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Summary Multi-site simulation of hydrological data are required for drought risk assess-
ment of large multi-reservoir water supply systems. In this paper, a general Bayesian
framework is presented for the calibration and evaluation of multi-site hydrological data
at annual timescales. Models included within this framework are the hidden Markov model
(HMM) and the widely used lag-1 autoregressive (AR(1)) model. These models are
extended by the inclusion of a Box–Cox transformation and a spatial correlation function
in a multi-site setting. Parameter uncertainty is evaluated using Markov chain Monte Carlo
techniques. Models are evaluated by their ability to reproduce a range of important
extreme statistics and compared using Bayesian model selection techniques which evalu-
ate model probabilities. The case study, using multi-site annual rainfall data situated
within catchments which contribute to Sydney’s main water supply, provided the follow-
ing results: Firstly, in terms of model probabilities and diagnostics, the inclusion of the
Box–Cox transformation was preferred. Secondly the AR(1) and HMM performed similarly,
while some other proposed AR(1)/HMM models with regionally pooled parameters had
greater posterior probability than these two models. The practical significance of param-
eter and model uncertainty was illustrated using a case study involving drought security
analysis for urban water supply. It was shown that ignoring parameter uncertainty resulted
in a significant overestimate of reservoir yield and an underestimation of system vulner-
ability to severe drought.
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Introduction

Drought risk assessment of large multi-reservoir water sup-
ply systems relies on the ability to stochastically simulate
multi-site long-term hydrological data. Identification and
evaluation of an appropriate multi-site stochastic model
for this task is of paramount importance for long-term water
resource planning decisions. A general framework for mod-
elling multi-site data will be developed in this paper. This
framework will include several currently used multi-site
models and some new approaches to compare and evaluate
their performance.

Historically, numerous stochastic models have been
developed to simulate multi-site long-term hydrological
data. Matalas (1967) introduced a multi-site AR(1) model
for modelling annual rainfall/streamflow defined by:

ztþ1 ¼ lz þ Aðzt � lzÞ þ et ð1Þ

where zt = (z1t, . . . ,zdt) defines the vector of transformed
annual rainfall/streamflow amounts over d sites for a given
time step t; lz is a d vector of transformed annual mean
flows; A is a (d · d) parameter matrix; and et is a d vector
of normal deviates randomly and independently drawn from
a multivariate distribution with mean zero and covariance
matrix R; that is,

et � Nð0;RÞ ð2Þ

Hydrological data often do not follow a Gaussian distribu-
tion. Matalas (1967) suggested a log transformation of
streamflow data. A more general approach is to employ a
Box–Cox (BC) transformation (Box and Cox, 1964). For a gi-
ven time series of multi-site data, YT = (y1, . . . ,yT) where
yt = (y1t, . . . ,ydt), a BC transformation is applied to the ob-
served data value yit for site i according to:

zit ¼
ðyitÞki�1

ki
ki 6¼ 0

loge yit ki ¼ 0

(
ð3Þ

where ki is the BC transformation parameter associated with
site i. This transformation is carried out independently for
each site.

Matalas (1967) presented a method of moments approach
to estimating the parameters of this model. Kuczera (1987)
noted a practical problem with this method is that ‘the esti-
mated covariance matrix may not be positive definite,
thereby preventing its decomposition, a necessary step for
synthetic flow generation’. Kuczera’s suggestion to over-
come this problem was to use the EM algorithm which is a
maximum likelihood method that ensures the covariance
matrix is positive definite, even when record lengths are
of unequal length.

In following years many other model structures have
been applied for the synthetic generation of hydrological
processes. Stationary linear autoregressive moving average
(ARMA) models have found wide application (Grayson
et al., 1996; Hipel and McLeod, 1994; Salas, 1993)– and
are often capable of reproducing important historical statis-
tics, including long-term related statistics such as storage
and drought related statistics (Fortin et al., 2004). Even
so, other models such as the fractional gaussian noise (Man-
delbrot and Wallis, 1969), Broken Line (Rodriguez-Iturbe
et al., 1972), Shifting Level (Klemes, 1974; Potter, 1976;

Salas and Boes, 1980), and FARMA (Montanari et al., 1997)
have been proposed in the hydrological literature, often
with the intention of reproducing the empirically observed
phenomenon of long-term persistence in hydrological series
(Hurst, 1951).

The majority of this previous research does not evaluate
parameter uncertainty as part of model calibration. Thyer
et al. (2006) showed there is substantial parameter uncer-
tainty due to the short data lengths of observed hydrological
data for the single site models trialled. Stedinger and Taylor
(1982) further developed the multi-site AR(1) model of Mat-
alas (1967), assuming that the autoregressive Gaussian error
process operates on a log transformed scale compared to
the data, to incorporate approximations for parameter
uncertainty. Their study showed that parameter uncertainty
is more important than model uncertainty for stochastic
modelling of hydrological data for the models trialled. How-
ever, their method suffers from the practical consideration
reported by Kuczera (1987), that the empirical covariance
may not be invertible, and also is not fully Bayesian as it
does not allow for concurrent estimation of the uncertainty
in the Gaussian transformation parameter (the BC transfor-
mation is used here). The change-point model was cast in a
Bayesian parameter uncertainty estimation framework by
Perreault et al. (2000a) and then extended to a multi-site
model in Perreault et al. (2000b) for use in identification
of single change-points in hydrological data series (e.g.
mean/standard deviation). The shifting level model, a gen-
eralisation of the change-point model allowing multiple
change-points, was further developed by Fortin et al.
(2004) to use fully Bayesian parameter uncertainty estima-
tion as opposed to method of moments (Salas and Boes,
1980). However, this has not been extended to a multi-site
framework – a required input for multi-reservoir system
analysis. Thus there is currently no methodology for evalu-
ating parameter uncertainty for stochastic models of annual
multi-site hydrological data. This study aims to overcome
this deficiency by developing a general Bayesian parameter
uncertainty estimation framework for stochastic models of
annual multi-site hydrological data.

The first model structure included in this general frame-
work is a multi-site generalization of the AR(1) model pre-
sented by Thyer et al. (2002). This is included because it
is commonly used and provides a basis for evaluating alter-
natives. The implementation is an advance on the multi-site
model presented by Kuczera (1987), Stedinger and Taylor
(1982) and Matalas (1967) as full quantification of parame-
ter uncertainty is undertaken and estimation of the para-
metric transformation of the data are undertaken
concurrently with all other parameters. The dependence
structure of the multi-site AR(1) presented here is subtly
different to the previous models – it is the ‘contemporane-
ous’ AR(1) model with zero lag-1 cross-correlations (Hipel
and McLeod, 1994; Salas, 1993). A major improvement over
other models is the capability to generate (and calibrate to
records containing) zero rainfall/streamflow in a given year
– a phenomenon apparent in the more arid regions (and
smaller catchments for streamflow) of Australia.

The second model structure included in this framework is
a new implementation of the multi-site hidden Markov mod-
el (HMM). Thyer and Kuczera (2000) introduced a single-site
two-state HMM for modelling annual hydrological time ser-
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ies as an alternative to the widely used AR(1) model in an
attempt to model the two-state persistence structure
apparent in Australian hydrological data. Thyer and Kuczera
(2003a,b) later presented a multi-site version of the HMM to
enable better identification of the HMM ‘hidden’ state
parameters. However, their implementation had several
shortcomings. Firstly, the calibration procedure performed
poorly if the sites were highly correlated, primarily because
the number of individual inter-site correlations to be esti-
mated grew rapidly with the number of sites. Secondly,
the model was incapable of reproducing highly skewed his-
torical data, because it did not include any transformation
of data.

In this study, an alternative parameterization for the
spatial correlation of the multi-site HMM is presented which
considerably reduces the number of parameters and over-
comes the shortcomings identified by Thyer and Kuczera
(2003b). As it is included as part of a generalized modelling
framework, this parameterization for the spatial correlation
is also applied to the AR(1) model. Similarly, the concurrent
estimation of the transformation parameter developed for
the AR(1) model is also applied to the HMM. This enables
the modelling of skewed data – a common feature of annual
rainfall/streamflow data from Australia.

The power of multi-site analysis is its ability to utilize
space-for-time substitution to overcome the limitations im-
posed by short data lengths of observed annual hydrological
data and improve model identifiability. Casting both the
HMM and AR(1) models in a generalized multi-site frame-
work provides a far greater flexibility to evaluate alterna-
tive multi-site model parameterizations, e.g. the pooling
of parameters across a region. In this study, the utility of
various pooled parameter parameterisations will be
evaluated.

The two models considered in this study (AR(1) and HMM)
have differing assumptions regarding the dependence of one
year’s rainfall on those preceding it. Neither the AR(1) or
HMM models satisfy the mathematical definition of persis-
tence; that the sum of correlations over all lags is infinite
(Beran, 1994, p. 6–7). The HMM was developed with the
intention of capturing a different form of dependence struc-
ture to that of the AR(1) – analogous to the long-term wet
and dry periods produced by phenomena such as the El-Niño
Southern Oscillation. It was found in a single site study car-
ried out by Srikanthan et al. (2001) that the HMM assump-
tions (e.g. two climate states) were justified for a range
of sites around Australia. However, clear identification of
regions where the HMM assumptions held was not possible.

