
A comparative assessment of efficient uncertainty analysis

techniques for environmental fate and transport models:

application to the FACT model

Suhrid Balakrishnana,b, Amit Royb, Marianthi G. Ierapetritoua,
Gregory P. Flachc, Panos G. Georgopoulosb,*

aDepartment of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
bEnvironmental and Occupational Health Sciences Institute, UMDNJ—R.W. Johnson Medical School and Rutgers University,

Piscataway, NJ 08854, USA
cSavannah River Technology Center, Savannah River Site, Aiken, SC 29808, USA

Received 27 June 2003; revised 27 September 2004; accepted 1 October 2004

Abstract

This work presents a comparative assessment of efficient uncertainty modeling techniques, including Stochastic Response

Surface Method (SRSM) and High Dimensional Model Representation (HDMR). This assessment considers improvement

achieved with respect to conventional techniques of modeling uncertainty (Monte Carlo). Given that traditional methods for

characterizing uncertainty are very computationally demanding, when they are applied in conjunction with complex

environmental fate and transport models, this study aims to assess how accurately these efficient (and hence viable) techniques

for uncertainty propagation can capture complex model output uncertainty. As a part of this effort, the efficacy of HDMR, which

has primarily been used in the past as a model reduction tool, is also demonstrated for uncertainty analysis. The application

chosen to highlight the accuracy of these new techniques is the steady state analysis of the groundwater flow in the Savannah

River Site General Separations Area (GSA) using the subsurface Flow And Contaminant Transport (FACT) code. Uncertain

inputs included three-dimensional hydraulic conductivity fields, and a two-dimensional recharge rate field. The output variables

under consideration were the simulated stream baseflows and hydraulic head values. Results show that the uncertainty analysis

outcomes obtained using SRSM and HDMR are practically indistinguishable from those obtained using the conventional Monte

Carlo method, while requiring orders of magnitude fewer model simulations.
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1. Introduction

The presence of uncertainty often complicates the

mechanistic modeling of physical systems. Uncer-

tainty arises in such modeling efforts through various

channels: natural or irreducible uncertainty, wherein

the physical system being modeled itself is inherently

uncertain (Brownian motion, etc.); model uncertainty,

which is engendered through many correlated factors

such as model structure and approximations used,

extrapolations and model boundaries, and model

resolution; parametric and data uncertainty, which

include experimental and data measurement errors,

imprecise device calibration biases, etc.

The purpose of systematic uncertainty analysis is

to provide insight into the level of confidence in

model estimates, identify key sources of uncertainty,

and quantify the degree of confidence in the existing

data and models. The first step in such an analysis

requires the selection of an approach for the

representation of uncertainty. Of the gamut of

techniques available (set theory, interval mathemat-

ics, fuzzy set theory, etc.) probabilistic and statistical

representation of uncertainty has gained extremely

wide acceptance and is the approach adopted in this

study.

Monte Carlo methods are the most widely used

techniques for statistical/probabilistic uncertainty

analysis, with diverse applications. Given input

uncertainty distributions (frequency or probability

density data) these methods involve repeated gener-

ation of pseudo-random instantiations (sampling) of

inputs followed by application of the model to these

instantiations to yield a set of model responses. These

model outputs are then further analyzed statistically.

An established disadvantage of these traditional

sampling based techniques is the large number of

model simulations required to achieve acceptable

levels of confidence about model output uncertainty

characterizations. The large numbers of samples (and

hence model simulations) required imply that the

applicability of these methods is sometimes limited to

relatively simple models. In the case of computation-

ally intensive models, the time and resources required

by these methods can easily prove to be prohibitively

expensive.

The motivation underlying the development of the

Stochastic Response Surface Method (SRSM) was
precisely to reduce the number of model simulations

required for adequate estimation of uncertainty, as

compared to conventional methods. This is accom-

plished by approximating both inputs and outputs of

the uncertain system through series expansions of

standard random variables; the series expansions of

the outputs contain coefficients which can be

calculated from the results of a limited number of

model simulations. The net result is to create a

statistically equivalent polynomial approximation to

the model outputs.

