
Journal of Hydrology (2008) 352, 77–93
ava i lab le a t www.sc iencedi rec t . com

journal homepage: www.elsevier .com/ locate / jhydrol
Predicting hourly-based flow discharge hydrographs
from level data using genetic algorithms
Gokmen Tayfur a,*, Tommaso Moramarco b
a Department of Civil Engineering, Izmir Institute of Technology, Urla, Izmir 35340, Turkey
b Research Institute for Geo-Hydrological Protection, National Research Council, Via Madonna Alta, 126, 06128 Perugia,
Italy
Received 11 May 2007; received in revised form 7 November 2007; accepted 18 December 2007
00
do

*

am
KEYWORDS
Genetic algorithm;
Flow hydrograph
prediction;
Ungauged basins;
Elevation data;
Stage data;
Rating curve;
Modeling
22-1694/$ - see front matte
i:10.1016/j.jhydrol.2007.12

Corresponding author. Fax
E-mail addresses: gokment
arco@irpi.cnr.it (T. Moram
r ª 200
.029

: +90 232
ayfur@iy
arco).
Summary This study developed a genetic algorithm model to predict flow rates at sites
receiving significant lateral inflow. It predicts flow rate at a downstream station from flow
stage measured at upstream and downstream stations. For this purpose, it constructed two
different models: First is analogous to the rating curve model (RCM) of Moramarco et al.
[Moramarco, M., Barbetta, S., Melone, F., Singh, V.P., 2005. Relating local stage and
remote discharge with significant lateral inflow. J. Hydrologic Eng., ASCE, 10(1)] and the
second is based on summation of contributions from upstream station and lateral inflows
using kinematic wave approximation. The model was applied to predict flow rates at three
different gauging stations located on Tiber River, Upper Tiber River Basin, Italy. The model
used average wave travel time for each river reach and obtained average set of parameter
values for all the events observed in the same river reach. The GAmodel was calibrated, for
each river reach and for each formulation, by three events and tested against three other
events. The results showed that the GA model produced satisfactory results and it was
superior over the most recently developed rating curve method. This study further ana-
lyzed the case where only water surface elevation data were used in the input vector to
predict flow rates. The results showed that using elevation data produces satisfactory
results. This has an implication for predicting flow rates at ungauged river sites since the
surface elevation data can be obtained without needing the detailed geometry of river sec-
tion which could change significantly during a flood.
ª 2008 Elsevier B.V. All rights reserved.
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Introduction

The correct computation of flow discharge is crucial for
water resources engineering projects. It can be computed
from available flow stage, channel width, and flow velocity
.
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data. Measuring channel width requires topographic survey-
ing which is expensive and sometimes impossible for inac-
cessible sections. Flow velocity can be measured using
cable way and a current meter which becomes difficult,
especially during severe floods. On the other hand, measur-
ing flow stage is comparatively easy and cheap. Hence,
researchers have tended to develop models relating flow
stage to flow rate. For this purpose hydrologic and hydraulic
methods have been developed. Hydrologic methods are
based on only conservation of mass principle and they are
limited for the cases where linearity is preserved. Hydraulic
methods are based on conservation of mass and momentum
equations that are often expressed by highly nonlinear par-
tial differential equations whose solutions require highly
sophisticated numerical techniques having numerical
convergence and instability problems (Caleffi et al., 2003;
Ying et al., 2004; Singh et al., 2004). Furthermore, for
complex watersheds, hydraulic models require intensive
topographic information and parameter estimation (Kouwen
et al., 2005; Muleta et al., 2007).

Hence, researchers have employed simpler approaches
(Franchini and Lamberti, 1994; Moramarco and Singh,
2001). Although the models of Franchini and Lamberti
(1994) and Moramarco and Singh (2001) are simple they
fail when applied to river reaches having lateral inflows.
Franchini et al. (1999) developed model for estimating
rating curve requiring flow stage and discharge data. How-
ever, their model is complex requiring estimation of nine
parameters. Recently, Moramarco et al. (2005) developed
a rating curve model (RCM) which is physically-based and
applicable to cases where lateral inflows are significant.
The RCM relates flow rate at a downstream site to flow
rate at an upstream site and flow cross-sectional areas
at the both sites with two parameters that are obtained
using information on downstream base flow and down-
stream peak discharge. As such, it requires measurements
of flow cross-sections through topographic surveying and
flow depth measurements. It also requires flow velocity
measurements at upstream end. Furthermore, the RCM
model, for each event that occurs in the same river reach,
has to determine the wave travel time and the model
parameters. Most recently, Tayfur et al. (2007) applied
artificial neural network (ANN) to predict flow rates using
flow stage data in the input vector. Although ANN pro-
duced satisfactory results it does not reveal insight into
understanding the physics of the process. ANN and GA
models perform the same task that is the minimization
of the error-based objective function. With regard to
the methodologies and algorithms that both the models
employ, they do not reveal insight into the understanding
of the basic processes of the physical event. In that sense,
both the models are black box models. However, ANN
model is a further black box model since it does not yield
an empirical equation. GA model, on the other hand, finds
optimal values of existing empirical equations that can be
readily used for predictive purposes. These existing empir-
ical equations may shed a light onto the understanding of
the physics of the processes. Furthermore ANN lacks
extrapolation capability such that they cannot be applied
to ungauged basins (Tayfur et al., 2007). As it is presented
in a later section, GA model does not have such a
shortcoming.
This study proposes to employ genetic algorithm (GA) to
predict flow rates from flow stage data only. For this pur-
pose, two formulations are proposed. One is analogous to
the formulation of RCM model of Moramarco et al. (2005)
and the other one is based on kinematic wave approxima-
tion. As pointed out earlier the RCM model relates flow rate
at the downstream station to flow rate at upstream station
and flow cross sectional-areas at upstream and downstream
stations with parameters. This study however proposes to
relate flow rate at a downstream station to flow stages at
the upstream and downstream stations only. This study fur-
thermore proposes to predict flow rate using only water sur-
face elevation data without needing to know the detailed
geometry of the river cross section which could change sig-
nificantly during a flood. This enhances the rating curve
assessment and it has an important implication for predict-
ing flow rates at ungauged river sites.

