibrated on a 3-year period, and the results obtained

in simulation on a different 3-year period were used as

a measurement of model efficiency. As each of the 3-

year periods can also be a calibration or a validation

period, a total of 2 £ 62 ¼ 124 efficiency measure-

ments were obtained for each model, in the validation

mode. From these 124 efficiency values, an exper-

imental cumulative probability function of efficien-

cies can be defined that characterizes each model.

What results can be expected? In principle, the

model efficiency should improve because better

knowledge of the meteorological demand by the

watershed (through better spatial interpolation) is

obtained. If no model efficiency improvement is

achieved, then the problems probably lie within the

watershed models.

6. Impact of improved potential

evapotranspiration (PE) estimates on watershed

model efficiency

In this section, the results are discussed in terms of

model efficiency. The GR4J and TOPMO models,

with five different PE inputs, were tested successively.

The five scenarios—from (a) to (e)—are presented in

Table 5. Note that for variants (a)–(c), all watersheds

were fed with the same PE input, irrespective of their
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location. For variants (d) and (e), PE input was

watershed-specific.

Results are presented in Fig. 4 for GR4J and

TOPMO. Both models show very similar behavior,

i.e. overall, they seem remarkably insensitive to

the differences in PE data, as shown by mingled

(braided) efficiency distributions. It is concluded

that

† The only PE scenario that clearly decreased model

efficiency ratings is what we have termed the High

scenario (a). Both GR4J and TOPMO suffer from

Fig. 2. Examples of the monthly variation in PE in the Massif Central highlands for six locations). The letter also refers to the location on the map.

V. Andréassian et al. / Journal of Hydrology 286 (2004) 19–3528



this likely overestimation in PE. Here, the model

sensitivity to the PE overestimate does not depend

on the level of model complexity: TOPMO, with

eight calibrated parameters (two of which are

specific to the function which transforms PE to

actual evapotranspiration, AE) reacted as strongly

as GR4J, with only four calibrated parameters.

† Also common to both TOPMO and GR4J is that no

difference was found between the model efficiency

distributions of the Average (c) and Regionalized

(e) scenarios.

† There is a slight difference in the reaction to

scenarios (b) and (d). GR4J does not differentiate

between (d) and the two best scenarios (c and e),

but TOPMO shows intermediate results with

scenario (d). Concerning the Low estimate (b),

Fig. 3. Diagrams of GR4J (a), and TOPMO (b) models.

Table 5

Definition of the five scenarios tested to assess model sensitivity to

PE input

PE scenario

name

Input used Explanation

(a) High The PE of the Nı̂mes

meteorological station

is used for all

watersheds

As Nı̂mes has the

highest PE in the area,

this scenario

overestimates the PE

input to all watersheds

(b) Low The PE of the Mont

Aigoual

meteorological station

is used for all

watersheds

As Mont Aigoual has

the lowest PE in the

area, this scenario

underestimates the PE

input to all watersheds

(c) Average The PE obtained from

the regional formula

(Eq. (8)), for a point

located at the center of

the Massif Central and

at the mean elevation

of the area, is used for

all watersheds

This average scenario

probably

underestimates the PE

input for some of the

watersheds and

overestimates it for

the others

(d) Classical The PE data for the

closest synoptic

meteorological station

is used at each

watershed site

This approach is

classical in the sense

that it is the common

practice in France in

the absence of

regionalized

information

(e) Regionalized The PE obtained from

the regional formula

(Eq. (8)), for a point

located at the center

of the watershed and at

the mean elevation of

the watershed is used

This scenario is

considered the best

estimate of PE input in

all of the watersheds

studied

Note: all five scenarios use long-term averages; the same Julian

day has the same PE amount every year.
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GR4J appears slightly perturbed by systematic PE

underestimates, whereas TOPMO sees no differ-

ence between this scenario and the two best ones

((c) and (e)).

At this point, a question arises: are watershed

models simply insensitive to their PE inputs, or are

they able to adapt to different PE scenarios?

The answer is sought in Section 7.

7. How do watershed models adapt to imperfect

PE input?

Surprisingly, in Section 6 an improvement in

model efficiency distribution only was observed when

comparing results of very crude PE estimates

(the High (a) and sometimes the Low (b) scenario)

with results of the regionalized approach. There was

no noticeable difference in efficiency between a

rainfall– runoff model fed with an Average PE

(scenario c) and a model fed with a Regionalized PE.