Another tool developed in order to express input–

output relations of complex, computationally burden-

some models in terms of hierarchical correlated

function expansions is the High Dimensional Model

Representation (HDMR). Application of the HDMR

methodology to a complex nonlinear model also

provides an efficient means to obtain an accurate

reduced model of the original system. The uncertainty

analysis of the outputs of the computationally

burdensome model can then be well approximated

by a Monte Carlo analysis of the corresponding

reduced model outputs, which is thus performed at a

much lower computational cost without compromis-

ing accuracy (as shown in the analysis that follows).

The uncertainty analysis of the simulation of

saturated groundwater flow beneath the US Depart-

ment of Energy (USDOE) Savannah River Site

General Separations Area (GSA) using the subsurface

Flow And Contaminant Transport (FACT) code has

many desirable features that make it a good case study

for the comparison of various methods of efficient

uncertainty analysis. On one hand, the model inputs,

such as conductivity fields and recharge rate fields, are

inherently uncertain but can be fairly well character-

ized, and on the other hand the model is complex,

involving the use of the finite element method for

numerical solution of the continuity equation and

Darcy’s Law, resulting in significant computational

demand.

The objective of this work is to show that newly

available uncertainty analysis techniques, like SRSM

and HDMR, represent output uncertainties very well

in complex fate and transport models, while being

orders of magnitude more efficient computationally,

as compared to traditional Mote Carlo techniques. In a

separate recent publication (Balakrishnan et al., 2003)

it was shown how SRSM can be used to facilitate
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a Bayesian uncertainty reduction analysis; however,

the focus of the present article is the computational

challenge of the uncertainty analysis itself. That said,

readers may find a comparison of the results of the

final uncertainty analysis (based on the posterior

distributions) in Balakrishnan et al. (2003) and of the

results obtained in this manuscript, interesting in its

own right (as the present approach would correspond

to an uncertainty analysis based on the prior

distributions in that article). The following sections

of this article outline the model and case study,

describe the methods used (Monte Carlo, SRSM and

HDMR), and finally present the results of the

comparative analysis and related conclusions.
2. Problem description and modeling

2.1. Model description: FACT applied to the GSA

The GSA of the USDOE Savannah River Site

covers an area bounded by Fourmile Branch on
Fig. 1. The simplified conceptual model of the general separations area

mechanisms.
the south, Upper Three Runs on the north, F-area on

the west, and McQueen Branch on the east (Flach and

Harris, 2000). The GSA model covers the above area

and extends from the ground surface to the bottom of

the Gordon Aquifer (Fig. 1).

Groundwater from the Upper Three Runs (UTR)

Aquifer unit is assumed to discharge equally from

each side of Upper Three Runs, Fourmile Branch and

McQueen Branch. Therefore, these streams provide

natural, no-flow boundary conditions for most of the

UTR Aquifer unit. On the west side of the unit,

hydraulic head values from a contour map of

measured water elevations are prescribed. The

Gordon Aquifer is assumed to discharge equally

from both sides of Upper Three Runs and so a no-flow

boundary condition is specified over the north face of

the model. Lacking natural boundary conditions,

hydraulic heads are specified over the west, south

and east faces of the model within the Gordon

Aquifer. Areas of groundwater recharge and discharge

consistent with computed hydraulic head at ground

surface are computed as part of the model solution
showing the various aquifer units, recharge/discharge areas and



Fig. 2. Flowchart showing the FACT code capabilities and describing the problems it is suited to handle.

Fig. 3. A typical model cross-sectional view showing hydrostratigraphy and log10(Kh) field of the GSA simulated by FACT.
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using a combined recharge/drain boundary condition

applied over the entire top surface of the model.

Groundwater discharges to surface water in regions

where the computed head is above ground elevation.

The subsurface FACT code is a transient three-

dimensional, finite element code designed to simulate

isothermal groundwater flow, moisture movement, and

solute transport in variably saturated and fully

saturated subsurface porous media (Hamm and Ale-

man, 2000) (Fig. 2). The code is designed specifically

to handle complex multi-layer and/or heterogeneous

aquifer systems in an efficient manner and accommo-

dates a wide range of boundary conditions. The code

uses simple rectangular (plane or brick) elements and

also offers great flexibility in creating grids for

complex flow domains.