Genetic algorithm (GA)

Genetic algorithm (GA) is a nonlinear search and optimiza-
tion method inspired by biological processes of natural
selection and the survival of the fittest. They make rela-
tively few assumptions and do not rely on any mathematical
properties of the functions. As such, GA has found wide
application in water resources engineering (Liong et al.,
1995; Guan and Aral, 1998, 2005; Sen and Oztopal, 2001;
Jain et al., 2004; Singh and Datta, 2006; Cheng et al.,
2005, 2006; Wu and Chau, 2006).

Basic units of GA consist of ‘bit’, ‘gene’, ‘chromosome’
and ‘gene pool’. In GA, gene consists of bits (i.e. 0 and 1)
and represents a model parameter (or a decision variable)
to be optimized. A chromosome is the combined set of all
the genes. Note that each variable is the gene and combina-
tion of genes forms the chromosome each of which is a pos-
sible solution for the variables. Finally, set of chromosomes
form the gene pool. In the gene pool, each chromosome is a
candidate for a solution.

The main GA operations basically consist of ‘initial gene
pool generation’, ‘evaluation of fitness for each chromo-
some’, ‘selection’, ‘cross-over’, and ‘mutation’. Initial
population of chromosomes can be randomly generated
by, for example, a uniform distribution or a normal distribu-
tion. Fitness of each chromosome can be obtained by the
employment of the following equation:

FðCiÞ ¼
fðCiÞP
fðCiÞ

ð1Þ

where Ci is the chromosome i; F(Ci) is the fitness value of
chromosome that is the percentage of variable in the pool;
f(Ci) is the value of objective function evaluated for chro-
mosome i.

Selection can be performed randomly by, for example, a
roulette wheel (Sen, 2004) or by ranking where the chromo-
somes are ranked according to their fitness from the fittest
to weakest. Then the fittest ones are copied on the weakest
ones.

By cross-over, new individuals are produced by changing
the genes of the chromosomes. The chromosomes from the
current generation are selected for the recombination
process based on their relative fitness. Fig. 1 is an example
for a single cut cross-over operation where the first two
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Figure 1 Example for a single cut cross-over operation.
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chromosomes are cut from the 3rd digit from left, yielding
new chromosomes at the bottom.

The last operation in GA is the mutation where particular
bit (bits) is reversed (i.e. 1 to 0 or 0 to 1). In GA search, this
is the perturbation that allows the GA to seek out new and
novel solutions. By this process, the next trend would either
faster converge to or diverge from the solution. In general,
about 5% of the bits are subjected to mutation. Fig. 2 is an
example presenting that the value of 153 goes to 57 after
cross-over and then to 249 after mutation, scanning a large
area of the solution domain. The details of GA can be ob-
tained from Goldberg (1999) and Sen (2004), among others.

Rating curve method (RCM)

The RCM model of Moramarco et al. (2005) is:

Q dðtÞ ¼ a
AdðtÞ

Auðt� TLÞ
Q uðt� TLÞ þ b ð2Þ

where Qu is the upstream discharge; Qd is the downstream
discharge; Ad and Au are the effective downstream and up-
stream cross sectional flow areas, respectively; TL is the
wave travel time; and a and b are the model parameters
estimated by the following equations (Moramarco and
Singh, 2001):
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Figure 2 Example for cross-ov
Q dðtbÞ ¼ a
AdðtbÞ

Auðtb � TLÞ
Q uðtb � TLÞ þ b ð3aÞ

Q dðtpÞ ¼ a
AdðtpÞ

Auðtp � TLÞ
Q uðtp � TLÞ þ b ð3bÞ

where Qd(tb) is the base flow rate at the downstream sec-
tion; Qd (tp) is the peak discharge at the downstream sec-
tion; tp and tb are the times when the peak stage and
baseflow occur at the downstream section, respectively.

