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Summary Effective groundwater management requires precise forecasting of the
amount of contaminants intruding into groundwater from the surface. In this study, solute
breakthrough curves throughout the unsaturated zone were predicted using artificial neu-
ral networks (ANNs), through numerical tests and through laboratory experiments. In the
numerical tests, the applicability of the ANN model to the prediction of breakthrough
curves was evaluated using synthetic data generated by a groundwater flow and transport
model in a variably saturated media, HYDRUS-2D. The use of two ANNs, one for solute arri-
val times and the other for solute mass breakthroughs after the solute arrival time, was
suggested in order to reduce the prediction error. The results showed that the network
building process was essential in ANN model applications. The best ANN model gave a cor-
relation coefficient value between target and output values of over 0.98. The sensitivity
analysis of data forms for the network training demonstrated that regular breakthrough
curves that contain a peak value can train the ANN model effectively. Then, the ANN
model was verified using laboratory data obtained by tracer infiltration tests in a sand col-
umn. The overall results demonstrate that the ANN model can be an effective method for
forecasting solute breakthrough curves through the unsaturated zone when hydraulic data
are available.
ª 2006 Elsevier B.V. All rights reserved.
Introduction

Groundwater begins to be polluted when surface contami-
nants infiltrate the unsaturated zone and reach the ground-
water table. Thus the characterization of contaminant
transport in the unsaturated zone is important for effective
6 Elsevier B.V. All rights reserved
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groundwater management. The unsaturated zone is often a
highly heterogeneous medium with water contents varying
substantially in space. There have been many attempts to
describe the mechanisms of water and solute movement
through unsaturated zones (Butters et al., 1989; Tseng
and Jury, 1994; Simunek et al., 2002; Skaggs et al., 2004).

One of the most common approaches is to apply
conventional physical models for solute transport through
the unsaturated zone which are governed by the convection
.
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Figure 1 Conceptual diagram of a feed forward network with
one hidden layer.
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dispersion equation (CDE) with several assumptions. These
models use constant parameters for the CDE, which are va-
lid only after solute mixing is complete throughout a volume
of soil in which non-uniform velocities occur. Due to this
limitation, there are models that are intended to be used
only for the cases when either water velocity is relatively
uniform or when substantial time has elapsed since the sol-
ute was introduced into the soil (Jury et al., 1991; Tseng
and Jury, 1994).

Transfer functions have been used as an alternative ap-
proach (Jury, 1982; Jury and Sposito, 1986; White et al.,
1986; Butters and Jury, 1989; Skaggs et al., 1998). The
transfer function model initiated by Jury (1982) follows
the concept of Black Box model based on a linear relation-
ship between inputs and outputs. It represents solute trans-
port in soil without an explicit description of the physical
transport processes, using a probability density function of
the solute travel time through the unsaturated zone.

Recently, the application of artificial neural networks
(ANNs) as an approach to forecasting water resource vari-
ables is growing (Zealand et al., 1999; Sharma et al.,
2003; Jain et al., 2004). The ANN is a flexible mathematical
structure patterned after a biological nervous system and is
considered the standard computational tool for nonlinear
problems in a variety of fields. However, the building pro-
cess of an ANN is not standardized and it is difficult to assess
whether ANN results are optimal or not. Therefore it is
important to discover the optimal network architecture
and network parameters for a given system (Maier and Dan-
dy, 2000). For solute transport problems, ANN applications
have been used to predict the transport parameters and sol-
ute distribution in groundwater (Morshed and Kaluarachchi,
1998; Almasri and Kaluarachchi, 2005). Morshed and Kalu-
arachchi (1998) conducted numerical tests for the unsatu-
rated flow and solute transport. They considered various
parameters for properties of the medium and contaminant
including grain size, hydraulic conductivity, dispersivity,
solute sorption and decay, and the boundary condition
including various water fluxes on the surface. They success-
fully predicted four key parameters of the breakthrough
curve in typical groundwater remediation problems, which
were breakthrough time, time to reach MCL, time to maxi-
mum concentration, and maximum concentrations.