The groundwater flow equation is approximated

using the Bubnov–Galerkin finite element method in

conjunction with an efficient symmetric PCG (pre-

conditioned conjugate gradient, ICCG) matrix solver.

The solute transport equation is approximated using

an upstream-weighted residual finite element method

designed to overcome (or alleviate) numerical oscil-

lations. Transport mechanisms considered include:

advection, hydrodynamic dispersion, linear equili-

brium adsorption, mobile/immobile first-order mass

transfer, first-order degradation and radioactive decay

effects.

The area resolution of the model is approximately

18.6 m2 except in peripheral areas. There are 108

elements along the east–west axis, and 77 elements

along the north–south axis. The vertical resolution

varies depending on hydrogeologic unit and terrain/

hydrostratigraphic surface variations. Each hydrostra-

tigraphic surface is defined by numerous picks

ranging in number from approximately 70–375

depending on the surface. The Upper Aquifer Zone

(UAZ) of the UTR Aquifer unit is represented with

nine finite-elements in the vertical direction. The

vadose zone is included in the model. The Lower

Aquifer Zone (LAZ) contains five finite-elements

while the Tan Clay Confining Zone (TCCZ) separ-

ating the aquifer zones is modeled with two vertical

elements. The Gordon confining and Aquifer units

each contain two elements, for a total of 20 vertical

elements from ground surface to the bottom of the

Gordon Aquifer. The three-dimensional mesh size

is therefore 108!77!20Z166,320 elements or
109!78!21Z178,542 nodes. A typical model

cross-sectional view can be seen in Fig. 3.

Hydraulic conductivity values in the model are

based directly on a large characterization database

comprised of approximately 85 pumping and 481 slug

test data points, 258 laboratory permeability measure-

ments, and nearly 37,500 lithology data records. The

conductivity field is heterogeneous within hydrogeo-

logic units and reflects variations present in the

characterization data. The initial conductivity values

are further refined through model calibration to

observed heads in wells.

Prior groundwater budget studies provide an

estimate into the average natural recharge over the

entire model domain. Various man-made features

(e.g. basins) provide additional recharge in localized

areas.

The estimated discharge rates to Upper Three

Runs, Fourmile Branch, McQueen Branch, and

Crouch Branch and predicted seepage faces within

the model domain are consistent with field obser-

vations. Simulated hydraulic heads, vertically aver-

aged over the entire thickness of the upper UTR,

lower UTR, and Gordon Aquifer zones, agree well

with potentiometric maps based on measured heads.

Simulated flow directions vertically averaged over

the entire thickness of the aquifer zones further agree

with conceptual models of groundwater flow.

2.2. Uncertainty analysis: problem formulation

The three-dimensional conductivity fields and the

two-dimensional recharge rate field are the uncertain

inputs to the saturated flow model for the case study

considered in this work. Each zone is heterogeneous

and through preliminary analysis, five key uncertain

variables for the GSA simulated by the FACT model

were identified, namely: the horizontal conductivity

field (Kv) values for the Gordon Confining Unit

(GCU) and the Tan Clay Confining Zone (TCCZ), the

vertical conductivity field (Kh) values for the Lower

UTR Aquifer Zone (LAZ) and the Upper UTR

Aquifer Zone (UAZ) and the recharge rate (RECH).

The problem was simplified for this study by

individually assigning a global multiplier to each of

the three-dimensional conductivity field variables as

well as one to the two-dimensional recharge rate field.

The global multiplier assumption retains spatial
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variability although in a restricted setting. Specifi-

cally, it ensures that relative spatial variations dictated

by characterization and subsequent model calibration

are preserved, while the variable values of the entire

field are perturbed in the uncertainty analysis (Flach

and Harris, 2000).

As a further simplification, these global multiplier

variables were treated as independent random vari-

ables with distributions determined using the best

available engineering estimates taking into account

field observations. Note that while these are (necess-

ary) simplifications made to render the problem

analytically tractable, in our opinion and experience

(taking into account the FACT model, GSA field

observations and results of the analysis) although they

might be slightly simplistic, they are entirely

reasonable.

The details of these input distributions are shown

in Table 1 (note: the log10Normal (m,s) distribution

refers to a random variable whose log (base 10) of the

distribution results in a Normal distribution N(m,s)).