Base flow rate Qd(tb) can be computed from the velocity
measurements during low flows. The peak discharge Qd(tp)
is computed as

Q dðtpÞ ¼ ½Q uðtp � TLÞ � Q �� þ qpL ð4Þ

where Qu(tp � TL) represents the upstream discharge de-
layed for the wave travel time TL; Q* is the discharge atten-
uation computed from Price formula (Price, 1973). qpL is
the lateral flow estimated by (Moramarco and Singh, 2002):

AdðtpÞ � Auðtp � TLÞ
TL

¼ qp ð5Þ

Parameters a and b are obtained from the solution of Eqs.
(3a) and (3b). Note that, for each event observed even in
the same river reach, one needs to obtain different set of
a and b values to apply the RCM model. Also, for each
event, one needs to estimate the wave travel time. The
estimation of wave travel time is given in Moramarco
et al. (2005).

Proposed formulations

This study proposes two formulations for predicting flow
rates from stage data. First one is analogous to the RCM
model and expressed as

Q dðtÞ ¼ a
hb
dðtÞ

hc
uðt� TLÞ

þ g ð6Þ

where hd and hu is the flow stage at downstream and up-
stream station, respectively; a, b, c, and g are the model
parameters whose optimal values are found by the GA mod-
el. We call this model as ‘‘GA-Stage-I’’.
1 1 0 0

0 1 0 1

1 1 0 0

0 1 0 1

1 153

0 42

1 57

0 138

1 1 0 10 249

 cut 

er and mutation operations.



Figure 4 Upper Tiber river basin with the gauged sites and
the respective drainage basins.

Table 1 Main geomorphological characteristics of Tiber
River reaches

River Bounded
sections

Drainage
area
(km2)

Reach
length
(km)

Mean
slope

Mean
width
(m)

Tiber Santa Lucia 935 44.6 0.0016 35
Ponte Felcino 2035

Tiber Santa Lucia 935 70 0.0014 39
Ponte Nuovo 4145

Tiber Santa Lucia 935 100.8 0.0012 44
Monte Molino 5279
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According to Eq. (6), this model predicts flow rate at a
downstream station from flow stage measured at upstream
station a wave travel time earlier and the flow stage mea-
sured at downstream station with parameters whose opti-
mal values are found by the GA model.

Second proposed model is based on kinematic wave
approximation. That is flow rates at upstream and down-
stream stations are related to flow stages using kinematic
wave approximation. The downstream flow is assumed as
the contribution of upstream discharge at wave travel time
earlier, at which the lateral inflow of the intermediate basin
is added by surmising it as a power function of hd. This mod-
el can be expressed as

Q dðtÞ ¼ a1h
b1
u ðt� TLÞ þ a2h

b2
d ðtÞ þ g ð7Þ

where parameters a1, a2, b1, b2 and g are found by the GA
model. We call this model as ‘‘GA-Stage-II’’.

This study is also proposing two further formulations that
predict flow rate at a downstream station from water sur-
face elevation (elevation of a station from a reference da-
tum plus flow depth, see Fig. 3) at upstream station a
wave travel time earlier and water surface elevation at
downstream station. This aspect is fundamental for the rat-
ing curve assessment because by, this, models would not de-
pend on changes in the river section geometry that often
occur during floods. This means that, unlike the RCM ap-
proach, the two formulations would not require the topo-
graphical surveys of gauged sections. Setting the
hydrometric zero of downstream station as the reference
datum, analogously to the RCM, the first formulation can
be stated as

Q dðtÞ ¼ a
hb
dðtÞ

Ecðt� TLÞ
þ g ð8Þ

where E is the upstream water surface elevation above the
hydrometric zero of downstream gauged section (see
Fig. 3). a, b, c, and g are the model parameters whose opti-
mal values are found by the GA model. We call this model as
‘‘GA-Elevation-I’’. It is a reasonably common practice in
hydrological analysis to assume that the reference datum
is the hydrometric zero at downstream station of a river
reach, because this results in always obtaining positive val-
ues for water surface slope.

Also, this study is proposing the following formulation
which is analogous to Eq. (7):

Q dðtÞ ¼ a1E
b1ðt� TLÞ þ a2h

b2
d ðtÞ þ g ð9Þ

where optimal values of the parameters a1, a2, b1, b2 and g
are found by the GA model. We call this model as ‘‘GA-Ele-
vation-II.

It has to be pointed out that the proposed formulations
attempt to do reliable predictions using easily available
hd

Datum

hu

Eu

E

Figure 3 Schematic representation of water surface elevation from a reference datum set at downstream hydrometric zero.
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data of flow stage and surface elevation. In Eqs. (6)–(9), the
exponents are retained in order to account for the nonlin-
earity inherited in the flow processes. In hydraulic engineer-
ing studies, it is common to relate discharge to flow cross-
section as Q = aAb; and flow velocity to flow depth V = ahb

(Singh, 1996). Moramraco et al. (2006) also employed
Q = ahb. The g term in Eqs. (6)–(9), was also employed by
Moramarco and Singh (2001) and Moramarco et al. (2005).
It might stand for noise as it is commonly considered in sto-
chastic models in hydrology.
GA model application