Evaluation of model performance is a key feature of this
generalized model framework. This comparison was under-
taken using Bayesian model selection techniques and assess-
ing the ability of the models to reproduce a range of
observed statistics. To provide a practical basis for this
analysis a reservoir simulation study was used to compare
the models performance in terms of simulated drought risk.

The case study used to test this general framework will
be rainfall data surrounding and within the Hawkesbury-
Nepean catchment (the main water supply catchment for
Sydney, Australia). The model performance of the multi-site
HMM and AR(1), and pooled parameter variants will be com-
pared and evaluated. This comparison will consider:

(a) if the Box–Cox transformation was required;
(b) which of the AR(1) and HMM models performed

better;
(c) if pooling parameters across a region improved model

identifiability; and
(d) the impact of evaluating parameter and model uncer-

tainty on drought risks.

This paper is organized as follows: Section ‘‘Stochastic
models for annual multi-site hydrologic data’’ describes
the features of the stochastic models included in the gener-
alized framework. Section ‘‘Model calibration procedure’’
describes the Bayesian calibration procedure, including
the implementation of the Markov chain Monte Carlo
(MCMC) methods used to evaluate parameter uncertainty.
The hydrological data from the case study is described in
Section ‘‘Hydrological data’’. Section ‘‘Evaluation of model
performance’’ outlines the range of techniques used to
evaluate the model performance. The results are presented
in ‘‘Results’’ and discussed in ‘Discussion‘’’. The discussion
focuses on the implications of this paper for the future re-
search for the modelling of multi-site stochastic hydrologi-
cal data. Finally, the conclusions are presented.

Stochastic models for annual multi-site
hydrologic data

One of the goals of this paper is to develop a generalised
framework for stochastic modelling of annual multi-site
hydrological data, which includes both the AR(1) and HMM
as special cases with different parameterisations for the
temporal dependence. This section outlines the key fea-
tures of the model parameterisations; further details of
the individual models tested, including the pooled parame-
ter variants will be given in Section ‘‘Model specification’’.

Transformation of data

Both the HMM and AR(1) model have underlying Gaussian
assumptions. Therefore, the BC transformation is employed
here to enable modelling of non-Gaussian data. Thyer et al.
(2002) recognized that when applying the BC transformation
the constraint zitki + 1 P 0 applies during calibration and
simulation. This constraint is required to ensure that real
numbers yit > 0 can be simulated for non-zero values in
(1). Thyer et al. (2002) deal with this constraint by applying
a truncated Gaussian distribution (according to zitki + 1 > 0)
– with there being no probability/density associated with
zitki + 1 6 0 – the truncated probability mass was used to
normalize the distribution. The BC transformation used here
differs from Thyer et al. (2002) according to:

yit ¼
ðzitki þ 1Þ1=ki ki 6¼ 0; ðzitki þ 1Þ1=ki > 0

0 ki 6¼ 0; ðzitki þ 1Þ ¼ 0

expðzitÞ ki ¼ 0

8><
>: ð4Þ

Note that ðzitki þ 1Þ1=ki < 0 is not accounted for here as the
error process is truncated so as to ensure positive rainfall/
streamflow, as detailed in the following section. This trun-
cation method was applied to both the HMM and AR(1).
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Multi-site AR(1)

Grouping the transformed rainfall/streamflow variables zit
as vectors zt = (z1t, . . . ,zdt), and assuming a lag-1 auto-cor-
related process on zt:

zt ¼ lþ uðzt�1 � lÞ þ et; et � MTN 0;
X

: ztkþ 1 P 0
� �

ð5Þ

where u = D(/1, . . . ,/d) is a d · d matrix with D denoting a
diagonal matrix containing lag-1 auto-correlation coeffi-
cients at each site; k is ad vector of BC transformation param-
eters for each site; l = [li:i = 1, . . . ,d] is themean parameter
vector; et is an i.d. error term given by amixed truncated Nor-
mal (Gaussian) distribution denoted MTN() with zero mean

and spatial covariance matrix
P
¼ qijðrzÞiðrzÞj : i; j ¼
h

1; . . . ; d
i
. Here (rz)i denotes the standard deviation parame-

ter for site i (in z-space), while the site-to-site correlation
coefficient qij will be defined subsequently. The mixed trun-
cated normal is required given the real constraint y P 0, and
is described in Section ‘‘Likelihood function’’.

Multi-site HMM

The two-state HMM framework assumes the climate is in one
of two states: wet (W) or dry (D). The climate state at year
t,rt, is simulated using a Markov chain process. This process
is characterized by the set of one-step transition probabili-
ties, defined as follows:

P ¼ fpijg ¼ Prðrt ¼ jjrt�1 ¼ rÞ, r; j ¼ ðW or DÞ ð6Þ

Residence time in each state is governed by these state
transition probabilities – the probability of changing from
one state to another from one year to the next. This induces
a temporal correlation similar to the ARMA(1,1) model
(Akintug and Rasmussen, 2005) if there is persistence in a
particular state. However, if the state does not change at
all there is zero correlation. Each state r = (D,W) has an
independent mixed truncated Normal distribution with asso-
ciated mean vector lr = [lir:i = 1, . . . ,d], and standard devi-
ation vector, rr = [rir:i = 1, . . . ,d], for each state r. The
number of Markovian states is chosen by the modeller –
with the aforementioned studies using 2 states.

The Box–Cox transformation (4) used for the AR(1)
model can also be used for the HMM – with associated
state/site specific BC transformation parameter. Again, as
for the AR(1), there is also a mass truncation probability
associated with zero.

The multi-site HMM framework assumes that there is a
single climate state across a multi-site region and the prob-
ability of transitions between states is governed by a Mar-
kovian process as provided in (6). If the transition
probabilities sum to one, pWD + pDW = 1 then there is no per-
sistence between states and the HMM degenerates to a mix-
ture model (Lambert et al., 2003). The HMM can also
produce the behaviour observed in shifting mean and
change-point models (low transition probabilities can pro-
duce a single change-point within a series). Indeed, certain
parameterizations of these models can be derived from the
generic HMM form (Fortin et al., 2004; Sveinsson et al.,
2003).

Spatial parameterization

Previously Thyer and Kuczera (2003b) fitted individual cor-
relation parameters qij to model the spatial correlation. In
this study, a different parameterization was used to reduce
the number of model parameters qij. An exponential corre-
lation decay function is assumed;

qij ¼ expð�ki� jk=xÞ; x > 0 ð7Þ

where ki � jk represents the absolute distance between
sites i and j, and x is the ‘correlation length’ parameter.
This functional correlation form has been used in rainfall
modelling studies (e.g. Sanso and Guenni, 2000). This paper
examines the application of this structure to rainfall data
using the distance between the site locations. This spatial
parameterisation was applied to both the HMM and AR(1)
model.

Model calibration procedure

For model calibration, a Bayesian framework is used to infer
the posterior distribution of the model parameters, for the
given time series data, Y = (y1, . . . ,yT), referred to as
p(hjY). The inference of the posterior distribution defines
the Bayesian technique – for an introduction see Lee
(1989) or Gelman et al. (2004). Unlike approaches using a
single parameter estimate, use of the posterior results in
the modeller not overstating the confidence of model
predictions.

The posterior distribution is defined by Bayes equation:

pðhjYÞ ¼ fðYjhÞpðhÞR
h fðYjhÞpðhÞdh

/ fðYjhÞpðhÞ ð8Þ

The prior p(h) defines the distribution of parameters before
calibration – and is user chosen. The likelihood function
f(Yjh), the sampling distribution of Y given h, defines the
fit to the data for a particular parameter set (and model)
and is therefore related to the model formulation. This like-
lihood reflects the influence of the data on parameter iden-
tification, with the posterior distribution therefore
providing an update on the prior belief after taking into ac-
count the data.

Markov chain Monte Carlo sampling: Metropolis–
Hastings sampler

Sampling methods known as Markov chain Monte Carlo
(MCMC) are employed to draw samples from the posterior
distribution. Such sampling methods are useful when it is
not possible to derive an analytical expression to sample
from the posterior distribution, as is the case for the HMM
and AR(1) models specified here. In cases where the likeli-
hood can be calculated (as is the case here) an MCMC meth-
od known as the Metropolis–Hastings sampler can be
applied. The algorithm used in this study is detailed within
Appendix A.

Attempts have been made to improve the efficiency of
the Metropolis–Hastings algorithm (e.g. Andrieu and Rob-
ert, 2001). The problem with some approaches such as the
periodic updating of the covariance matrix used in a preli-
minary stage here (see Appendix A), and in other studies
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(Haario et al., 1999; Kuczera and Parent, 1998), or with the
use of the as yet unproven updating method employed by
Vrugt et al. (2003), is that the chain can lose its ‘detailed
balance’ property and proofs for convergence may not hold.
The Haario et al. (2001) sampler for production of samples
was chosen here as it is proven that this adaptive sampler
is ergodic, that is estimates taken from it converge to the
posterior.