The main output variables considered were the

simulated hydraulic head values in the various

aquifers (direct model outputs) as well as the stream

baseflows in the three main discharge regions (Crouch

and McQueen Branches and the Upper Three Runs)

which are model post processed results. The hydraulic

head values used for this study were obtained from the

code at specific locations (locations where wells were

drilled and field measurements taken for model

calibration uses) and could be grouped according to

their corresponding aquifer. The three groups have 79,

173 and 415 wells located in the upper UTR, lower

UTR and Gordon Aquifer zones, respectively (a total

of 667 wells). The problem addressed in this work was

the determination of the empirical distribution
Table 1

Distributions of the uncertain inputs (global multipliers for the

conductivity fields and recharge rate field) for the uncertainty

analysis study

Variable Units Distribution type Parameters (m,s)

GCU Kv m/d log10 Normal K5.516, 0.2286

LAZ Kh m/d log10 Normal 0.4525, 0.0046

TCCZ Kv m/d log10 Normal K2.716, 0.1524

UAZ Kh m/d log10 Normal 0.4663, 0.046

RECH cm/year Normal 45.72, 7.87
functions (and typical probability density functions)

of the outputs, in the face of the parametric

uncertainty as outlined above. It serves to note that

it was not only important to have estimates of the

output distributions but also to have some indication

of how good such estimates were.
3. Methods used for uncertainty analysis
3.1. The Monte Carlo method

The Monte Carlo method, as applied to uncertainty

analysis for empirical distribution/probability density

determination, requires that for each input parameter

that has associated uncertainty or variability, a

probability distribution (or frequency distribution)

be provided. The method then involves the repeated

generation of independent pseudo-random values of

the uncertain input variables (drawn from the known

distribution and within the range of any imposed

bounds) followed by the application of the model

using these values to generate a set of model

responses or outputs (for example, the well hydraulic

head values). These responses are then analyzed

statistically to yield the empirical distribution func-

tion/probability distribution of the model outputs.

One of the main advantages of this method is its

ease of application. Another very useful feature of

applying a Monte Carlo analysis is that the

estimates on the responses obtained can be bounded

within chosen confidence limits. If X1, X2,., Xn are

independent observations (output realizations or

responses for a single variable) each having the

same distribution function U(x)ZPr(Xi!x) (the

population distribution required to be estimated),

and Fn(x) is the empirical distribution function (or

cumulative step-function) defined as the proportion

of the X1, X2,., Xn which are less than x (i.e.

Fn(x)Zk/n where k is the number of observations

less than or equal to x), then by the Strong Law of

large numbers

FnðxÞ/UðxÞ

with probability 1 for each x. Also, even if Fn(x) is

unknown, if it is continuous, one can then bound the

maximum deviation dZmaxjFn(x)KU(x)j given
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specific confidence limits using the Kolmogorov–

Smirnov criterion (Kolmogorov, 1941; D’Agostino

and Stephens, 1986). Alternatively, with known

confidence limits, one can use the Kolmogorov–

Smirnov criterion to determine the Monte Carlo

sample size required to keep Fn(x) within a specified

deviation of the population distribution U(x) (Mas-

sey, 1951). Note that this is not possible for slightly

more efficient sampling based schemes like Latin

Hypercube methods due to the dependency of the

samples generated. For example, the estimation of

the cumulative sampling (for the entire curve)

within 0.02 percentage points with 99% confidence

limits would require a sample size of approximately

6,650. While sample sizes of this magnitude may

present no problem for computationally tractable

models, it is fairly evident how analysis by these

techniques readily becomes infeasible for expensive

models if it is not desired to compromise on

accuracy.

3.2. The Stochastic Response Surface Method

SRSM (Isukapalli et al., 1998, 2000; Isukapalli,

1999; Isukapalli and Georgopoulos, 1999) is an

extension of the classical deterministic Response

Surface Method (RSM) and the Deterministic Equiv-

alent Modeling Method (DEMM) (Tatang, 1995). The

motivation underlying the use of the SRSM is to reduce

the number of model simulations required for adequate

estimation of uncertainty, as compared to conventional

methods. This is accomplished by approximating both
Fig. 4. Flowchart outlining the steps involved i
inputs and outputs of the uncertain system through

series expansions of standard random variables; the

series expansions of the outputs contain coefficients

that can be calculated from the results of a limited

number of model simulations. Evaluating an SRSM

expansion consists of the following steps (Fig. 4): (1)

input uncertainties are expressed in terms of a set of

standard random variables (srvs), (2) a functional form

is assumed for selected outputs or output metrics, and

(3) the parameters of the functional approximation are

determined.