In farmlands, it is necessary to spread solutes on the sur-
face such as fertilizers and pesticides. For preventing the
groundwater contamination, an optimal application method
of surface contaminants including their concentration and
application time should be suggested. As a preliminary work
to this problem, the solute transport through the unsatu-
rated zone under various surface boundary conditions
should be predicted. Moreover, it is necessary to predict
the solute transport with respect to elapsed time, both
for accurate predictions of the mass of solutes reaching
the groundwater table and for coupled simulations of solute
transport in the unsaturated zone and groundwater. In this
study, the applicability of ANN models for predicting solute
transports throughout the unsaturated zone was investi-
gated. We considered constant values of hydraulic parame-
ters and non-reactive solute transports, which were simpler
cases for the medium and contaminant than Morshed and
Kaluarachchi (1998)’s. Instead we focused on predicting
breakthrough curves under various boundary conditions
including water flux, injected solute concentration and
duration of solute injection. These considerations of bound-
ary conditions on the surface will be useful for the manage-
ment of water resources in agricultural areas. In this study,
for accurate prediction of breakthrough curves, a dual ANN
model was suggested in numerical tests and verified by lab-
oratory experiments.

Artificial neural network (ANN)

In general, ANNs are composed of input, hidden and output
layers, and each layer contains nodes. The basic compre-
hensive information on ANNs is presented in the following
literatures (Hagan et al., 1996; Maier and Dandy, 1996;
Mehrotra et al., 1997). For the construction of an ANN
framework, a feed forward network with one hidden layer
and a back propagation algorithm was used in this study.

Feed forward network

A feed forward network is one of the most common neural
nets. In this network, nodes in one layer are connected to
nodes in the next layer successively. Fig. 1 represents the
conceptual diagram of a feed forward network. Mathemati-
cal descriptions of a feed forward process are as follows

sJj ¼
X
i

wJI
jix

I
i þ bJ

j ð1aÞ

xJj ¼ fJðsJj Þ ð1bÞ

sKk ¼
X
j

wKJ
kj x

J
j þ bK

k ð2aÞ

xKk ¼ fKðsKkÞ ð2bÞ

where superscripts I, J and K indicate the input, hidden
and output layers, respectively, subscripts i, j and k mean
the nodes of I, J and K layers, respectively, x denotes the
nodal value, w denotes the weight between two nodes, b
denotes the nodal bias, s denotes the weighted summation
of nodal values in the previous layer with a nodal bias, and
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f is an activation function of each layer. Specific meanings
of nodes in the input and output layer for this study are
described in the section ‘‘Numerical tests’’. A nodal value
in the hidden and output layer is determined by the activa-
tion function that transfers a weighted summation of nodal
values in the previous layer. Sigmoidal-type functions are
most commonly used as the activation functions (Hsu
et al., 1995; ASCE Task Committee, 2000; Kuo et al.,
2004). It has been also reported that using sigmoidal-type
functions in the hidden layers and linear functions in the
output layer can improve the extrapolation ability of the
ANN (Maier and Dandy, 2000). In this study, a log-sigmoid
activation function was used for the hidden layer, and a
linear function was used for the output layer. Eq. (3) rep-
resents the log-sigmoid activation function used in this
study

fðsÞ ¼ 1

1þ e�s
ð3Þ
Table 1 HYDRUS-2D model parameters for generation of
breakthrough curves used in numerical tests

Porosity 0.43
Hydraulic conductivity 712.8 (cm/day)
aa 0.145 (cm)
na 2.68
Dispersivity 10.0 (cm)
Retardation factor 1.0
a van Genuchten parameters.
Back propagation algorithm

The back propagation algorithm was used to determine a set
of weights and nodal biases that minimize errors between
target values and calculated output values after the feed
forward process was completed (Rumelhart et al., 1986).
For the back propagation algorithm, this study used the
objective function given by the sum of squared errors be-
tween target and output values:

Em ¼
X
k

ðtmk � xmk Þ
2 ð4Þ

where Em is the sum of squared error at the mth feed for-
ward process, k denotes the node in the output layer, tmk
is the target value and xmk is the nodal value of the output
layer at the mth feed forward process. The weights, w,
and nodal biases, b, in Eq. (1) are updated by the gradient
descent method until the error (E) is decreased to a specific
level.

wmþ1 ¼ wm þ c � oEm

owm

� �
ð5Þ

bmþ1 ¼ bm þ c � oEm

obm

� �
ð6Þ

where wm is the weight that is updated at mth iteration,
bm is the nodal bias at mth iteration and c is the learning
rate. The back propagation algorithm based on the gradi-
ent descent method leads weights in a neural network to
a local minimum of the objective function defined in Eq.
(4). In this study, a momentum term was added to Eqs.
(5) and (6) to prevent the network from some local min-
ima. This reads

wmþ1 � wm ¼ bðwm � wm�1Þ þ ð1� bÞc � oEm

owm

� �
ð7Þ

bmþ1 � bm ¼ bðbm � bm�1Þ þ ð1� bÞc � oEm

obm

� �
ð8Þ

where b is the momentum value. The momentum has an
averaging effect, and diminishes the drastic fluctuation in
weight changes over consecutive iterations (Rumelhart
et al., 1986).
Numerical tests

Numerical tests were conducted to assess the applicability
of ANN to predicting the breakthrough mass of solute. For
numerical tests, a 300 cm high vertical hypothetical sand
profile was considered in this study. The top boundary of
the domain was established as a constant flux boundary
and the bottom was established as a seepage boundary.
For solute breakthrough data, solute transport was simu-
lated using HYDRUS-2D, a finite element model for simulat-
ing groundwater flow and solute transport in variably
saturated media (Simunek et al., 1996). In these numerical
tests, results of HYDRUS-2D simulations composed target
values, and estimations of ANN models output values. In this
study, a non-reactive solute and no adsorption were as-
sumed. Thus the decay terms were not considered and the
retardation factor was equal to unity [1]. Model parameter
values used in this study are presented in Table 1. We con-
ducted 116 simulations under various boundary conditions
and considered solute mass of 41 discrete times at the bot-
tom boundary from each simulation. The solute mass was
calculated using averaged solute mass flux at the bottom
boundary. Thus a total of 4756 solute mass data were ob-
tained (Table 2). The data were normalized by the total sol-
ute mass that had been injected onto the surface. For ANN
applications, input variables included water flux, solute
injection time, injected solute concentration onto the top
boundary and elapsed time after the solute injection. The
normalized solute mass at the bottom boundary was used
as an output variable. The applications of ANN were under-
taken at three stages: training, testing and prediction.
Accordingly, the data were divided into three sets: one
for each stage. Table 2 represents the arrangement of data
sets.

Three numerical tests were performed in this study. In
Test 1, ANN applicability was investigated using a simple
network. In Test 2, the use of two networks was suggested
for better prediction results. Then effects of training data
forms on prediction efficiency were investigated in Test 3.

Test 1

In Test 1, we established an ANN model with four input
nodes, one hidden layer and one output node. The input
nodes included water flux, solute injection time, injected
solute concentration and elapsed time after solute had been
injected, and the output node included the solute mass at
the bottom boundary after the solute had been injected
on the top boundary. Fig. 2a represents a schematic dia-
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Figure 2 Schematic diagrams of the ANNs used in Test 1 (a) and Test 2 (b) (WF: water flux, SIT: solute injection time, SC: injected
solute concentration, ET: elapsed time after solute injection, SM: solute mass breakthrough at the bottom with ET, ET*: elapsed
time after the solute arrival at the bottom and SM*: solute mass breakthrough at the bottom with ET*).