Gibbs sampler

It is noted that in previous application of the HMM by Thyer
and Kuczera (2003a) that an alternative MCMC sampling
method was employed, namely the Gibbs sampler (Geman
and Geman, 1984). The advantage of the Gibbs sampler
(when it is reasonably simple to compute and sample from
the required conditional distributions) is that issues regard-
ing choice of jump distribution are no longer important (For-
tin et al., 2004). Rather, choice of priors which allow
calculation of conditional distributions are mandatory. In
some cases calculation of the full likelihood (required for
the Metropolis–Hastings sampler) may not be analytically
possible, which therefore would require the Gibbs sampler,
or some combination of the two. The Metropolis–Hastings
sampler was used in this study because it was found to over-
come the problem of ‘‘trapping states’’ which hindered
convergence of the Gibbs sampler as highlighted by Thyer
and Kuczera (2003b).

Transformation of mean and standard deviation
parameters

Thyer et al. (2002) noted there is a practical problem when
using the Metropolis–Hastings sampler with Gaussian jump
distribution to estimate the posterior of the single site
AR(1) model employing the BC transformation; very slow
convergence occurs due to the highly correlated and irregu-
lar distributional shape of the posterior. To overcome this
problem they developed parameter transformations for
the mean and standard deviations based on first order
approximations:

lir ¼
m

ki
ir
�1

ki
ki 6¼ 0

logem
ki
ir ki ¼ 0

8<
: ð9Þ

rir ¼ mk�1
ir sir

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� /2

i

q
ð10Þ

where mir and sir are the transformed mean and standard
deviation parameters, respectively. This transformation
was also applied throughout this study to aid convergence
of the MCMC sampler. Thus the Metropolis-Hasting algorithm
proceeds by sampling in the transformed parameter space of
h 2 (mir,sir, . . . ) – where (. . .) represents the other parame-
ters which are not transformed, and then Eqs. (9) and (10) are
used to transform the parameters to ðlir; rir; . . .Þ which are
used to evaluate the likelihood function.

Likelihood function

Use of the Metropolis–Hastings algorithm requires evalua-
tion of the likelihood function.

AR(1) likelihood function
Similar to single-site derivation produced in Thyer et al.
(2002) Appendix A, the AR(1) likelihood is calculated
according to:

pðYT jhÞ ¼ pðy1jhÞ
YT
t¼2

pðytjYt�1; hÞ ð11Þ

where the likelihood of an observation at a single timestep,
given the single timestep dependence structure and the
data transformation (4), is given by:

pðytjYt�1; hÞ ¼ pðytjyt�1; hÞ ¼ ozt=oytj jp zt zt�1; hjð Þ

¼ p zt zt�1; hjð Þ
Yd
i¼1

gðyitÞ ð12Þ

where:

gðyitÞ ¼
yki�1
it yit > 0

1 yit ¼ 0

(

Given the dependence structure (5), p(ztjzt�1,h) is evalu-
ated as follows:

p zt zt�1; hjð Þ ¼ p ztþ zt�1; hjð ÞP zt0 ztþ; zt�1; hjð Þ
¼ fMVN ztþ : �ztþ;Rtþð Þ

�
Z h1

l1

Z h2

l2

� � �
Z hd0

ld0

fMVN zt0 : �zt0jþ;Rt0jþ
� �

dzt0

ð13Þ

where fMVN(x:lx,Rx) is the multivariate Normal density func-
tion (Gelman et al., 1995, p. 474) evaluated for random vec-
tor x, given associated mean and covariance parameters lx
and Rx. This Mixed Truncated Normal distribution (defined
here) lumps the probability associated with the multivariate
Normal variates satisfying zit ki + 1 < 0 at zitki + 1 = 0.

As any subvector of a joint multivariate Normal can be
written as being conditionally multivariate Normal given
the remaining subvector (Gelman et al., 1995, p. 479), the
vector of transformed site rainfall values zt are broken into
two possibly empty subsets zt = {zt0,zt+}, where zt0 and zt+
corresponding to the sites where yit = 0 and yit > 0, respec-
tively. Using the relationships derived therein, the mean
�zt ¼ lþ uðzt�1 � lÞ vector and covariance matrix R are
used in calculating the unconditional parameters
�ztþ;Rtþf g and conditional parameters �zt0jþ;Rt0jþ

� �
related

to the yit > 0 and yit = 0 values, respectively.
This integral lumps all mass relating to yit < 0 space on

yit = 0 zero values, where the integral bounds are:

li ¼
�1=ki

�1

	
hi ¼

1 if ki > 0

�1=ki if ki < 0

	

This alteration dispenses with the need for the calculation
of normalising probabilities within the likelihood for every
timestep as used in the Thyer et al. (2002) formulation.
The truncated mass (as opposed to density) need only be
evaluated for sites/timesteps where zero rainfall/stream-
flow is observed.

As an analytical function for the cumulative distribution
of the standard multivariate Normal distribution does not
exist, the SADNRM numerical integration method introduced
by Genz (1993) was used here.
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HMM likelihood function
For the HMM evaluation of the likelihood was undertaken
using the method detailed in Bengio (1999) and in this con-
text within Frost (2004, p. 38). Due to the single timestep
state dependence structure assumed with a HMM, the basis
of the likelihood function is identical to that used for the
AR(1) in (11). The models differ in the calculation of
p(ytjYt�1,h), with an iterative procedure used as follows:

p rtjYt�1; hð Þ ¼
X

rt�12 W;Dð Þ
p rtjrt�1; hð Þp rt�1jYt�1; hð Þ ð14aÞ

p ytjYt�1; hð Þ ¼
X

rt2 W;Dð Þ
p ytjrt; hð Þp rtjYt�1; hð Þ ð14bÞ

p rtjYt; hð Þ / p ytjrt; hð Þp rtjYt�1; hð Þ ð14cÞ

In (14a) the term p(rtjrt�1,h) is simply one of the transition
probabilities in (6). In (14b) the term p(ytjrt,h), similar to
(12) is given by:

p ytjrt; hð Þ ¼ p zt rt; hjð Þ
Yd
i¼1

g yitð Þ

where p(ztjrt,h) is the likelihood of observing zt given the
state, rt, which is evaluated given the assumption that the
state distributions are multivariate mixed truncated Nor-
mal. This is evaluated identically to (13) with the difference
that �zt ¼ lrt

, given there is no further a linear relationship
between with �zt and �zt�1.

Specification of priors

The prior distribution p(h) represents the modeller’s subjec-
tive belief of the parameter values prior to model calibra-
tion. An experienced modeller may have a prior belief
about the range in which the true parameters lie before fit-
ting a model. The parameter prior allows formal incorpora-
tion of this belief. On the other hand, a modeller may have
little knowledge of where the true parameters lie and there-
fore a prior with an equal density over all parameter values
could represent the state of prior belief. Given the subjec-
tive nature of prior formulation, the introduction/specifica-
tion of priors has been the subject of much controversy
(Berger, 2000). Of course the formulation of the model it-
self is quite subjective. As Wikle (2003, p. 8) states ‘One
must simply recognize that a strength of the hierarchical
(Bayesian) approach is quantification of such subjective
judgment’. As, the posterior distribution can be sensitive
to parameter prior specification (and hence can affect
estimation) much literature regarding the choice of a prior
distribution has been directed towards the formulation of

non-informative priors, priors which it can be argued that
there is ‘no information’ about the parameter vector (Carlin
and Louis, 2000, p. 28–32), implying the resulting analysis is
completely objective rather than subjective. Jeffreys
(1961, p. 181) suggests a prior that is invariant under trans-
formation (a desirable property – as the particular parame-
terization transformation which is chosen by the modeller is
subjective). Subsequent work has moved towards the calcu-
lation of reference priors (Bernardo, 1979) (for single
parameter models) and later modified for multi-parameter
problems (Berger and Bernardo, 1992). However, it is recog-
nized by Bernardo and Smith (2000, p. 298), that ‘every
prior has some informative posterior and predictive implica-
tions’ and ‘there is no ‘‘objective’’ prior that represents
ignorance’.

Reference priors for the multivariate transformed
AR(1)/HMM models used in this study have not been calcu-
lated (to the author’s knowledge). It is also noted that
some recommended non-informative priors are not neces-
sarily proper. As in the study of Stephens (1997, p.12) we
have used proper priors which attempt to be only ‘‘weakly
informative’’ – representative of our subjective prior be-
lief. We likewise complete the analysis with the warning
that we feel further work is required on the appropriate
specification of priors.

General notation is introduced for the complete set of
parameters possible for all models used in this study is
h 2 (mir,sir,ki,/i,prj,x:i = 1, . . . , d r,j = 1, . . . , K r 5 j)
where K denotes the number of HMM states. In some cases
not all parameters are used (e.g. /i = 0 for the HMM), while
in others such general notation is not required (i.e. for one
of the HMM variants it is assumed that the same standard
deviation applies over all states for each site). Using such
notation allows a wide range of model specifications, some
of which will be used in the ensuing case studies.

Table 1 presents a summary of the priors used here, list-
ing firstly the parameter of interest, then the model(s) that
the parameter applies to. The prior distributions used for
the parameters along with parameter bounds are given. As
some parameters are used in the multiple models within this
study, the same priors were placed on these shared param-
eters so as to not favour one model over another a priori.