The srvs are selected from a set of independent,

identically distributed (iid) normal random variables,

fxig
n
iZ1, where n is the number of independent inputs,

and each xi has zero mean and unit variance. When the

input random variables are independent, the uncer-

tainty in the ith model input Xi, is expressed directly as

a function of the ith srv, xi; i.e. a transformation of Xi

to xi is employed. Such transformations are useful in

the standardized representation of the random inputs,

each of which could have very different distribution

properties. Table 2 presents a list of transformations

for some probability distributions commonly

employed in transport-transformation modeling.

The next step involved in implementing SRSM is

expressing the series expansion of normal random

variables in terms of Hermite polynomials; the

‘polynomial chaos expansion’ (Ghanem and Spanos,

1991). When normal random variables are used as

srvs, an output can be approximated by a polynomial

chaos expansion on the set fxig
n
iZ1, given by
n the evaluation of a SRSM polynomial.



Table 2

Representation of common univariate distributions as functions of

standard normal random variables, x’s (which are needed in order to

represent input distributions in terms of srvs for SRSM)

Distribution type Transformationa

Uniform (a,b) aC ðbKaÞ 1
2
C 1

2
ðx=

ffiffiffi
2

p
Þ

� �
Normal (m,s) mCsx

log Normal (m,s) exp (mCsx)

Gamma (a,b)
ab x

ffiffiffiffi
1
9a

q
C1K 1

9a

� �3

Exponential (l) K1
l

log 1
2
C 1

2
ðx=

ffiffiffi
2

p
Þ

� �
Weibull (a) y1/a

Extreme value Klog (z)

a x is Normal (0,1) and z is Exponential (1) distributed.
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y Z a0 C
Xn

i1Z1

ai1
G1ðxi1

Þ

C
Xn

i1Z1

Xi1

i2Z1

ai1i2
G2ðxi1

; xi2
Þ

C
Xn

i1Z1

Xi1

i2Z1

Xi2

i3Z1

ai1i2i3
G3ðxi1

; xi2
; xi3

ÞC.; (1)

where y is an uncertain output of the model, the ai1;.’s

are deterministic constants to be evaluated, and the

Gpðxi1
;.; xip

Þ are multi-dimensional Hermite poly-

nomials of degree p, given by

Gpðxi1
;.; xip

Þ

¼ ðK1Þpeð1=2Þx
Tx vp

vxi1
.vxip

eðK1=2ÞxTx; (2)

where x is the vector of p iid normal random variables

fxik
g
p
kZ1, that are used to represent input uncertainty.

It is known that the set of multi-dimensional

Hermite polynomials form an orthogonal basis for the

space of square-integrable probability distribution

functions, and that the polynomial chaos expansion is

convergent in the mean-square sense (Ghanem and

Spanos, 1991). In general, the accuracy of the

approximation increases as the order of the poly-

nomial chaos expansion increases and thus the order

of the expansion can be selected to reflect accuracy

needs and computational constraints.

For example, an uncertain model output U, can be

expressed as first, second and third order SRSM
polynomial approximations, U1, U2 and U3 as follows

U1 Z a0;1 C
Xn

iZ1

ai;1xi (3)

U2 Z a0;2 C
Xn

iZ1

ai;2xi C
Xn

iZ1

aii;2ðx
2
i K1Þ

C
XnK1

iZ1

Xn

jOi

aij;2xixj (4)

U3 Z a0;3 C
Xn

iZ1

ai;3xi C
Xn

iZ1

aii;3ðx
2
i K1Þ

C
Xn

iZ1

aiii;3ðx
3
i K3xiÞC

XnK1

iZ1

Xn

jOi

aij;3xixj

C
Xn

iZ1

Xn

jZ1

aijj;3ðxix
2
j KxiÞ

C
XnK2

iZ1

XnK1

jOi

Xn

kOj

aijk;3xixjxk (5)

where n is the number of srvs used to represent the

uncertainty in the model inputs, and ai,m, aij,m, aijj,m,

and aijk,m are the coefficients to be estimated (where m

represents the order of polynomial expansion).