Watershed and hydrologic data

The Upper Tiber River basin in Central Italy, which has
equipped river reaches, was selected for testing the GA
model. Fig. 4 shows the location of the selected hydromet-
ric sections along with subtended drainage areas. Table 1
summarizes the main characteristics of the selected river
reaches. Each gauged section is equipped with a remote
Table 2 Main characteristics of flood events observed at Santa L

Date Santa Lucia station Ponte

Qb (m3/s) Qp (m3/s) V (106 m3) Qb (m

December 1990 9 418.6 47.8 5
January 1994 35.6 107.9 8.3 50.8
May 1995a 4.2 71 10.3 8.8
January 1997a 18.2 120.2 24.3 36.2

146.2
June 1997a 5 345.6 27.6 10.8
January 2003 23.6 39.7 12.5 49.3

57.5
47.2

Mean values

For symbols see text. Note that there are double peak rates in Januar
a Used for GA model calibration.

Table 3 Main characteristics of flood events observed at Santa L

Date Santa Lucia Pon

Qb (m3/s) Qp (m3/s) V (106 m3) Qb (

December 1996 14 282.7 18.8 64.
April 1997a 3.7 366 32.8 19.
December 1998a 24 48.3 7.2 77.
February 1999 19 229 15.2 42.
December 2000a 5 211 52.3 24.

349.2
January 2001 21 63.5 13.8 106

64.1
Mean values

For symbols see text. Note that there are double peak rates in Decem
a Used for GA model calibration.
ultrasonic water level gauge, and velocity measurements
are carried out by current meter. The elevations above
sea level of the hydrometric zero at stations are as follows:
261.10 m (Santa Lucia); 188.77 m (Ponte Felcino); 162.04 m
(Ponte Nuovo); and 135.73 m (Monte Molino).

Six storm events for each river reach were considered for
GA model calibration and application. The main properties
of the selected flood events are summarized in Tables 2–
4. It is seen that the lateral inflow contribution was signifi-
cant in most of the events. Table 2 presents the storm
events observed at Santa Lucia and Ponte Felcino river
reach; Table 3 presents the storm events observed at Santa
Lucia and Ponte Nuovo reach; and Table 4 shows events oc-
curred at Santa Lucia and Monte Molino reach. Also, shown
in these tables are the wave travel time and a and b param-
eter values used by the RCM model for each event. The
events that are used for model calibration by the GA are
marked by * in these tables. For each reach, 3 events were
used for GA model calibration and 3 were used for model
testing. For each river reach, the events were randomly
grouped for calibration and application so as to avoid the
bias in model performance.The wave travel time, on the
ucia and Ponte Felcino stations

Felcino station RCM

3/s) Qp (m3/s) V (106 m3) TL (h) a b

404.2 56.8 2 1.15 �9
240.7 17.8 2.5 1.7 �35
138.7 19.1 4 1.24 �2.94
225 51.8 3.5 1.28 �3.19

449.6 49.1 5 1 0.25
113.4 38.2 3.5 1.68 �24
223.8
153.2

3.4 1.36 �12.41
y 1997 and triple peak rates in January 2003.

ucia and Ponte Nuovo stations

te Nuovo RCM

m3/s) Qp (m3/s) V (106 m3) TL (h) a b

6 728.4 58 8.5 0.98 �12.8
2 498.5 75.2 8.5 0.99 �11
7 714.8 52.3 10 1.11 �30
7 761.8 68.4 8 1.12 �28
8 449.5 205.9 7.5 1.09 �14

877.2
404.5 67.4 7.5 1.66 �90
312.1

8.5 1.20 �30.8
ber 2000 and January 2001.



Table 4 Main characteristics of flood events observed at Santa Lucia and Monte Molino stations

Date Santa Lucia Monte Molino RCM

Qb (m3/s) Qp (m3/s) V (106 m3) Qb (m3/s) Qp (m3/s) V (106 m3) TL (h) a b

April 1997 3.7 366 32.8 27 572 93.7 14 0.87 2.3
December 1998a 24 48.3 7.2 85 770 68.5 11 1.45 �55.8
February 1999a 19 229 15.2 36 754 80.7 12.5 1.02 �7.6
December 2000 5 211 52.3 26 506 224.5 11.5 1.1 �4.9

349.2 850
January 2001 21 63.5 13.8 119 397.3 84.8 10.5 1.4 �63

64.1 364
May 2004a 10 120.2 38.1 82 544.4 160.2 10.5 1.24 �25.7

250.5 536.5
Mean values 11.6 1.14 �14.61
For symbols see text. Note that there are double peak rates in December 2000, January 2001 and May 2004.
a used for GA model calibration.