In this section, the ability of the automatic

calibration procedure to adapt to different PE

scenarios (while maintaining the model’s ability to

represent the rainfall–runoff relationship) is studied.

Here, only GR4J is considered because its parsimony

makes it easier to analyze the role of each parameter

separately (Table 6 lists the parameters of GR4J and

their signification). First the distributions of par-

ameters obtained with the High (a), Low (b) and

Average (c) PE inputs are compared (Fig. 5), and then

the distributions of parameters obtained with the

Average (c), Classical (d) and Regionalized (e) PE

inputs (Fig. 6) are interpreted.

7.1. Comparison of parameter distributions: high (a),

low (b) and average (c) PE scenarios

7.1.1. Production parameters

We here comment on the first part of Fig. 5

† Capacity of the production reservoir ðX1Þ:

The capacity of the GR4J production reservoir
Fig. 4. Distribution of (a) GR4J and (b) TOPMO results over 62

watersheds for five different PE inputs (see Table 6 for a definition

of the five PE scenarios). Table 6

List of parameters of the GR4J model

Parameter Parameter signification

Production module X1 Capacity of the production

reservoir (mm)

X2 Water exchange coefficient (mm)

Transfer module X3 Capacity of the nonlinear

routing reservoir (mm)

X4 Unit hydrograph time base (day)
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Fig. 5. Distribution of the parameters of GR4J over 62 watersheds

for three extreme PE input scenarios: (a) High, (b) Low, (c) Average

(all watersheds are fed with the same input). See Table 6 for a

definition of the scenarios.

Fig. 6. Evolution of the distribution of GR4J parameters following

an improvement in PE input: (d) classical: knowledge limited to

data of the synoptic network, (e) regionalized: improved regiona-

lized knowledge. The Average scenario (c) stands as reference. See

Table 6 for a definition of the scenarios.
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does not seem to be affected by PE over-

estimates. However, the model reacts to under-

estimates by reducing this capacity. The absence

of symmetric behavior might indicate that the

Penman PE itself is already overestimating

watershed-scale PE: when PE is further over-

estimated, no adaptation is possible.

† Water exchange coefficient ðX2Þ: The most

obvious reaction by GR4J to PE over and

underestimates is observed with the water

exchange coefficient, which represents under-

ground leakage from/to the watershed. X2 adapts

logically: an overestimate produces quite exclu-

sively positive values (i.e. underground inflow to

the watershed), whereas an underestimate results

in mostly negative values (i.e. underground

outflow from the watershed). This interaction is

not a surprise. It shows how it is difficult to

extricate the various processes that are behind

parameters, even in the simplest models. X2; and

the function attached to it, had been initially

incorporated to model intermittent basins.

7.1.2. Routing parameters

We here comment on the second part of Fig. 5

† Capacity of the non-linear routing reservoir (X3).

The GR4J model adapts to PE overestimates by

reducing the capacity of its nonlinear routing

reservoir and to PE underestimates by increasing

this capacity. It was not expected that PE under

and overestimates would affect a parameter

pertaining to the routing function, but this

demonstrates the interdependence between all

the constituent parts of a model. An explanation

can only be found a posteriori. It may be

assumed that PE underestimation induces an

increased capacity to generate effective rainfall,

because the soil moisture reservoir is less easily

depleted. To avoid producing overly high flows,

the automatic calibration increases the capacity

of the routing reservoir: more effective rainfall

can be stored and then released more regularly.

Another possible explanation lies in the math-

ematical formulation of water exchanges: the

observed behavior of the routing reservoir could

be a consequence of its interaction with the

exchanges.

† Unit hydrograph time base (X4). This routing

parameter is unaffected by the choice of PE

input scenario. This is easy to understand, since

this parameter only helps to fit the lag between

peaks of rainfall and runoff.

As a preliminary conclusion, it can be said that the

GR4J watershed model, used here as an example, can

rely on its two production parameters to adapt to

imperfect PE input. The most sensitive parameter is a

production parameter (X2; the water exchange

coefficient). One of the routing parameters (X4, the

unit hydrograph time base) remains unaffected by the

differences in estimated PE input, while the second

routing parameter (X3, the routing reservoir capacity)

is sensitive. This behavior is rather surprising, and is

discussed further in Section 7.2.