The final step in the SRSM implementation is to

determine these coefficients of the polynomial chaos

expansion (SRSM expansion), which is done using an

extension to collocation methods based on a combi-

nation of regression and an improved input colloca-

tion scheme called the Efficient Collocation Method

(ECM) (Isukapalli, 1999). In the ECM, points are

selected based on a modification of the standard

orthogonal collocation method of (Tatang, 1995;

Villadsen and Michelsen, 1978). The points are

selected so that each standard normal random variable

xi takes the values of either zero or one of the roots of

the higher order Hermite-polynomial. A simple

heuristic technique is used to select the required

number of points from the large number of potential

candidates: for each term of the series expansion, a

‘corresponding’ collocation point is selected. For

example, the collocation point corresponding to the

constant is the origin; i.e. all the standard normal
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variables (xi’s) are set to value zero. For terms

involving only one variable, the collocation points are

selected by setting all other xi’s to zero value, and by

letting the corresponding variable take values as the

roots of the higher order Hermite polynomial. For

terms involving two or more random variables, the

values of the corresponding variables are set to the

values of the roots of the higher order polynomial, and

so on. If more points ‘corresponding’ to a set of terms

are available than needed, the points which are closer

to the origin are preferred, as they fall in regions of

higher probability. Further, when there is still an

unresolved choice, the collocation points are selected

such that the overall distribution of the collocation

points is more symmetric with respect to the origin. If

still more points are available, the collocation point is

selected randomly. Borrowing from Gaussian quad-

rature, this scheme attempts to increase the order of

behavior a polynomial (of fixed order) can capture.

Details of the ECM and other aspects of SRSM can be

found in Isukapalli et al. (1998, 2000); Isukapalli

(1999); Isukapalli and Georgopoulos (1999) and

Balakrishnan et al. (2002).

After the set of sample inputs points is generated

(using the ECM and suitable transformations) and

corresponding outputs obtained (by running the model

at these points), regression is employed to obtain

robust estimates of the coefficients. The model outputs

at the selected sample points are equated with the

estimates from the series approximation, resulting in a

set of linear equations with more equations than

unknowns. This system of equations is then solved

using the singular value decomposition method.

The result is a large increase of efficiency in terms

of computational time required for uncertainty

analysis if model runs are expensive (due to the

small number of model simulations required). A large

sample Monte Carlo analysis of the outputs as

approximated by SRSM polynomial expansions (of

the appropriate order) will accurately represent the

full model output Monte Carlo analysis and can be

evaluated at a fraction of the computational cost

(polynomial evaluations vs full model evaluations).

3.3. High Dimensional Model Representation

The HDMR method is a family of tools (Rabitz et

al., 1998; Rabitz and Alis, 1999), which prescribe
systematic sampling procedures to map out the

relationships between sets of input and output model

variables. Let the n-dimensional vector xZ
{x1,x2,.,xn} represent the input variables of the

model under consideration, and f(x) be one of the

output variables. Since the influence of the input

variables on the output variable can be independent

and/or cooperative, using HDMR one expresses the

output f(x) as a hierarchical correlated function

expansion in terms of the input variables as

f ðxÞ Z f0 C
Xn

iZ1

fiðxiÞC
X

1%i!j%n

fijðxi; xjÞ

C
X

1%i!j!k%n

fijkðxi; xj; xkÞC/

C f12.nðx1; x2;.; xnÞ (6)

Here f0 denotes the mean effect which is a constant. The

function fi(xi) is a first-order term expressing the effect

of variable xi acting independently, although generally

nonlinearly, upon the output f(x). The function fij(xi,xj)

is a second-order term describing the cooperative

effects of the variables xi and xj upon the output f(x).