Table 5 Optimal parameter values for each proposed model for the Santa Lucia and Ponte Felcino reach

Parameters GA-Stage-I Model GA-Stage-II Model GA-Elevation-I Model GA-Elevation-II Model

a 2.508 9.089
b 4.325 2.214
c 1.137 �0.114
a1 9.985 2.024
b1 1.397 0.498
a2 9.992 6.705
b2 2.369 2.705
g 21.42 �1.236 �1.582 �14.56

Table 6 Optimal parameter values for each proposed model for the Santa Lucia and Ponte Nuovo reach

Parameters GA-Stage-I Model GA-Stage-II Model GA-Elevation-I Model GA-Elevation-II Model

a 6.520 0.769
b 2.812 1.416
c 0.418 �0.919
a1 10.00 9.109
b1 0.740 0.491
a2 8.230 9.491
b2 2.550 2.325
g 50.00 10.00 �49.96 �16.72

Table 7 Optimal parameter values for each proposed model for the Santa Lucia and Monte Molino reach

Parameters GA-Stage-I Model GA-Stage-II Model GA-Elevation-I Model GA-Elevation-II Model

a 10.00 0.930
b 2.475 1.060
c 0.152 �0.960
a1 9.998 9.928
b1 0.949 0.336
a2 8.952 6.029
b2 2.490 2.632
g 49.98 9.990 �49.95 49.91

82 G. Tayfur, T. Moramarco



Figure 5 Hydrograph predictions by several models at downstream end of Santa Lucia–Ponte Felcino River Reach in (a) December
1990; (b) January 1994; and (c) January 2003.
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overage, is 4 h, 8 h, and 12 h for the Santa Lucia-Ponte Fel-
cino reach, Santa Lucia-Ponte Nuovo reach, and Santa Lu-
cia-Monte Molino reach, respectively (Tables 2–4) and
these values were used in the calibration of the GA models.

The wave travel times for each river reach are already
known through observations as presented in Tables 2–4.
Since the average wave travel time for each river reach is
already known, the GA model does not require extra infor-
mation on exact wave travel time for each event that may
occur in each river reach.

GA model implementation and calibration

GA model obtains the optimal values of the model parame-
ters in Eqs. (6) and (7) by using the information of flow stage
a wave travel time earlier at an upstream station (e.g. Santa
Lucia station) and flow stage at a downstream station (e.g.
Ponte Felcino station). Similarly, the GA finds the optimal
values of the parameters in Eqs. (8) and (9) by using the
information of water surface elevation a wave travel time
earlier at an upstream station and flow stage at downstream
station.

In all the four cases, the GA model obtains optimal model
parameters by minimizing the objective function of mean
absolute error (MAE):

MAE ¼ 1

N

XN

i¼1
jQm � Q pj ð10Þ

where N is the number of observations; Qm is the measured
flow discharge; and Qp is predicted flow discharge.

The mean absolute error (MAE), illustrating the possible
maximum deviation, is one of the commonly employed error
functions in the literature (Chang et al., 2005). According to
Taji et al. (1999), to minimize the deviation, the absolute
error may sometimes be better than the square error. In
fact, the absolute error function has the advantage that it
is less influenced by anomalous data than the square error
function (Taji et al., 1999).

Initially, parameters were randomly assigned values in
[0–5]. During each iteration, while minimizing the error
function, the model searched the optimal values for the
parameters of a, b, c, a1, b1, a2, b2 within [�10 to 10] and
for parameter g in [�50 to 50]. Trial version of evolver GA
solver for Microsoft Excel (Palisade Corporation, 2001) was
employed in this study. The algorithm employs the Recipe
Solving Method to minimize the objective function under
specified constraints (Palisade Corporation, 2001).

Note that, in order to start computations, random values
must be assigned to the model parameters. As model does
iterations while reaching a global error, the values of
parameters are updated each iteration. Thus, the effect
of initially assigned values diminishes as the number of iter-
ations increases. With regard to the ranges assigned to the
parameters, we benefited from the studies of Moramarco
and Singh (2001) and Moramarco et al. (2005) where a varied
in [0.5 to 3] and g varied in [10 to �65].

Several trial runs were first performed in order to decide
the GA model parameters. 50–90% range for cross-over
rate; 1–8% for the mutation rate; 100–500 range for the
population size were employed. In each case, the minimum
value of the error objective function was checked. It was



Figure 6 Hydrograph predictions by several models at downstream end of Santa Lucia–Ponte Nuovo River Reach in (a) January
2001; (b) February 1999; and (c) December 1996.
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observed that all the runs, in fact, produced comparable re-
sults. Nevertheless, since each chromosome is a candidate
for a solution, the GA model employed 500 chromosomes
in the gene pool. It also employed 80% cross-over rate, 4%
mutation rate and 30,000 iterations. Note that it just takes
couple of minutes of CPU time for the model to find a
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solution in 30,000 iterations with 500 chromosomes in the
gene pool.

Three events [marked by *] from Table 2 were used for
calibrating the model parameters for the Santa Lucia–Ponte
Felcino reach by the GA model. The calibrated values for
each proposed model were summarized in Table 5. Note
that, as pointed out earlier, unlike the GA model, the RCM
finds different sets of values for the parameters and uses
different wave travel time for each event observed in the
same river reach. GA, on the other hand, for each river
reach employs an average wave travel time and finds one
set of average optimal model parameter values. Thus, it re-
quires less information.