Mean mir and standard deviation sir: In the HMM study of
Thyer and Kuczera (2003a), an Inverse-Wishart distribution
was used for the prior on the covariance matrix. An In-
verse-Wishart distribution is the multivariate generalization
of the Inverse-v2 distribution. In this study, a scaled inverse-
v2 distribution was used for the diagonals of the covariance
matrices, and hence has the same prior on the variance

Table 1 Parameter prior distributions

Parameter Prior distribution* Lower bound Upper bound Prior parameters

mir N l0; s
2
ir

� �
0 10,000 l0 ¼ �yi

sir Inverse �v2 m0;r2
0

� �
0 1 r2

0 ¼ �s2i ; m0 ¼ 2
ki Uniform �2 2 Not applicable
/ir N l/;r

2
/

� �
�1 1 l/ ¼ 0:0; r2

/ ¼ 0:52

x c(a,b) 0 1 a = 1,b = 500
pWD, pDW Uniform 0 1 Not applicable

* Note: See Gelman et al. (1995, Table A.1) for functional forms.
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parameter s2ir as Thyer and Kuczera (2003a). An independent
univariate normal distribution was used for each mean mir

component. Following Thyer and Kuczera (2003a) the site
empirical means �yi and variance �s2i were used to define hy-
per-parameters for each associated prior distribution. The
prior degrees of freedom (j and m0) were kept to a minimum
to ensure that the priors remained diffuse. Identical priors
were used for all states r of the HMM.

Box–Cox transformation parameter ki: given no trans-
formation and log transformations are modelled at parame-
ter values of ki = 1 and ki = 0, respectively (transformations
which have typically applied for annual streamflow/rainfall
in the past) – a uniform prior with range (�2,2) was consid-
ered adequate for this modelling exercise.

Lag-one autocorrelation coefficient /ir: An independent
Gaussian distribution with mean 0.0 and standard deviation
0.5 was used for this parameter. Based on the analysis of
44 rainfall stations across Australia, Srikanthan et al.
(2001) report that the empirical lag-1 autocorrelation coef-
ficient had an average value of 0.08 and standard deviation
of 0.1. In comparison, the empirical ‘worldwide’ lag-1
autocorrelation coefficient for streamflow presented in
McMahon and Mein (1986) as reported in Salas (1993) was
0.23 with a range of �0.2 to 0.8. In comparison the 95%
probability limits for the prior used here was
(�0.98,0.98). The variability is inflated here to be consid-
erably greater than the average value from the previous
studies to ensure the prior is diffuse. Thus the chosen prior
includes the range of values empirically estimated from
past studies. It is noted that the inclusion of the BC trans-
formation results in the theoretical lag-1 autocorrelation in
non-transformed space not being equivalent to that in
transformed space, though Thyer et al. (2006) found the
difference between the lag-1 autocorrelation in trans-
formed and non-transformed space were practically negli-
gible for synthetic case studies typical of rainfall data
from the Sydney region.

Exponential correlation decay parameter: A Gamma dis-
tribution was used for the prior on x, following the ap-
proach of Sanso and Guenni (2000). Parameter values of
ax and bx were chosen using a visual technique based on
plotting the empirical correlations versus distance and the
90% confidence limits of the prior distribution for the spatial
correlation function. The hyperparameter values for the
prior for ax = 1 and bx = 500 were chosen such that the
90% confidence limits were very wide around the empirical
correlations, thus ensuring a vague prior. It is noted that
the inclusion of the BC transformation results in the theo-
retical spatial correlation in non-transformed space not
being equivalent to that in transformed space. However, gi-
ven the typical degree of transformation k used in such
studies lies in the range [0,1], it is very unlikely that some
combination of k values at each site could alter the ob-
served values encountered here to lie outside the 90% prior
confidence limits post-transformation.

Hydrological data

Rainfall data from five sites located in and around the
Warragamba catchment, the major water supply catch-
ment for Sydney (Australia), was used in the case study

presented here. These five rainfall site locations (Mt Vic-
toria/Blackheath, Sydney, Moss Vale, Taralga and Yarra)
are shown in Fig. 1. The monthly data span a period of
111 years from June 1883 to May 1994. Details of the data
and composite record construction can be found within
Thyer (2001). To aggregate to annual data a starting
month is required. Thyer (2001) notes that for multiple
site analysis the starting month did not have a significant
effect on the persistence structure. In the single site anal-
ysis of over 40 sites spread across Australia, Srikanthan
et al. (2001) could not identify any ‘noticeable pattern
in the starting months’. With little constraint on the water
year starting month, the April-March water year was se-
lected on the grounds that ENSO events tend to break
by the end of the Austral Autumn. The annual rainfall sta-
tistics for each site are summarized in Table 2. A time
series plot of the cumulative departures from the mean
of the annual rainfall data are presented in Fig. 2a. These
deviations were standardized by dividing these departures
by the empirically estimated standard deviation. Such a
plot is typically used to empirically diagnose persistence
within time series (Pittock, 1975). Consistent periods of
negative/positive gradient denote periods where the ob-
served rainfall is consistently below/above the mean.
There appears to be evidence of distinctly wet and dry
periods, with some similarity in timing when changes in
slope occur (e.g. during 1946–1948 all series slope
changes from negative to positive). This provides some
evidence for the hypothesis of a regional controlling cli-
mate, with marked switches between relatively wet and
dry regimes. However, not all sites follow the overall
trend (e.g. Moss Vale from 1910 to 1930). The degree to
which the HMM and the AR(1) model can reproduce these
characteristics will determine their applicability for use
for simulation.
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Figure 1 Rainfall data site locations.
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Evaluation of model performance

Observed rainfall data statistics

A crucial feature of any stochastic model is its ability to
reproduce the observed statistics of the process it is
endeavouring to replicate. The models will be checked to
ensure they reproduce the observed mean, standard devia-
tion and skew, using annual rainfall distribution plots for
presentation. In addition, the long-term variability/persis-
tence will be tested by examining the autocorrelation func-
tion and the multi-year accumulated rainfall distribution.
Site-to-site spatial correlation was also validated.

Bayesian model selection

Choosing the ‘right’ model, given a set of data, is not usu-
ally a trivial task. Of the many methods available, Bayesian
model selection is attractive in that it directly provides the
posterior probability of model i, Mi, being the correct model
given the set, M, of mutually exclusive models being
compared:

pðMijYÞ ¼ pðYjMiÞpðMiÞ=
X
M

pðYjMiÞpðMiÞ ð15Þ

Given samples from the posterior for a particular model it is
possible to calculate the normalizing constant from (10):

Table 2 Rainfall data annual statistics

Site Mean (mm) Standard deviation (mm) Skew (�) Lag-one autocorrelation (�)
Mt. Victoria/Blackheath (MVC) 1070.0 318.8 0.61 0.18
Sydney 1210.2 334.1 0.68 0.06
Moss Vale (MV) 992.6 275.3 0.67 0.22
Taralga (TAR) 815.9 217.9 0.29 0.14
Yarra (YC) 670.6 186.9 0.50 0.31
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pðYjMiÞ ¼
Z

h
fðYjhÞpðhÞdh ð16Þ

using the method suggested in Gelfand and Dey (1994) Eq.
(27), with a multivariate Gaussian distribution with associ-
ated mean and covariance estimated from the parameter
samples of the posterior used as for the importance sam-
pling density. This procedure was used in Frost (2004, pp.
53–54). Kass and Raftery (1995) observed that this Gelfand
and Dey (1994) estimator is stable provided the tails of the
posterior density are sufficiently thin. It is recognized that
there are other methods of estimation of the normalizing
constant (e.g. Chib and Jeliazkov (2001)), which may, under
model and data dependent circumstances provide differing
estimates to those found here. However, testing the sensi-
tivity and accuracy of this estimator is beyond the scope
of this paper, and implementation of these methods are left
as future work.

The estimate of p(YjMi) is then substituted back into (15)
to calculate the probability of each model given the data,
p(MijY). For this calculation, all models applied in this paper
were given equal prior probability p(Mi). That is, a uniform
model prior was applied. This method takes into account
both the model complexity and parameter uncertainty as
it involves integration over all the parameters to calculate
p(YjMi). It is noted that Bayesian model selection can be af-
fected by a phenomenon known as Lindley’s paradox (Lind-
ley, 1957), where the use of noninformative unbounded
priors on parameters in the case of nested model compari-
sons can bias model selection always in favour of the sim-
pler nested model. As bounded priors over reasonable
ranges have been specified here, this problem will not arise.
Gelman et al. (1995, p.176) have questioned the use of
Bayesian model selection in some applications, arguing that
in cases where competing models are distinctly and legiti-
mately different, Bayes factors coupled with proper nonin-
formative model priors provide a worthwhile means for
model selection. However, in cases where both competing
models are special cases of a more general parametric mod-
el, they argue that it may be a hindrance because the true
model is likely not to be one of the special cases. They rec-
ommend that the posterior distribution of the parameters
characterizing the different models be studied. Other meth-
ods which address the issues of prior selection (both param-
eter and model) in hierarchical/nested model comparisons
are discussed within Ntzoufras (1999) and Chipman et al.
(2001). For a thorough discussion of the methods used here
along with further detail on the parameter uncertainty
methods see Frost (2004, Chapter 3).