Table 2 Data sets used for ANN applications in numerical tests and the range of input variables for each data set

Training data set Testing data set Prediction data set Total

Number of simulations 64 22 30 116
Number of data 2624 902 1230 4756

Range of input variables
Water flux (cm/day) 2.0–5.0 1.0–6.0 1.0–7.2 1.0–7.2
Solute injection time (day) 0.5–2.0 0.2–3.0 0.2–3.5 0.2–3.5
Solute concentration (mg/cm3) 0.5–3.0 0.3–4.0 0.3–5.0 0.3–5.0
Elapsed time (day) 0–60 0–60 0–60 0–60
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gram of the ANN model used in Test 1. At the training stage,
the weights of the ANN were calculated by the back propa-
gation algorithm. Then the network structure and parame-
ter values were calibrated at the testing stage by
minimizing root mean square errors (RMSE) between the tar-
get and output values, given by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l

X
m

X
k

ðtmk � xmk Þ
2

s
ð9Þ

where l is the total number of data. The network structure
included the number of hidden nodes, and the network
parameters included the momentum, learning rate, range
of initial weights and stopping criterion. Fig. 3 shows the
RMSE values at the testing stage for various network struc-
tures and parameter values. It demonstrates that a network
building process is essential in ANN applications. However,
the back propagation algorithm based on the gradient des-
cent method can seek the local minimum of any given
objective function. To prevent a solution from being cap-
tured at a certain local minimum, we used the momentum
and considered various initial weights. However, it can not
be confirmed that the solution is the global minimum. Thus
the calibrated network structure and parameter values can
be the optimum only in this particular network building
strategy. In Test 1, the selected number of hidden nodes
was 7, momentum value was 0.4, learning rate was 0.005,
range of initial weights was from �0.45 to 0.45 and stopping
criterion was 4.0 · 10�3.

The performance of the ANN was evaluated in the predic-
tion stage. The RMSE and correlation coefficient (CC) be-
tween target and output values were calculated as
prediction efficiency criteria. The CC is given by

CC ¼
1
l

P
m

P
kðtmk � �tÞðxmk � �xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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l

P
m

P
kðtmk � �tÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

P
m

P
kðxmk � �xÞ2

q ð10Þ

where �t and �x denote the mean values of the target and out-
put values, respectively. Fig. 4 and Table 3 depict the pre-
diction results in Test 1, and Fig. 5 shows examples of
predicted breakthrough curves. The results show a good
agreement between target and output values when the
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Figure 4 Correlations between target and calculated output values in Test 1 obtained from (a) inputs within the range of training
data set, that include 410 data, and (b) inputs out of the range of training data set, that include 820 data, respectively.

Table 3 ANN prediction efficiencies for each numerical test

Test 1 Test 2 Test 3

Prediction
efficiency

Within the
TR. range

Out of the
TR. range

Total range SAT–ANN SM–ANN Combined
ANN

Mass Cumulative
mass

Logarithmic
mass

RMSE 1.88 · 10�3 1.73 · 10�2 1.41 · 10�2 9.71 · 10�2 7.23 · 10�3 7.07 · 10�3 7.24 · 10�3 9.48 · 10�3 1.89 · 10�1

CC 0.999 0.930 0.946 0.998 0.983 0.983 0.983 0.980 0.891
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Figure 3 RMSE values in testing stage of Test 1 for various network structures and parameters: (a) number of hidden nodes,
(b) momentum, (c) learning rate, (d) range of initial weights whose range is –w0 � w0 and (e) stopping criterion.
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Figure 5 Examples of breakthrough curves of normalized mass predicted in Test 1: (a) the best prediction result (CC = 0.99) and
(b) the worst prediction result (CC = 0.83).
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input values were within the range of training data set (Figs.
4a and 5a). When the input values were out of the range of
the training data set, however, the prediction efficiency
was reduced considerably (Figs. 4b and 5b). In general,
ANN has difficulties in extrapolating beyond the range of
the data used for training (Flood and Kartam, 1994; Minns
and Hall, 1996). However, it should be noted that there
were large deviations near the early stages of breakthrough
in most cases with input values out of the range of the train-
ing data set.