In a similar fashion, 3 events [marked by *] from Table 3
and 3 events [marked by *] from Table 4 were employed to
calibrate the parameters for the Santa Lucia–Ponte Nuovo
reach and Santa Lucia–Monte Molino reach, respectively.
The calibrated parameter values for each proposed model
were summarized in Table 6 for the Santa Lucia and Ponte
Nuovo reach. For the Santa Lucia–Monte Molino reach,
the optimal parameter values for each proposed model
were summarized in Table 7.
rc
e
n
ta
ge

e
rr
o
rs

in
p
e
a
k
d
is
ch

a
rg
e
[E

Q
p
]
a
n
d
ti
m
e
to

p
e
ak

[E
T
p
]
fo
r
th
e
e
ve

n
ts

in
Fi
g.

6
[S
an

ta
Lu

ci
a–

E
T
p
(%
)

G
A
-S
ta
ge

-I
G
A
-S
ta
ge

-I
I

G
A
-E
le
va

ti
o
n
-I

G
A
-E
le
va

ti
o
n
-I
I

R
C
M

G
A
-S
ta
ge

-I

6
.0

1.
9

�
0.
5
6

3.
9

18
.9

�
9.
5

9
21

.0
37

.2
�
4.
1

9.
7

12
.1

12
.0

96
0.
42

35
.4

�
2.
6

8.
6

5.
0

1.
1

9
.1
4

24
.9
3

2
.4
2

7.
4

1
2
.0

7.
5

Hydrograph predictions

Santa Lucia–Ponte Felcino reach

Fig. 5 presents simulations of 3 different hydrographs mea-
sured at Ponte Felcino station by the RCM model and the
proposed equations [Eqs. (6)–(9)] whose parameters were
obtained by the GA algorithm. As seen in Fig. 5a, GA-
Stage-I model could not capture early stage of the measured
hydrograph of December 1990. For this event, GA-Stage-II
model showed an overestimation of the peak (Fig. 5a).
Fig. 5b shows that although all the models captured the
trend of the event January 1994, RCM shows significant
overestimation of the peak while GA-Elevation-II model
underpredicts it (Fig. 5b). The peak of January 2003 hydro-
graph was overestimated by the GA-Stage-I model while
it was underestimated by the GA-Elevation-II model
(Fig. 5c). It can be seen in Fig. 5 that, in all the 3 events,
GA-Elevation-I model showed satisfactory performance in
capturing the trend, time to peak and as well as the peak
rates. Table 8 summarizes the computed relative errors
with respect to peak discharge and time to peak for each
event for all the models. Note that, in the case of peak rate,
a negative error value indicates underestimation whereas a
positive value indicates overestimation. In the case of time
to peak, negative error value indicates early rise in reaching
the peak rate while positive value indicates delay. Accord-
ing to Table 8, all the models showed comparable perfor-
mances in terms of capturing the peak rate with, on the
average, 12% error. However, GA-Elevation-I model had less
than 5%, outperforming the other models. With respect to
time to peak, except RCM and GA-Stage-I models, others
reached the peak on time (Table 8).
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Santa Lucia–Ponte Nuovo reach

Fig. 6 presents simulations of 3 different hydrographs mea-
sured at Ponte Nuovo station (Fig. 4) by the RCM model and



Figure 7 Hydrograph predictions by several models at downstream end of Santa Lucia–Monte Molino River Reach in (a) April 1997;
(b) January 2001; and (c) December 2000.
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the proposed equations [Eqs. (6)–(9)] whose parameters
were obtained by the GA algorithm. As seen in Fig. 6a,
RCM overestimated both peaks of the measured outflow.
GA-Elevation-I model performed quite satisfactorily in sim-
ulating January 2001 (Fig. 6a) and as well as February 1999
(Fig. 6b) events. February 1999 measured outflow was
significantly overestimated by GA-Stage-II model. All the
models, except GA-Stage-II model, performed satisfactorily
in predicting December 1996 measured outflow (Fig. 6c).
Table 9 summarizes the computed relative errors with
respect to peak discharge and time to peak for each event
for all the models. According to Table 9, GA-Elevation-I
model outperformed the other models with less than 3%
error in predicting peak rates of the measured hydrographs.
GA-Stage-II model showed poor performance with more
than 20% error. With respect to the time to peak error, all
reached the peak on time except GA-Stage-I and RCM mod-
els producing on the average 7% error (see Table 9).

Santa Lucia–Monte Molino reach

Fig. 7 presents simulations of 3 different hydrographs mea-
sured at Monte Molino station (Fig. 4) by the RCM model and
the proposed equations [Eqs. (6)–(9)] whose parameters
were obtained by the GA algorithm. As seen in Fig. 7a,
RCM reached peak earlier and it underestimated the peak
while GA-Stage-II model overestimated it. Other models
showed comparable satisfactory performance for this hyd-
rograph. According to Fig. 7b, although all the models
captured the trend of the hydrograph closely, the RCM
and GA-Elevation-I models predicted both the peaks satis-
factorily while GA-Stage-II model underpredicted them.
According to Fig. 7c, the prediction of December 2000
hydrograph was satisfactory by the RCM and GA-Elevation-I
models. Although RCM captures the peak rate, it has a
fluctuating trend around the peak (see Fig. 7c). Although
GA-Elevation-I model slightly underpredicts the peak, it
follows the trend of the hydrograph. GA-Stage-II model sig-
nificantly overpredicted the peak. Table 10 summarizes the
computed relative errors with respect to peak discharge and
time to peak for each event for all the models. According to
Table 10, with respect to the peak rate percent error, all
the models produced comparable errors around 10% while
GA-Stage-II model produced about 20% error. With respect
to the time to peak percent error, all produced less than,
on the average, 5% error.