Simulated drought risk and yield estimates

To evaluate the practical implications a simple reservoir
simulation was used to evaluate the impact on reservoir
yield estimates. To provide the inputs for the reservoir sim-
ulation the multi-site simulations of rainfall from four sites
in the Warragamba catchment (Mt Victoria/Blackheath,
Taralga, Moss Vale, and Yarra) were first transformed into
the catchment average rainfall using Thiessen polygons.
The simulated catchment average rainfall was then trans-
formed into streamflow based on a linear regression of
catchment average rainfall and catchment runoff. This ap-

proach was used instead of directly simulating multi-site
streamflow for two reasons: Firstly, the rainfall record
was significantly longer than the streamflow record avail-
able. Secondly, preliminary analysis of streamflow records
for the Hawkesbury-Nepean catchment revealed there was
significant infilling. Such infilling has the potential to bias
the stochastic modelling which treats every data point as
independent information. In comparison the infilling of the
rainfall records is known to be very minor (Thyer, 2001). Gi-
ven the linear regression model of annual rainfall-runoff is
imperfect (r2 = 0.72) the drought probabilities should only
be considered indicative of the possible effect of not includ-
ing parameter uncertainty as input to such a process.

The simulated catchment inflow was used as an input to a
simplified reservoir simulation. For each year in this reser-
voir simulation the inflow was added to the storage volume,
and a constant average annual demand (AAD) was sub-
tracted. The initial storage volume was set to the storage
capacity, though given the long length of simulations used
in this study (10,000 years) this is unlikely to have a major
effect on drought probabilities. The storage capacity was
set the same as the Warragamba dam total volume. Sydney
catchment authority’s (SCA) current restriction policy was
implemented here, with a percentage reduction in AAD
based on the storage levels. The drought probability was
calculated as the percentage of years below a given storage
level (% of capacity). The reservoir yield is the maximum
AAD that can be supplied ensuring the reservoir does not
drop below a given storage level with a given probability.
SCA uses three system criteria to determine their system
yield as part of their operating license (SCA, 2000):

(a) Reliability: Not less than 97% of months are to have no
restrictions. (restrictions are enforced when storage
<55%, hence this means not more than 3% of months
are to have storage <55%)

(b) Robustness: Not less than 90% of years are to have no
restrictions. (Not more than 10% of years are to have
storage <55%)

(c) Security: Not less than 0.001% of months is the storage
to fall below 5% of capacity (Not more than 0.001% of
months are to have storage <5%)

Given that the reservoir simulation was undertaken using
an annual time step themonthly criteria could not be directly
applied. Thus for the purposes of this study the yield was
determined based on criterion (b) and a modified criterion
(a). Criterion (b) is that not more than 10% of years are to
have storage <55% and will hereafter be referred to as the
robustness criteria. Criterion (c) will be modified to the
approximate annual equivalent of 0.01% (Not more than
0.01% of years to have storage <5%) and will hereafter be re-
ferred to as the security criteria. For a given AAD the drought
probability will be calculated as the expected probability
from 1000 replicates of length 10,000 years. This length of
data are required to negate the effects of sampling variabil-
ity and ensure accurate estimates of the expected drought
probability. The yield will be calculated based on the lowest
yield of either the robustness or security criteria outlined
above. The results for different stochastic modelling param-
eterisations with and without parameter uncertainty will be
compared to evaluate their impact on yield estimates.
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Model specification

The development of the generalised multi-site formulation
outlined in Section ‘‘Stochastic models for annual multi-site
hydrologic data’’ and a generalised likelihood function (Sec-
tion ‘‘Likelihood function’’) provides the opportunity to
evaluate various model parameterisations, including pooling
parameters across regions. The model combinations chosen
to be tested are aimed to achieve the study objectives. Ta-
ble 3 lists the various models and their parameterisations –
the model nomenclature provides guidance on the model
parameterisation. The first four models will evaluate if
the BC transformation is justified for either the AR(1) or
HMM models, by comparing AR(1)-noBC and AR(1) (Objec-
tive A). Comparison of the AR(1) and HMM models will deter-
mine objective B. The remaining models will evaluate
objective C – to determine if pooled parameters can im-
prove model identifiability. The HMM-mean models have a
common standard deviation in each state. The AR(1)-onephi
models have a common / for all sites, while the AR(1)/HMM-
oneBC models have a common k for all sites.

Results

The sampling distributions of selected statistics are com-
pared with observed statistics. For all plotted statistics,
the observed values are plotted as a point value, while sim-
ulated median is plotted as a thick line, and 90% confidence
limits as dashed lines. Observed points lying outside of these
bounds are attributable to either sampling variability or
inadequacy of the model. Model probabilities are also pre-
sented for the tested models. Using these various measures
of model performance several comparisons will be
undertaken.

No transformation versus BC transformation

The annual rainfall distributions are shown for the HMM and
AR(1) models with and without the Box–Cox transforma-
tions in Fig. 3. For clarity only the results for two sites, Mt
Victoria/Blackheath and Yarra, are shown. Similar trends
are found for the other three sites. Fig. 3c and d demon-

strate that both models incorporating the BC transformation
perform better at capturing the skew (related to curvature
when plotted on Normal probability axes – i.e. no curvature
equates to zero skewness) in the data than without the BC
transformation (Fig. 3a and b). The mean and standard devi-
ation are reproduced well by all models, yet the skew is
underestimated for the models not including the BC trans-
formation, significantly for the AR(1) model and to a lesser
extent for the HMM. The skew is reproduced well by the
models incorporating the BC transformation. The minimum
observed values are consistently above the simulated med-
ian for the no transformation results. The corresponding
plots for the models with the BC transformations show no
overall bias in terms of minimum, a result of reproducing
the observed curvature of the observations.

The posterior model probabilities shown in Table 3 con-
firm these results. The models with BC transformation have
a considerably higher probability than those without the BC
transformation. All further models tested will include the
BC transformation.

AR(1) versus HMM

Temporal dependence
The key difference between the AR(1) and the HMM is the
parameterization of the temporal dependence. This will
be compared by considering the observed autocorrelation
coefficient for lags 1–30 and the 30 year accumulated rain-
fall distributions. The 30 year accumulated rainfall distribu-
tion represents the distribution of the 30 year moving
averages. The 30 year time step was chosen to examine
whether these models capture the multi-decadal variability,
which has a significant influence on Australia’s climate
(Kiem and Franks, 2004; Verdon et al., 2004).

The temporal correlation plot (Fig. 4 – shown for Mt Vic-
toria/Blackheath and Yarra sites) illustrates the difference in
correlation spectrum for the AR(1) and HMM models. The
AR(1) model is quite strong at lag-1 but dampens quickly.
For Mt Victoria/Blackheath (Fig. 4a), the observed values
are within the 90% probability limits for all lags excluding
lag-2, -3, -13, -14, -17 and -21. For Yarra (Fig. 4c), the
observed temporal correlation is reproduced to a greater

Table 3 Models tested and overall model probability

Model Model parametera Model probability
k l r /

AR(1)-noBC 0 1 1 1 1.64E�09
HMM-noBC 0 2 2 0 7.55E�07
HMM 1 2 2 0 5.87E�06
AR(1) 1 1 1 1 7.45E�06
HMM-mean 1 2 1 0 1.50E�04
AR(1)-onephi 1 1 1 1/D 6.47E�04
HMM-oneBC 1/D 2 2 0 1.86E�03
AR(1)-oneBC 1/D 1 1 1 0.011
HMM-meanoneBC 1/D 2 1 0 0.076
AR(1)-oneBCphi 1/D 1 1 1/D 0.910
a Number indicates the number of model parameters per site. D indicates the total number of sites (Here D = 5).
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degree of satisfaction, with lag-2, -3, -13 and -14 observed
autocorrelation lying on or just outside the simulated upper
90% confidence limits. The Taralga and Moss Vale autocorre-
lation pattern for observed and simulated values is similar to
that of Yarra. Sydney (not shown) differs in that the only ob-
served value lying outside the 90% confidence interval is at
lag-2. Overall, the AR(1) model tends to be underestimating
lag-2 and -3 autocorrelation. The HMM correlation spectrum
(Fig. 4b and d) shows a slower decay in autocorrelation than
the AR(1), though with a generally lower level at lag-1. In
contrast to the AR(1), the Mt. Victoria/Blackheath lag-2
autocorrelation is reproduced by the HMM, although the
lag-3 autocorrelation remains underestimated. For Yarra,
both lag-1 and -2 autocorrelations are underestimated.