The higher-order terms reflect the cooperative effects

of increasing numbers of input variables acting

together to influence the output f(x). The last term

f12,.,n(x1,x2,.,xn) gives any residual dependence of

all the input variables locked together in a cooperative

way to influence the output f(x). After the relevant

component functions in Eq. (6) are determined and

suitably represented, then the expressions constitute

the HDMR, thereby replacing the original method of

calculating f(x) by the computationally expensive

model. Usually only low order correlations amongst

the input variables are typically adequate in describing

the output behavior and therefore it is expected that the

HDMR expansion converges very rapidly. This has

been verified in a number of computational studies

(Shim and Rabitz, 1998; Rabitz and Shim, 1999;

Shorter et al., 1999; Wang et al., 1999; Li et al., 2001)

where the HDMR expansions up to second order are

often sufficient to describe the outputs of many realistic

systems.

In this work, the Cut-HDMR procedure will be used

to compute the expansion terms. With the Cut-HDMR

method, first a reference point �xZ ð �x1; �x2;.; �xnÞ is
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defined in the variable space. In the convergence limit,

the Cut-HDMR is invariant to the choice of reference

point �x. In practice, �x is chosen within the neighbor-

hood of interest in the input space. The expansion

functions are determined by evaluating the input–

output responses of the system relative to the defined

reference point �x along associated lines, surfaces, sub-

volumes, etc. (i.e. cuts) in the input variable space. This

process reduces to the following relationship for the

component functions in Eq. (6)

f0 Z f ð �xÞ; (7)

fiðxiÞ Z f ðxi; �x
iÞK f0; (8)

fijðxi; xjÞ Z f ðxi; xj; �x
ijÞK fiðxiÞK fjðxjÞK f0;. (9)

where the notation f ðxi; �x
iÞhf ð �x1; �x2;.; �xiK1; xi; �xiC1;

.; �xnÞ denotes that all the input variables are at their

reference point values except xi.

The f0 term is the output response of the system

evaluated at the reference point �x. The higher-order

terms are evaluated as cuts in the input variable space

through the reference point. Therefore, each first-order

term fi(xi) is evaluated along its variable axis through the

reference point. Each second-order term fij(xi,xj) is

evaluated in a plane defined by the binary set of input

variables xi, xj through the reference point, etc. The

process of subtracting off the lower-order expansion

functions removes their dependence to assure a unique

contribution from the new expansion function.

In practice, each of the HDMR expansion functions

is numerically represented as a low-dimensional look-

up table over its variables. Note that the HDMR in Eq.

(6) is exact along any of the cuts, and the output

response f(x) at a point x off of the cuts can be

obtained by the following procedure:
1.
 Interpolate each of the low dimensional HDMR

expansion terms in the look-up tables with respect

to the input values of the point x, and
2.
 Sum the interpolated values of the HDMR terms

from zeroth order to the highest order retained in

keeping with the desired accuracy.

Uncertainty analysis using HDMR relies on an

accurate reduced model being generated with a small

number of full model simulations. An arbitrarily large

sample Monte Carlo analysis can be performed on
the outputs as approximated by HDMR and should

accurately result in the same distributions as obtained

through the Monte Carlo analysis of the full model.

The tremendous computational savings result from

just having to perform interpolation instead of full

model simulations for output determination.
4. Application of methods for uncertainty analysis

With the problem formally outlined in the

problem formulation subsection, five independent

uncertain parameters with known distributions were

identified: the global multipliers for the GCU and

TCCZ Kv fields, the LAZ and UAZ Kh fields and

that for the recharge rate field (Table 1). A small

sample (NZ1000, which represents the approxi-

mate computational limit for this elaborate model)

Monte Carlo analysis was carried out by running

the full model (FACT simulated GSA model) at

random instantiations of the input distributions.

Well location hydraulic head values for all three

aquifers and stream baseflow values were collated

corresponding to these input points and the output

empirical distribution functions and representative

probability density functions obtained.

For the application of the SRSM, the same

independent input parameter distributions were used.

Collocation points were generated via the ECM,

transformed to appropriate input points, the model run

at these specified points and results collated in order to

generate SRSM polynomials for outputs under

consideration. For this study, second order SRSM

polynomials were generated for each of the 667 well

hydraulic head values as well as for each of the stream

baseflow values. Thus, in effect, a second order SRSM

approximate model for the GSA as simulated by

FACT was obtained which required only 51 full

model simulations.

Cut-Plane HDMR was also used to create a

functional approximation to the full model for the

hydraulic head values and stream baseflow values.