Test 2

To reduce the prediction errors observed in the early
stages of breakthrough curves in Test 1, a different ANN
approach was designed in Test 2. In this approach, the sol-
ute breakthrough curve was divided into two parts, one
was a solute arrival time, that was an elapsed time before
the solute was detected at the bottom and the other was a
solute breakthrough after the solute arrival time. Thus,
two ANNs were used for each part and the data sets were
rearranged. Fig. 2b shows the schematic diagram of the
dual ANN used in Test 2. The dual ANN model includes a
network for the solute arrival time (SAT–ANN) and a net-
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Figure 6 Correlations between target and output values of norm
ANN.
work for the solute mass breakthrough after the solute ar-
rival time (SM–ANN). SAT–ANN was composed of three
input nodes, one hidden layer and one output node. The in-
put variables were water flux, solute injection time and
solute concentration. The output variable was the solute
arrival time at each input event. SM–ANN was composed
of four input nodes, one hidden layer and one output node.
The input variables were water flux, solute injection time,
solute concentration and elapsed time after the solute ar-
rival time. The output variable was solute mass with re-
spect to the elapsed time after the solute arrival time.
SAT–ANN and SM–ANN were trained and tested separately.
Then, the results were combined for the prediction of com-
plete breakthrough curves.

Fig. 6 and Table 3 show the prediction results of ANNs in
Test 2. By comparison with the results of Test 1, the predic-
tion errors were reduced significantly for input data both
within and out of the range of a training data set. Fig. 7
shows examples of predicted breakthrough curves in Test
2 under same input events as in Test 1. Notice that there
were no large errors at the early stages of the breakthrough
curves. These results show that predictions of solute
transport using both SAT–ANN and SM–ANN were more
effective than the one ANN in Test 1. Although the training
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Figure 7 Examples of breakthrough curves of normalized mass predicted in Test 2: (a) the best prediction result (CC = 0.99) and
(b) the worst prediction result (CC = 0.95).
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procedures are more time-consuming in Test 2 than in Test
1, the network size of SAT–ANN was small and could be
trained quickly and thus the total training times were com-
parable with Test 1.

Test 3

The ANN model is based on a data driven process, thus train-
ing data forms can affect the model efficiency. In Test 3,
the influence of solute data forms on prediction efficiency
was investigated using the SM–ANN in Test 2. The ANN
was trained with three types of solute data; mass, cumula-
tive mass and logarithmic mass. The data used were normal-
ized by the total mass. Each type of data represents
different curve types; peak type curves for mass data, s-
shape curves for cumulative mass data and gentle slope
curves for logarithmic mass data. The optimal network
structures and parameters were selected for each type of
data. Prediction results were compared in Fig. 8 and Table
3. When the mass data were used, ANN prediction efficiency
was best. The use of cumulative mass data was likely to
yield results that were overestimates and logarithmic mass
data results that were underestimates. This result shows
that normal peak type breakthrough curves of mass or con-
centration can be trained effectively and yield good predic-
tion results for ANN applications.
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Figure 8 ANN prediction results for three forms of solute mass d
Application to laboratory data