For the 30 year rainfall accumulations (Fig. 5), the major-
ity of observed values are bounded by the 90% probability
limits for the AR(1) and HMM. For the AR(1) the observed val-
ues for Mt. Victoria/Blackheath for the lower 30 year accu-

mulation periods lie on, or just outside the 90% probability
limits. The HMM has wider bounds for Mt. Victoria/Black-
heath than the AR(1), with no observations outside the con-
fidence limits. In contrast, the maximum values for Yarra
are just outside the confidence bands for the HMM, whilst
being within the bounds for the AR(1). These differences fol-
low from the reproduction of autocorrelation presented in
Fig. 4. For Mt. Victoria/Blackheath the HMM performs better
than AR(1) in terms of reproduction of observed autocorrela-
tion (especially at lag-2), whilst for Yarra the reverse is true
in that the HMM underestimates the lag-1 and -2 autocorrela-
tion, whilst the AR(1) performs satisfactorily.

The model probabilities comparing the HMM and AR(1) in
Table 3 confirm the visual assessment of the various statis-
tics that neither model is strongly favoured, yet the AR(1)
model is preferred, apparently due to better reproduction
of lag-1 autocorrelation. The AR(1) model cannot reproduce
the temporal correlation structure such as that presented
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Figure 3 Observed versus simulated annual distribution for the (a) AR(1)-noBC, (b) HMM-noBC, (c) AR(1) and (d) HMM. Solid
represents the median (50% probability) and dashed line represents the 90% probability limits.
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for Mt. Victoria/Blackheath because the correlogram decays
exponentially. As for the question of why the HMM was un-
able to reproduce the temporal correlation characteristics
of the rainfall data at some sites (e.g. Yarra) – this is fur-
ther investigated in Section ‘‘Impact of the spatial correla-
tion parameterisation on HMM identification’’.

Spatial correlation parameterization
Thyer and Kuczera (2003a) attempted fitting individual cor-
relation coefficients between each pair of sites but were un-
able to achieve convergence of the MCMC algorithm. Here
an alternate parameterization of the spatial correlation is

trialled, the exponential decay correlation, with a single
parameter describing the Gaussian correlation between all
sites. When the exponential decay function was used, satis-
factory convergence was achieved, illustrating the efficacy
of this approach. Fig. 6a and b show the correlation plots
versus distance for the AR(1) and HMM models, respectively.
For the AR(1), (Fig. 6a), the observed spatial correlations
are just outside the 90% probability limits for two of the
10 inter-site spatial correlations (Moss Vale-Taralga and
Moss Vale-Sydney). For the HMM (Fig. 6b) all observed spa-
tial correlations are within the 90% confidence limits. These
differences are relatively minor and overall, the exponen-
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Figure 4 Observed versus simulated autocorrelation function for AR(1) ((a) Mt. Victoria and (c) Yarra) and the HMM ((b) Mt.
Victoria and (d) Yarra). Observed values are open circles. Solid represents the simulated median (50% probability) and dashed line
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tial decay correlation function is able to reproduce the ob-
served spatial correlation for both models for the majority
of spatial scales tested. The use of exponential decay corre-
lation function does however influence the calibration of
the HMM as discussed in Section ‘‘Impact of the spatial cor-
relation parameterisation on HMM identification’’.

AR(1) and HMM pooled parameter variants

The modelling framework used here enabled the calibration
of various AR(1) and HMM pooled parameter variants. Of
these variants there may be a more parsimonious represen-
tation of the models presented so far in that regional pool-
ing of model parameters might be beneficial (e.g. using a
single BC parameter across all sites). A range of models
were compared, and their posterior model probabilities
are shown within Table 3.

The AR(1) modelling regional pooling models tested (sin-
gle and/or single across all sites) have a greater model prob-
ability than the AR(1) model, with the AR(1)-oneBCphi with
single k and / being strongly favoured over all models
tested. For the HMM pooling, a single k across all sites
and/or a single r for each site (as opposed to each state
and site) was trialled. All trialled models had a greater pos-
terior model probability than the original HMM. The most
probable model (HMM-meanoneBC) pooled the BC parame-
ter across all sites, and significantly only used a single r
for each state.

Impact on drought probabilities and yield estimates

Previously multi-site models only estimated single values for
their parameters. The primary contribution of this paper is
to develop a multi-site modelling framework for annual
hydrological data that evaluates parameter uncertainty
and model uncertainty. The practical impact of this contri-
bution on the estimated drought probabilities and hence
yield estimates will be evaluated by comparing:

(a) the drought probabilities estimated based on single
parameter values;

(b) drought probabilities based on full evaluation of
parameter uncertainty (for an individual model); and,

(c) drought probabilities based on full evaluation of
parameter and model uncertainty.

For the single parameter value runs, the posterior modal
estimate (most probable value) of the parameters will be
used. The stochastic model parameterisations chosen are
the AR(1) model, which, as the most commonly used model,
provides a basis for comparison, the HMM to investigate the
impact of differences in modelling temporal dependence,
the pooled parameter AR(1)-oneBCphi model which had
the highest model probability (Table 3), and finally a mul-
ti-model combination of the AR(1) and HMM models to illus-
trate the impact of model uncertainty. When comparing
only the AR(1) and HMM models, their model probabilities
(Table 3) are quite similar (0.559 for AR(1) c.f. 0.441 for
HMM); thus one is uncertain which model to use for simula-
tion. This model uncertainty can be taken into account
when estimating drought probabilities using the following
method: During the reservoir simulation each of the repli-
cates was chosen from either the AR(1) or HMM models
based on their model probabilities. Thus the estimated
drought probabilities account for model uncertainty be-
cause the simulations from both the AR(1) and HMM models
are weighted by their respective model probabilities. This
demonstrates the power of evaluating the model probabili-
ties: not only does it provide a statistical measure of a par-
ticular models goodness of fit, it can also be used to weight
models during simulations when using an ensemble of mod-
els to evaluate key performance variables (e.g. reservoir
yield).

Fig. 7 shows the impact of evaluating parameter uncer-
tainty for the AR(1) and the HMM. For both models and both
criteria the expected drought probability for a given annual
supply is higher when parameter uncertainty is accounted
for (posterior) compared to when single parameter esti-
mates are used (mode). The difference is greater for
the security criterion, which is a rare event, compared to
the robustness criterion, which is a more frequent event.
The security criterion produces lower yield estimates than
the robustness criterion. For the AR(1) model without eval-
uating parameter uncertainty the yield is approximately
440 GL, while when parameter uncertainty is evaluated it
decreases to approximately 410 GL, a decrease of 7.3%.
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Figure 6 Observed and simulated spatial correlation coefficient versus distance for the (a) AR(1) and (b) HMM.
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Importantly, also for the annual supply of 440 GL the
drought probability estimate increases by half an order of
magnitude (0.01% with no parameter uncertainty to 0.04%
with parameter uncertainty). A similar magnitude decrease
in the yield was found for the HMM; without parameter
uncertainty the yield was approximately 455 GL whereas
with parameter uncertainty it was 420 GL, a decrease of
7.6%. Thus it can be concluded evaluating parameter uncer-
tainty produces higher drought probabilities and hence low-
er yield estimates. This has the practical implication that if
only single value parameter estimates are used, which is the
current practice, reservoir yield will be overestimated.

Fig. 8 shows the impact of using different models to esti-
mate the drought probabilities for the security criterion. Of
the four simulations shown the AR(1) model produced the
lowest yield estimate (410 GL) while the HMM produced
the highest yield (425 GL). When model uncertainty was ta-
ken into account, (denoted as AR and HMM in Fig. 8), the
yield estimate was 415 GL. This is the same as the yield esti-
mate for the AR(1)-oneBCphi model which had the highest
model probability. The standard AR(1) model with no
parameter uncertainty produced a yield estimate of
440 GL, 25 GL higher than the most realistic estimate.
Although this is only a reduction of 6%, it is practically sig-
nificant given that it is equivalent to 70% of the volume

saved due to demand management measures implemented
by Sydney Water Corporation (SWC) during 2004–2005
(SWC, 2005). If model uncertainty is ignored by using only
the AR(1) or HMM (including parameter uncertainty), the
yield is estimated with errors of �1.2% and 2.4%, respec-
tively, compared to the best estimate.

Discussion

Box–Cox transformation

Of the stochastic models tested here, models incorporating
BC transformation are favoured using Bayes posterior model
probability over those that do not. This result is supported
by the distributional plots shown in Fig. 3 – the models
without the BC transform less adequately reproduce the
skew observed in the annual rainfall data. In terms of prac-
tical implications, the annual minima are consistently
underestimated (for both models and all sites) by such a
model, with consequent effects on estimation of drought
risk. It is noted that the data are not either normally or
log-normally distributed, rendering models that use such
an assumption inadequate in this case.

AR(1) versus HMM

Overall, the multi-site AR(1) model slightly outperformed
the multi-site HMM in terms of model probability, though
the difference between the two models was marginal. This
is also shown in the reproduction of the observed statistics.
The only major difference between the two models was that
the AR(1) model was able to better reproduce the lag-1
temporal correlation than the HMM. This reproduction of
temporal correlation by the HMM is related to the spatial
parameterisation which is discussed in the following
section.