This required quantization of the input parameter

space for calculation of output functions. The same

input distributions’ ranges were used for this purpose

with upper and lower limits defined by nominal G2s

values, respectively, the justification being that

probabilistically this range (4s) encompassed more
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than 95% of the data variability. First order HDMR

was used to create a reduced model for all of the well

hydraulic head values as well as for each of the stream

baseflow values and required 45 full model simu-

lations (with nine cut points per variable). The

reduced models generated by SRSM and HDMR

were then subsequently used for the uncertainty

analysis of the outputs. A large sample Monte Carlo

analysis (NZ10,000) was used to estimate model

output empirical distribution functions as well as

representative probability density functions.
5. Results and discussion

Empirical distribution functions and representative

probability densities were obtained from the small

sample (NZ1000) Monte Carlo analysis (MC) carried

out for all hydraulic head values as well as for the

stream baseflow rates. These small sample MC

empirical distribution functions obtained were

bounded using the KS goodness of fit criterion (for

99% confidence limits). The empirical distribution
Fig. 5. Fourmile Branch stream baseflow rate (m3/s) empirical distribution f

small sample Monte Carlo run for the full model (MC) and associated KS b

SRSM Monte Carlo analysis.
functions were then plotted against those obtained via

SRSM and HDMR (through a Monte Carlo analysis on

the corresponding reduced models). Probability den-

sity plots were also obtained using a Gaussian kernel

density estimate with automatic bandwidth selection

via a two-stage Solve-the-Equation Plug-In approach,

which has been recommended as being the most

reliable in terms of overall performance by a number of

authors (Jones et al., 1996; Wand and Jones, 1995).

As can be clearly seen from Figs. 5–9, the results

show excellent agreement, implying that the uncer-

tainty characteristics have been well captured by both

SRSM and HDMR for the stream baseflow rates and all

the hydraulic head values. This claim is further

strengthened by the results of the application of the

two-sample KS tests performed to check whether the

responses obtained through the small sample Monte

Carlo analysis (on the full model) and those obtained

from the SRSM and HDMR analyses are derived from

the same population. For 99% confidence limits, the

hypothesis that the two sets of outputs, one from the

small sample Monte Carlo analysis and one from either

SRSM or HDMR, come from the same population, is
unction and corresponding representative probability density for the

ounds (KS Bounds) along with those obtained from the HDMR and



Fig. 6. Upper Three Runs stream baseflow rate (m3/s) empirical distribution function and corresponding representative probability density for

the small sample Monte Carlo run for the full model (MC) and associated KS bounds (KS Bounds) along with those obtained from the HDMR

and SRSM Monte Carlo analysis.

Fig. 7. Well BGO 8A (located in the upper UTR aquifer, UAZ) hydraulic head value empirical distribution function and corresponding

representative probability density for the small sample Monte Carlo run for the full model (MC) and associated KS bounds (KS Bounds) along

with those obtained from the HDMR and SRSM Monte Carlo analysis.
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Fig. 8. Well BG 93 (located in the lower UTR Aquifer, LAZ) hydraulic head value empirical distribution function and corresponding

representative probability density for the small sample Monte Carlo run for the full model (MC) and associated KS bounds (KS Bounds) along

with those obtained from the HDMR and SRSM Monte Carlo analysis.

Fig. 9. Well BG 26 (located in the Gordon aquifer) hydraulic head value empirical distribution function and corresponding representative

probability density for the small sample Monte Carlo run for the full model (MC) and associated KS bounds (KS Bounds) along with those

obtained from the HDMR and SRSM Monte Carlo analysis.
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accepted for all cases. This also established both

convergence and sufficiency of second order SRSM

and first order HDMR for this case study.

The motivation of this work was to highlight the

effectiveness of SRSM and HDMR as efficient and

accurate methods of uncertainty analysis for com-

putationally intensive models where tight bounds on

accuracy of estimates are often difficult or imposs-

ible to achieve using traditional Monte Carlo

methods for investigation. The application of these

methods to the GSA modeled by the FACT code

illustrates how they require orders of magnitude less

computational time and capture output uncertainties

with high accuracy. Future work in this direction

will include incorporation of field data into the

uncertainty analysis.
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