Looking at the performances of the models based on the
kinematic wave theory (GA-Stage II and GA-Elevation II),
one could see that they provided results less accurate than
those obtained by the other two models, and the one based
on RCM approach. This was expected because of explicit
representation of lateral inflows formulated as a function
of stages at downstream end. This representation is, of
course, an empirical approximation that does not guarantee
the real contribution of the intermediate basin. On the
other hand, the GA model based on RCM approach incorpo-
rating implicitly the lateral inflows, as proposed by Moram-
arco et al. (2005), has better performance for the selected
flood events.

Above results imply that GA-Elevation-I model overall
performed more satisfactorily among the proposed GA mod-
els for predicting hydrographs in the three river reaches.



Table 11 Mean absolute error (MAE) (m3/s) and Nash-
Sutcliffe (NS) efficiency index values for GA-Elevation-I and
RCM Models

MAE (m3/s) NS(%)

GA RCM GA RCM

S. Lucia–P. Felcino
December 1990 8.9 10.7 99 98
January 1994 4.3 10.2 99 90
January 2003 5.9 6.9 98 96

Average 6.4 9.3 99 95

S. Lucia–P. Nuovo
January 2001 8.1 35.9 98 70
February 1999 13.1 29.4 100 97
December 1996 16.6 16.5 99 99

Average 12.3 27.3 99 89

S. Lucia–M. Molino
April 1997 28.9 23.7 95 96
January 2001 24.3 12.9 90 97
December 2000 39.7 35.8 94 95

Average 30.9 24.1 93 96

Figure 8 Simulation of outflow hydrographs observed at Pont
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Hence, we further analyse its performance against RCM
model using additional error measures of MAE and Nash-
Sutcliffe (NS) efficiency index. As pointed out earlier, MAE
is one of the commonly employed error functions in the lit-
erature (Chang et al., 2005). According to Taji et al. (1999),
it has the advantage of being less influenced by anomalous
data than the square error functions. The NS index is also
a commonly employed goodness-of-fit parameter (ASCE,
1993; Erpul et al., 2003; Kalin et al., 2003; Tayfur et al.,
2007; Bardossy, 2007; among others) that can be applied
to a variety of models (McCuen et al., 2006).

Table 11 presents the computed MAE and NS index values
for the application events in Figs. 5–7 for the three reaches.
As seen, for Santa Lucia–Ponte Felcino reach, GA model
produced less MAE value and higher NS index (about 99%)
than the RCM model for each event. Similar performance
was observed for the Santa Lucia–Ponte Nuovo reach as
well (Table 11). Especially for January 2001 event
(Fig. 6a), GA produced 98% efficiency while RCM had 70%.
For the Santa Lucia–Monte Molino reach, while RCM re-
sulted in slightly less MAE value for each event, both the
models had comparable NS efficiency index values (Table
11). GA produced on the average, for this reach, 92% NS
while RCM had 96% efficiency. The reason that GA had
slightly poor performance with respect to peak rate
e Felcino station in (a) December 1990; and (b) June 1997.
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prediction than the RCM model for the Santa-Lucia–Monte
Molino reach might be due to the fact that GA employs an
average wave travel time for each event, as opposed to
the exact wave travel time required by the RCM. As the dis-
tance between upstream and downstream stations in-
creases, the assumed average wave travel between the
two stations might not be very representative for each
event. However, we have to also point out that for this
branch the performance of the GA model can be considered
satisfactory since the intermediate basin is about 4300 km2

(85% of the whole basin) and water depth at section ends
are referred to the same datum. As far as authors know, a
so simple hydrologic approach which is only based on the
two parameters assessment and able to simulate the dis-
charge hydrograph at downstream end without having infor-
mation on lateral inflows and flow areas at both ends is
surely an enhancement in the practical hydrology. Never-
theless, when the computed MAE and NS values for all the
events for the three river reaches in Table 11 are evaluated,
the GA, overall, produced less MAE (16.5 m3/s) than the
Figure 9 Simulation of outflow hydrographs observed at Ponte
RCM which had 20.2 m3/s of MAE. Also GA, overall, had a
better efficiency with 97% than the RCM of 93%.