7.2. Comparison of parameter distributions: average

(c), classical (d) and regionalized (e) PE scenarios

It was noted in Section 6 that PE estimation

scenarios (c)–(e) produced very similar efficiency

distributions for GR4J. In contrast, there is often a

clear distinction between the distributions of the

parameters calibrated within these scenarios. This

means that the model definitely is sensitive to PE

input, but that it is flexible enough to accommodate

imperfect input and compensate for it, so that nothing

convincing can be detected in terms of sheer

efficiency as evidenced in Fig. 4.

Fig. 6 shows three different behaviors of GR4J

parameters

1. In the case of the unit hydrograph time base ðX4Þ;

all three distributions are similar. This is logical: as

already noted, this parameter is not sensitive to PE

input;

2. In the case of the first production parameter, the

capacity of the production reservoir ðX1Þ;

the parameter distribution is quite similar in the

Regionalized (e) and the Average (c) scenarios,

but differs from that in the Classical (d) scenario.

This probably means that the distribution of this

parameter only depends on the total PE amount. In

fact, the Average scenario provides a PE amount

very close to the mean PE input in our 62

watersheds, while the Classical scenario, which
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uses low-elevation synoptic weather stations, over-

estimates the mean PE input to the watershed

sample.

3. The second production parameter (the water

exchange coefficient, X2) and one of the routing

parameters (the capacity of the nonlinear routing

reservoir, X3) behave similarly: their distributions

are nearly identical in the Average (c) and the

Classical (d) scenarios, but differ from the

distribution in the Regionalized (e) scenario. This

similarity in behavior argues for an interaction

between these two parameters, and it can be

considered that routing parameter X3 is contami-

nated by the sensitivity of X2 to PE input. The

cause of this so-called contamination may be the

fact that, in GR4J, water exchanges are computed

(Eq. (9)) as a function of X2 and of the water level

in the routing store (Perrin et al., 2003).

exchange ¼ X2
water level in the routing store

X3

� �
3:5

ð9Þ

8. Conclusions

8.1. Synthesis

The objective of this paper was to study the impact

of using a priori improved estimates of areal PE as

input in watershed models. In the Massif Central

highlands of France, a successful regionalization of

Penman PE was obtained, and the impact of these

better estimates of PE on the efficiency of two

watershed models, GR4J and TOPMO, was studied.

No difference between improved and basic PE

estimation strategies was found in terms of model

efficiency in a sample of 62 watersheds. Furthermore,

very simplistic assumptions on watershed PE input

(the same average input for all watersheds) yielded

similar efficiency distributions. The watershed models

tested here were only sensitive to the crudest PE

overestimation scenario.

However, the parameter distributions for the GR4J

model in different PE input scenarios indicated that

the model reacted to the change in PE input through

its parameters, which were consequently adjusted to

different PE inputs.

The results reported here may seem evident to

experienced watershed modelers, who are aware of

the ability of the calibration process to compensate

for biased input data, and of models to yield

accurate results, as long as the application input is

similarly biased. However, recent results such as

those of Vázquez and Feyen (2003) seem to be

contesting this ability of watershed models, and we

thus believe that a debate needs to be opened

between modelers on this topic.

8.2. Questioning the PE concept at the watershed

scale

The above results are both reassuring and dis-

concerting

† Reassuring from a practical point of view, because

if a perfect PE input was needed to run a watershed

model successfully, such models would be rarely

used in an engineering context. As such, the

adaptability of watershed models is a good thing.

† Disconcerting from a modeling point of view, as

it seems somewhat illogical that a priori

improved knowledge of the evaporative demand

does not translate into improvement in the

efficiency of watershed models.

If average, simplistic assumptions on the evapora-

tive demand are sufficient to represent the rainfall–

runoff relationship, two questions arise

† First, are conceptual watershed models3 efficient in

their use of such an important boundary condition

as PE?

† Second, is Penman PE relevant as climatic

forcing to watershed models? This question was

raised by Bouchet (1963), who proposed a

complementary relationship between PE and AE

at the scale of several square kilometers. This

idea was further pursued by Brutsaert and

Stricker (1979) and Morton (1983, 1994). The

latter author even considered it ‘likely that the

use of the Penman equation to estimate

3 Only two models were tested in this paper, but the hydrological

literature leads us to believe that the results are valid for most, if not

all, watershed models used in hydrology.
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evaporation from hydrologically significant areas

has no real future, being merely an attempt to

force reality to conform to preconceived concepts

derived from small wet areas’. This question

surely requires further investigation, on which we

will report in due course.
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