Laboratory experiments

For applications of the ANN model to laboratory experimen-
tal data, tracer infiltration tests were conducted with a
sand column. The diameter and height of the sand column
were 5.4 cm and 25 cm, respectively. A gravel layer of
2 cm thickness was packed at the bottom of the column
for a free drainage through an output port. Then, coarse
sand with grains of 0.5 mm–1.0 mm diameter was packed
above the gravel layer. The porosity was 0.45. The dry
and wet bulk densities were 1.65 g/cm3 and 2.10 g/cm3,
respectively. The saturated hydraulic conductivity was esti-
mated to be 9014.4 cm/day. The top was exposed to the air
and the bottom was composed of a thin gravel layer and out-
let for leaching water and tracer. Water and tracer were in-
jected at the center of the top soil using a peristaltic pump.
Br� in KBr solution was used as a tracer. The concentration
of injected solution was 2.0 g/L. The concentration of Br�

at the bottom was measured by a bromide electrode (The
Thermo Orion Model 9635 ionplus). Column tests were con-
ducted 14 times, for various water fluxes and durations of
solute injection. The initial water content ranged from
0.14 to 0.15. The Br� concentration of the leaching water
was measured for each test.
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Table 4 Data sets used for ANN application to laboratory experiments and the range of input variables for each data set

Training data set Testing data set Prediction data set Total

Column test frequency 9 2 3 14
Number of data 243 49 80 372

Range of input variables
Water flux (cm3/min) 2.0–6.0 3.0–5.0 2.0–7.0 3.0–7.0
Solute injection time (min) 1.0–4.0 1.5–2.0 1.0–5.0 1.5–5.0
Elapsed time (min) 0.0–191.2 0.0–114.2 0.0–191.2 0.0–172.8
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ANN application

The dual ANN model used in Test 2 was applied to the exper-
imental data in order to predict the tracer arrival time and
tracer concentration. The column test data were divided
into three data sets for the training, testing and prediction
stages of the ANN model (Table 4). The prediction data set
was composed of three input events: the input values in the
two events were within the range of the training data set
(water fluxes were 3.0 and 5.0 mL/min, and solute injection
times were 3.0 and 1.5 min) and the other was out of the
range (water flux was 7.0 mL/min and solute injection time
was 5.0 min). Table 5 and Fig. 9 show the results of the ANN
model predictions for the laboratory experiments. There
was a good agreement between the target and output val-
ues of the tracer concentration especially when the input
values were within the range of the training data set. CC
values were over 0.97. The prediction efficiency was re-
Table 5 ANN prediction efficiencies for laboratory
experiments

Prediction
Efficiency

Within the
training range

Out of the
training range

Total range

RMSE 2.12 · 10�2 2.87 · 10�1 1.64 · 10�1

CC 0.970 0.635 0.722
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Figure 9 Comparisons of ANN prediction and experimental results
3.0 min (CC = 0.98), (b) WF was 5.0 cm3/min and SIT was 1.5 min
(CC = 0.64).
duced, however, when the input values were out of the
range of the training data set. CC value decreased to
0.64. This result demonstrates that the range of the training
data set can affect the prediction efficiency considerably.
Figure 10 demonstrates the comparison of breakthrough
curves of between the laboratory experiment and ANNmodel
prediction.
Conclusions

The following conclusions can be drawn from this study.

1. The ANN network structure and parameters strongly
affected the prediction efficiency. Therefore, the net-
work building process is an essential element in ANN
applications for a given problem.

2. An ANN model with a single network cannot predict sol-
ute breakthrough curves effectively especially in the
early stages of their development. This study has demon-
strated that an ANN model with two networks, one for
solute arrival time and the other for solute break-
through, can reduce large errors in the early part of
the breakthrough curves and raise the prediction
efficiency.

3. This study tested whether or not the form of the train-
ing data significantly affects the efficiency of ANN. Train-
ing data in the forms of mass, cumulative mass and
logarithmic mass data were compared with each other.
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Figure 10 Comparisons of results between column tests and
ANN applications: (a) WF was 3.0 mL/min and SIT was 3.0 min,
(b) WF was 5.0 mL/min and SIT was 1.5 min, and (c) WF was
7.0 mL/min and SIT was 5.0 min.
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The mass data associated with peak-type breakthrough
curves can be trained effectively and yield good predic-
tion results.

4. The ANN application to laboratory experimental data
produced acceptable prediction results, especially when
the input values were within the training data set,
although the experiment frequency was limited.
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