Impact of the spatial correlation parameterisation
on HMM identification

The spatial correlation parameterization used in this study
– the exponential correlation decay structure – was able
to reduce the number of parameters and facilitate conver-
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Figure 7 Impact of parameter uncertainty on simulated drought probabilities for the AR(1) and HMM on (a) the robustness
criterion (years <55% Storage) and (b) the security criterion (years <5% Storage). The SCA minimum threshold (robustness = 1.0% and
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gence of the MCMC algorithm (c.f. Thyer and Kuczera,
2003b) and also able to reproduce the observed spatial sta-
tistics (Fig. 6). However, further inspection reveals this spa-
tial correlation parameterisation does impact on the
identification of the HMM.

The HMM involves estimation of latent (or hidden) state
parameters rt 2 (W,D) for each data timestep t. The poster-
ior state probability series p(rt = WjY,h), t = 1, . . . ,n shown
in Fig. 2b, given the estimated multi-site HMM parameters
and entire data series Y, provides an estimate of the prob-
ability that the rainfall is being generated from either the
wet (or dry) state (see Bengio, 1999, for calculation de-
tails). For compactness, reference to the parameter set h
is omitted in subsequent references. Although the state
probability series is not strongly identified (that is the prob-
ability dithers around 0.5), clear wet and dry periods are
identifiable by stratification into p(rt = WjY) > 0.5 (higher
probability of being in the wet HMM state) or p(rt =W
jY) < 0.5 (higher probability of being in the dry HMM state).
A ‘‘wet’’ period is identified in 1886–1895, a ‘‘dry’’ period
from 1895 to 1930, a wet period from 1930 to 1986, and a
‘‘dry’’ period from 1986 to 1992.

Fig. 2b shows the posterior state series for individually
modelled sites compared to the multi-site HMM. The individ-
ual state series do show similarity to one another. However,
there are some distinct differences between the single and
multi-site state series. For example, in the period 1936–
1946 the majority of the single site state series indicate
the dry state has a higher probability, p(rt = WjY) < 0.5,
while the multi-site state series indicates the wet state
has a higher probability, p(rt = WjY) > 0.5. The multi-site re-
sult conflicts with Fig. 2a – the negative slope shows that
almost all the sites have consistently below average rainfall
in the period 1936–1946. It appears that identification of a
temporal correlation structure consistent with the assumed
HMM structure (of relatively wet and dry periods) is being
confounded by the spatial parameterisation of the model.

Fig. 9 shows a plot of observed spatial correlations
partitioned into the HMM wet period (p(rt = WjY) > 0.5) –
denoted as WO – and the period, (p(rt = WjY) < 0.5) – de-
noted as DO. Fig. 9 also has an estimate based on the entire
series (‘all’). The data have been transformed according to
the modal BC parameter set and the modelled exponential

correlation decay function is also plotted. The partitioning
of the observed data into the identified state epochs by
the HMM state series provides a closer fit overall of the as-
sumed exponential correlation decay function than was pos-
sible for the entire series. This is evident in particular for
the site pairs Moss Vale–Taralga, Mt. Victoria/Black-
heath–Taralga and Mt. Victoria/Blackheath–Yarra located
53 km, 100 km and 160 km apart, respectively. Although
for some site pairings the DO correlation values lie further
away from the exponential correlation line than using ‘all’
data, a greater overall fit (according to the likelihood) is
achieved by identifying periods of differing correlation.

Fig. 10 illustrates the impact of this identification of
state epochs on other parameters within the model. The
WO and DO rainfall data are plotted for two site pairings
corresponding to two of the previously mentioned pairings
affected most by the imposition of the exponential correla-
tion decay. The ellipses corresponding to the 95% probabil-
ity limits of the HMM wet and dry state modal parameters
are shown, with the axes being transformed according to
the BC k parameter identified. Fig. 10a shows the Moss
Vale–Taralga site pairing (the two most closely located
sites) where a high correlation is enforced by the exponen-
tial correlation structure relative to that estimated empiri-
cally. To capture the lower correlation observed in the
data, and still reproduce the observed variability, two peri-
ods differing significantly in only the Taralga mean are iden-
tified. Fig. 10b shows the Mt. Victoria/Blackheath–Taralga
site pairing – the wet state has several points which are out-
side the 95% probability limits, while the dry state has none
and the lower tail of the 95% probability ellipse is consider-
ably lower than the lowest observed rainfall value. This is
because the dry state variance parameter for Taralga is
overestimated. If the correlation is underestimated by the
exponential function, as it is for the DO correlation for this
site pair, then the site variance must be overestimated to
maintain the desired covariance.

The impact of this is that the HMM is slightly better than
the AR(1) model at reproducing the observed spatial corre-
lation (Fig. 6). This better reproduction of spatial correla-
tion is however at the cost of reproduction of variance
and temporal correlation. As the state series identified here
(Fig. 2b) contains few state switches, negligible temporal
correlation is induced. This explains the temporal correla-
tion results for Moss Vale and Yarra which illustrate poor
reproduction of the lag-1 autocorrelation.

This analysis has revealed that there are significant shifts
in spatial correlation characteristics identified within the
data. The AR(1) model, as specified here, is unable to repro-
duce such shifts in correlation. The HMM, whilst assuming a
constant correlation structure, has extra flexibility com-
pared to the AR(1) model in that it can produce two differ-
ing covariance structures, such that the overall spatial
correlation is slightly better reproduced. Given the identifi-
cation of these periods, the assumption of a state-indepen-
dent correlation structure is put to question, perhaps
suggesting that a correlation structure should be calibrated
for each HMM state. Furthermore, observed data were
found here to not be entirely consistent with the functional
form used for the spatial correlation. It is suggested that the
impact of assuming a particular spatial structure on state
series identification should be considered carefully. We feel
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Figure 9 Observed and simulated spatial correlation coeffi-
cient versus distance for the observed transformed data
partitioned according to P(rt =WjY) < 0.5 and P(rt =WjY) > 0.5.
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that further work on this correlation structure is required,
with possible relaxation of the isotropic assumption and
the introduction of a nugget term where appropriate.

As a final observation, it is suggested that implementa-
tion of the spatial correlation as function of distance be-
tween sites will prove challenging if this methodology
were applied to multi-site streamflow data. Specifying the
distance between sites when the streamflow data are from
catchments of differing size and geometry presents an
interesting challenge.

Why is the AR(1)-oneBCphi strongly favoured?

To aid understanding of the model probabilities presented
within Section ‘‘AR(1) and HMM pooled parameter vari-
ants’’, with the AR(1)-oneBCphi being strongly favoured
compared to other models, the posterior distribution of
key parameters are presented. The site specific posterior
distributions of k and / associated with the AR(1) model
are presented in Figs. 11a and 11b, respectively. These dis-
tributions are compared to the associated singular regional
parameter within the AR(1)-oneBCphi. The prior distribution
of each parameter is also presented. Fig. 11a shows all pos-
terior distributions of k having little or no density at value 1,
while there is significant density at 0 whilst the bulk of the
density lies between 0 and 1, further supporting the hypoth-
esis that the BC transform is required (as discussed in Sec-
tion ‘‘Box–Cox transformation’’). The site specific
parameters of the AR(1) contain a large degree of overlap
in terms of location of the distribution which is in agree-
ment with the high model probabilities for the models con-
taining a singular regional k. The regional k shows a greater
degree of identification (less variability) – with a distribu-
tion identified which is largely consistent with the individual
site values. Fig. 11b shows the site specific posterior distri-

butions of / having little or no density for values at, or less
than 0, with the exception of Sydney and Mt. Victoria/Black-
heath. Although not as clearly as for k, the site specific / of
the AR(1) contain a large degree of overlap in terms of loca-
tion of the distribution which is in agreement with the high
model probabilities for the models containing a singular re-
gional /. The regional / shows a greater degree of identifi-
cation (less variability) – with a distribution identified
which is largely consistent with the individual site values.

The posterior model probabilities favour AR(1)-oneBCphi
as it is relatively parsimonious compared to the AR(1), and
given there is a large region of overlap regarding the mar-
ginal distribution of k and /, allowing identification for the
AR(1)-oneBCphi of a singular regional parameter in each case
that is generally consistent with the AR(1) model. While it
can be argued that the AR(1)-oneBCphi is restricting the dis-
tribution of / in a possibly inappropriate way (ie. for Sydney
and Mt. Victoria/Blackheath here), it can be conversely ar-
gued that by forcing a single regional value to be found, bet-
ter identification of model parameters can be achieved by
the use of a single parameter for k and /. In any case, the
use of posterior model probabilities through model averaging
ensures that both models are capable of contributing during
simulation. An alternative to using model averaging and indi-
vidual site versus regionally pooled model is by creating a
further hierarchy in model parameters k and /, as advocated
by Gelman et al. (1995, p. 176). While this is beyond the
scope of this study, the formulation of such a model is an in-
tended area of future research.