GA model extrapolation

This section investigates the extrapolation capability of GA
model by calibrating the model parameters with lower peak
hydrographs and then predicting the higher peak hydro-
graphs. For this purpose, GA-Elevation I model was em-
ployed. As presented above, GA-Elevation I model, in
general, showed satisfactory performance in predicting
hydrographs observed at different river reaches. For the
Santa Lucia–Ponte Felcino reach, January 1994 event
(whose peak rate is 240.7 m3/s) was employed for calibra-
tion and December 1990 (whose peak rate is 404.2 m3/s)
and June 1997 (whose peak rate is 449.6 m3/s) (Table 2)
were chosen for the testing. It has to be pointed out that
for both testing events the contribution of the intermediate
basin is very significant. Fig. 8a and b show the simulations
of December 1990 and June 1997 events, respectively. As
Nuovo Station in (a) December 1996; and (b) December 2000.
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seen, the model showed a good performance in capturing
the trends, time to peak (0% error), and peak rates (with
relative errors of 8.2% and 9.6% for December 1900 and June
1997, respectively). The computed MAE values are 8.45 m3/
s and 9.75 m3/s for December 1990 and June 1997 events,
respectively. Although the peak rates predicted is almost
70% (in the case of December 1990) and 90% (in the case
of June 1997) more than the peak of the event used in the
calibration, the GA produced less than 10% error in predict-
ing the peak rates. On the other hand, according to Fig. 5 in
Tayfur et al. (2007), this error would have been almost 50%
in the case of ANN extrapolation.

For Santa Lucia–Ponte Nuovo reach, April 1997 event
(whose peak is 498.5 m3/s) was employed in calibration
while December 1996 (whose peak is 728.4 m3/s) and
December 2000 (whose peak is 877.2 m3/s) events (Table
3) were used for testing. Fig. 9a and b shows the simulations
of December 1996 and December 2000 events, respectively.
As seen, the model satisfactorily simulated both the hydro-
graphs, capturing the time to peak with zero errors, and the
Figure 10 Simulation of outflow hydrographs observed at Monte
peak rates with 1.6% error for December 1996 and less than
1% error for December 2000. The computed MAE values are
8.71 and 11.4 m3/s for December 1996 and December 2000,
respectively. Although the peak rates predicted is almost
50% (in the case of December 1996) and 80% (in the case
of December 2000) more than the peak of the event used
in the calibration, the GA produced less than 2% error in pre-
dicting the peak rates. This error, when employing ANN,
according to Fig. 5 in Tayfur et al. (2007), would have been
about 35% for December 1996 and 45% for December 2000.

For the Santa Lucia–Monte Molino reach, January 2001
event (whose peak is 397.3 m3/s) was used in the calibration
and December 1998 (whose peak is 770 m3/s) and February
1999 (whose peak is 754 m3/s) (Table 4) were employed for
testing. As seen the peaks of the tested hydrographs are al-
most 2 times the peak of the hydrograph used for calibrating
the model parameters. According to Fig. 5 in Tayfur et al.
(2007), the ANN would have made about 50% error in pre-
dicting these rates. Fig. 10a and b, on the other hand, show
the simulation of the December 2000, and February 1999
-Molino Station in (a) December 1998; and (b) February 1990.
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hydrographs, respectively. As seen, the model satisfactorily
simulated the hydrographs, capturing the time to peak with
zero errors, the peak rates with less than 4% error, and MAE
values less than 12 m3/s.

Above results imply that the GA model, unlike the ANNs,
does not have extrapolation problem. It can be calibrated
with lower peak events to predict higher peak hydrographs.
This has an implication such that GAs could be employed for
predicting hydrographs at ungauged basins.

Summary and concluding remarks

This study developed models to predict hourly-based hydro-
graphs using level data only. It proposed two main formula-
tions based on (1) RCM model of Moramarco et al. (2005)
relating downstream discharge to upstream discharge and
flow cross-sectional areas at both upstream and down-
stream stations through model parameters; and (2) kine-
matic wave model that expresses flow rate at each
upstream and downstream station as a function of corre-
sponding flow stage. In each approach, two different level
data were used: (1) flow stage; and (2) water surface eleva-
tion (the elevation of a station from a reference datum plus
the water level). As such, in total, four new formulations
expressed by Eqs. (6)–(9), were proposed whose optimal
parameter values were obtained by the genetic algorithms.

The developed models were calibrated and tested by
measured hydrographs. The results indicated that GA-Eleva-
tion-I model, expressed by Eq. (8), showed satisfactory per-
formance in capturing trend and peaks of the hydrographs
observed at different river reaches whose wave travel time
varied from 4 to 12 h. GA-Elevation-I model outperformed
the RCM model whose parameters were obtained through
classical method as outlined earlier. GA-Stage-II model
(Eq. 7), in general, showed poor performance while other
two models (Eqs. 6 and 9) showed comparable performances
with RCM model.

The extrapolation capability of GA was also investigated
in this study. For this purpose, GA-Elevation-I model was
employed. It was calibrated with lower peak hydrographs
and then applied to predict higher peak events for each riv-
er reach. The results showed that the GA model does not
have an extrapolation problem.

Since GA-Elevation-I model turned out to be the best per-
forming model, this model can be employed as a modeling
tool for prediction purposes. This model, unlike of RCM ap-
proach, has the great benefit such that it requires elevation
data without needing of cross sectional flow area and knowl-
edge of inflows, widening its application also to ungauged
river sites.
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