Impact of parameter and model uncertainty

The reservoir simulations revealed that rainfall simulations
that incorporate parameter uncertainty produced drought
probabilities approximately a half an order of magnitude
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Figure 10 Site versus site observed annual rainfall for (a) Moss Vale and Taralga (53 km apart) and (b) Mt. Victoria/Blackheath and
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higher for severe drought events compared to rainfall simu-
lations based on single value parameter estimates. To inves-
tigate why this occurred the relationship between the
average catchment rainfall (based on simulated time series
of 10,000 years) and drought probability for each of the
1000 replicates was examined for the two cases: with and
without parameter uncertainty. Fig. 12 shows the drought
probabilities for the security criterion with rainfall simu-
lated by the AR(1) model and an annual supply of 450 GL.
The diagram shows a boxplot of the drought probabilities
when the average catchment rainfall is one of the four quar-
tiles. With no parameter uncertainty the variability of the
average catchment rainfall is very low (standard devia-
tion = 2.7 mm) and the distribution of drought probabilities
does not change for different average rainfall quartiles
(Fig. 12a). In contrast, with parameter uncertainty the var-
iability of the average catchment rainfall increases by an or-
der of magnitude (standard deviation = 28 mm). Fig. 12b
shows the impact that this increased variability has on
drought probabilities. When the average catchment rainfall
is in the 1st quartile, the expected drought probability is

0.2%, which is four times higher than the expected drought
probability in 2nd quartile (0.05%). This is attributable to
the greater variability of the generated rainfall (with rela-
tively low rainfall being more likely to be generated under
parameter uncertainty) and also to the nonlinear relation-
ship between catchment runoff and reservoir yield. Thus
the drought probabilities increase when parameter uncer-
tainty is evaluated due to the increased rainfall variability
and the nonlinear relationship between catchment rainfall
and drought probabilities.

These results have important implications for water re-
source planners who rely on estimates of reservoir yield.
For the case study, which had similar characteristics to
the Sydney system, evaluating parameter uncertainty re-
sulted in a decrease in the yield of the order of 10%. Impor-
tantly, if parameter uncertainty is ignored then reservoir
yield will be overestimated.

Evaluating model uncertainty through simulation of the
HMM and AR(1) showed significant differences in the esti-
mated yield – with a range of �1.2% to 2.4% compared to
the best estimate. Averaging these models within simulation
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provided a similar estimate to the best model identified
through parameter pooling – indicating the benefit of model
averaging. These results indicate that for this case study dif-
ferences in yield due to model uncertainty are not as great
compared to differences due to parameter uncertainty.

These sobering results are based on analysis of rainfall
variability using stationary stochastic models and therefore
do not take into account the possible impacts of climate
change. Generalisation of the models to incorporate possi-
ble non-stationarity along with natural variability is an area
of future research.

Conclusion

A modelling framework has been developed for modelling
multi-site hydrological data at annual timescales. Models in-
cluded within this framework are the HMM (Thyer and Kucz-
era, 2003a) and the widely used lag-1 autoregressive (AR(1))
model (Srikanthan and McMahon, 1985). The aim was to
evaluate and compare these multi-site models using a com-
prehensive and consistent Bayesian methodology.

For both models several extensions to the previous
implementations were developed. For the HMM, the inclu-
sion of Box–Cox transformation was undertaken to facili-
tate simulation of highly skewed data. For the AR(1)
model, the full evaluation of parameter uncertainty and
inclusion of the BC transformation in a multi-site framework
also represents an advance on previous work. For both mod-
els, the application of MCMC techniques to evaluate param-
eter uncertainty required the development of a
parameterization for the spatial correlation. The general-
ized framework for calibration of both models also facili-
tated the testing of pooled parameter AR(1) and HMM
variant models. The evaluation of model performance in-
cluded the ability to reproduce a wide range of important
extreme statistics and the use of Bayesian model selection
techniques to compare different models using estimates of
the model probability.

For the five-site case study from the Sydney’s major
water supply catchments the following results were ob-
tained. Firstly, the Box–Cox transformation is required for
both models when modelling multi-site annual rainfall. In
terms of model probability the difference between the
AR(1) and HMM was marginal. The AR(1) was able to repro-
duce the short-term temporal correlation better than the
HMM. On the other hand, the HMM was able to identify an
apparent shift in observed spatial correlation structure be-
tween some of the sites.

Further research is needed on the parameterization of
both spatial correlation and temporal dependence for mul-
ti-site models of long-term hydrological data. The advantage
of the development of this general framework it that it allows
alternative (current and future) models to be easily incorpo-
rated and their worth evaluated by a comprehensive range of
techniques using a consistent Bayesian methodology.

Several pooled parameter variants were investigated. It
was found that some strongly outperformed both the AR(1)
and HMM demonstrating the utility of the general modelling
approach coupled with a robust model selection method.

Finally, evaluation of parameter uncertainty produced
significantly higher drought probabilities compared to simu-
lations which ignored parameter uncertainty. This was due

to the increased rainfall variability when incorporating
parameter uncertainty and the nonlinear relationship be-
tween catchment rainfall and drought probabilities. The
practical implication for water resource planners is that if
parameter uncertainty is ignored the yield of a water supply
system will be overestimated. For the case study under-
taken, which had characteristics similar to Sydney’s major
water supply reservoir, this resulted in an overestimation
of the reservoir yield of the order of 7%.

Appendix A. Metropolis–Hastings algorithm

The basic idea of MCMC methods is to simulate a Markov
chain iterative sequence, where for each iteration i, a sam-
ple of the model parameters h(i) is generated according to a
jump distribution Ji h�jhði�1Þ

� �
dependent only on the previ-

ous samples position h(i�1). Given certain conditions the dis-
tribution of these samples converges to a stationary
distribution (Mengersen and Tweedie, 1996; Roberts and
Tweedie, 1996) the posterior distribution p(hjYT). This dis-
tribution of parameters is used to evaluate posterior quan-
tities of interest.

The Metropolis–Hastings algorithm (taken from Gelman
et al., 2004) is described below:

1. Draw a starting point h(0) that has a positive posterior
probability.

2. For i = 1,2, . . .
(a) Sample a candidate point h* from a jump distribu-

tion at iteration i, Ji h�jhði�1Þ
� �

. The jump distribu-
tion is user chosen. A Gaussian distribution Ji h�jð
hði�1ÞÞ � N hði�1Þ; c2RJ

� �
with mean located at the

current sample location was chosen here. The co-
variance matrix RJ and scaling factor c are user
chosen and are described following this algorithm.
This results in the random-walk Metropolis sampler
noted in Chib and Greenberg (1995).

(b) Calculate the ratio of densities r ¼ p h�jYð Þ=Ji h�jhði�1Þð Þ
p hði�1ÞjYð Þ=Ji hði�1Þ jh�ð Þ

(c) Set h ¼ h� with probability minðr; 1Þ
hði�1Þ otherwise

	
(d) Check convergence – if sufficient samples taken,

stop. Otherwise continue.

Stated roughly, this algorithm will converge to the tar-
get distribution p(hjY) (the posterior distribution) as
i!1. In practice, the sampling is stopped at a point
that approximates the posterior to some degree of satis-
faction. Multiple chain MCMC is used to assist determina-
tion of convergence. Using multiple chains allows testing
of individual chains against all of the samples thereby
allowing testing of whether each chain is yielding samples
form the same distribution. The measure used in this
study:

ffiffiffiffiffiffiffi
RGR

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðhallÞ=varðhchainsÞ

p
ð17Þ

This ‘scale reduction factor’ introduced by Gelman and Ru-
bin (1992) compares the estimated within-chain variance
var(hchains) to overall variance var(hall) for each parameter.
Values of

ffiffiffiffiffiffiffi
RGR

p
below 1.2 for all parameters are recom-
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mended as being acceptable (Gelman et al., 2004). Five
chains of MCMC samples were used in this study.

The jump distribution determines the efficiency of the
sampler. Generally, the better the jump distribution
approximates the posterior, the more efficient the sampler
will be. The following methods were used to increase the
efficiency of the sampler in this study:

1. All chains were started at the mode of the distribution
(Kuczera and Parent, 1998), thereby reducing the chance
of some chains taking a very long time to reach areas of
high posterior probability. The shuffled complex evolu-
tion algorithm of Duan et al. (1994) was used to find
the modal estimate.

2. An initial estimate of the posterior covariance based on
the Taylor series expansion of the log posterior density
at the mode is used in this study. For each component
of the Gaussian covariance matrix a finite difference
scheme to is used to estimate R�1ik ¼ �o log p h j YTð Þ=
ohiohk. Gelman et al. (2004) recommend scaling the
covariance matrix by the factor c2 where c ¼ 2:4=

ffiffiffi
n
p

where n is the number of parameters based on empirical
studies of Gaussian posteriors.

3. Four stages of sampling are used each containing 50,000
samples:
(a) A heuristic updating scheme based on Gelman et-

al. (2004) periodically updating the scaling factor
c2 of the jump distribution covariance to achieve
an optimal jumping rate (average number of acc-
epted jumps per iteration).

(b) A constant covariance stage is then undertaken
with no updating with the final scaling factor c2

from the previous stage used throughout.
(c) The covariance of the parameters is estimated fr-

om the previous stage samples. The scaling factor
is reset to c ¼ 2:4=

ffiffiffi
n
p

. The adaptive scheme of
Haario et al. (2001) is then employed. This is con-
sidered as the ‘warm up’ of the sampler.

(d) The scheme of Haario et al. (2001) is further used
to produce the final samples – with the

ffiffiffiffiffiffiffi
RGR

p
sta-

tistic checked to be below 1.2 for all parameters.
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