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Summary Low flow characteristics are affected by different physiographic factors such
as climate, topography, geology and soils, and regional regression prediction models, to
estimate low flow indexes at ungauged sites, mainly rely on these factors. The paper
focuses on the baseflow index, one of the most important low flow characteristics for a
catchment, and presents: (i) the analysis of baseflow separation algorithms for BFI eval-
uation and (ii) a regional approach to predict the BFI at ungauged sites in a Mediterranean
region, for which only very poor data are available. The prediction of baseflow contribu-
tion to total streamflow is based on the introduction of a permeability index, at the catch-
ment scale, and regional linear regression equations simply relate the latter to the BFI.
For the studied area geological features have been found to be the major factor affecting
baseflow and the permeability index estimation for a particular catchment, in an appar-
ently over-simplified schematization, essentially reflects catchment lithology. As a matter
of fact, an accurate catchment geology spatial variability description reduces the average
long-term BFI index prediction error from 23% to 14% and above all increases the explained
variance from 23% to 68%.
ª 2008 Elsevier B.V. All rights reserved.
Introduction

Low flow hydrological features are crucial for efficient
development and integrated water resources management
and a lot of effort has been made by the scientific com-
munity to deal with low flow parameters estimation in
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ungauged sites. The statistical multiple linear regression
model is one of the most popular approach in these cases.
Within a European context, the first significant statistical
low flow estimation procedure was proposed by the
Institute of Hydrology (1980) and aimed at finding statisti-
cal relationships between low flow indexes and catchment
characteristics for prediction in ungauged basins, fol-
lowed a few years later by one of the FRIEND project
(Gustard et al., 1989) aimed to improve understanding of
.
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hydrological variability across different regions. Both stud-
ies showed the importance of geology, hydrogeology and
soil properties in estimating low flow characteristics.

Among others, the BFI index, calculated as the long-term
ratio of baseflow volume to total streamflow volume, is one
of the most important low flow indexes. Many studies (Vogel
and Kroll, 1990; Vogel and Kroll, 1992; Ponce and Shetty,
1995a,b; Nathan et al., 1996; Lacey and Grayson, 1998;
Haberlandt et al., 2001; Mwakalila et al., 2002) have dem-
onstrated that it is related to a number of climatic and
topographic parameters, to vegetation and soil types, be-
sides catchment geology, but that the latter plays the role
of the dominating variable. Variables describing geology
features are hard to establish. For this reason, and also
depending on the available data quantity and quality, catch-
ment geology, to be used for BFI prediction in ungauged ba-
sins, has been accounted for in different fashions.
Frequently, soil classes systems, geology–vegetation
groups, or combined hydrogeology and soil indexes have
been used to this purpose (Gustard et al., 1989; Boorman
et al., 1995; Lacey and Grayson, 1998). Very recently,
Schneider et al. (2007) have proposed a reclassification of
the Soil Geographical Database of Europe (SGDBE) adopting
the well-known HOST system developed in the UK (Boorman
et al., 1995), to predict the BFI index, in a European con-
text. They have shown that the SGDBE is sufficient for
hydrological classification but that the variability of BFI ex-
plained by soil classes tends to decrease from Northern to
Southern Europe, probably because factors such as climate,
vegetation and geomorphology, which are not used to dif-
ferentiate HOST classes, have a greater influence especially
in Mediterranean catchments. Indeed such an approach
would require a good knowledge of soil and geology proper-
ties and would likely perform poorly in the case of dearth of
appropriate data.

In this study, we introduce a permeability index P1, as
an alternative variable accounting for geology features,
that can be easily derived also in a scarcity data context
and particularly suited for typical Mediterranean environ-
ment. Initially defined on the base of a hydro-geomorpho-
logical classification, successfully used for flood prediction
in ungauged sites, it is later computed on the base of an
apparently over-simplified scheme which only account for
lithological and hydrogeological characteristics of the
studied region. It will be shown that the corresponding
procedure to compute the permeability index does not re-
quire extensive soil surveys, being particularly suited for
very poorly gauged sites. The introduced permeability in-
dex is further proposed as an independent variable in a
regional regression model to predict BFI at ungauged
sites. In order to define the most reliable regional rela-
tionship between those variables, BFI has been derived
by different techniques of baseflow separation, from data
analysis to digital filtering algorithms and moreover to a
conceptual model approach, and the results have been
compared.

In summary, the present paper focuses on the following
points:

– application of four baseflow separation algorithms and
results comparison to provide the most reliable set of
regional model parameters;
– catchment geology – soil and land cover maps analysis
and alternative – objective definitions of a catchment
permeability index to be used as independent variable
in regional prediction equations;

– assessment of linear regression regional relationships
between BFI index and catchment permeability index to
estimate average baseflow contribution to total stream-
flow in ungauged catchments and comparison with more
regional relationships.
Comparison of BFI indexes derived from
baseflow separation procedures

Hydrograph separationhas beendefined in thepast as ‘‘oneof
the most desperate analysis techniques in use in hydrology’’
(Hewelett and Hibbert, 1967). Indeed the procedures avail-
able to this purpose are still, to a large extent, arbitrary
(Nathan and McMahon, 1990; Chapman and Maxwell, 1996;
Chapman, 1999; Eckhardt, 2005) but provide a repeatable
methodology to derive objectivemeasures or indexes related
to a particular streamflow source. BFI values used in this pa-
per have been estimated according to the definition of the
Institute of Hydrology (1980), that is, baseflow index is the
volume of baseflow divided by the volume of total stream-
flow. Since the baseflow time series are derived by hydro-
graph separation procedures, the choice of a particular
technique and its more or less arbitrary result may affect
the BFI evaluation. To account for this influence on the pres-
ent quantitative study, we applied and compared four differ-
ent procedures, selected from three main categories of
separation algorithms: empirical, filter based and model-
based techniques. Comparisons are aimed at finding correla-
tion between filters to evaluate themost likely BFI value for a
particular catchment and to assess the stability of eachmeth-
od in the BFI evaluation; a stable solution would be desirable
when BFI has to be estimated from short streamflow records
and this would be a frequent case for the studied region.

The first procedure used is the empirical definition pro-
posed by Wundt (1958) in one of the early regionalization
approaches: it is based on measured daily flow statistics
and defines a long-term measure of groundwater outflow
as the mean monthly minimum streamflow (MMSF). To com-
pare catchments of different drainage area the mean
monthly minimum streamflow has been divided by the mean
annual streamflow.

The second procedure has an empirical basis as well and
is represented by the Smoothed Minima Technique (SMT)
developed by the Institute of Hydrology (1980), and already
applied for low flow regimes analysis in the areas of Central
Italy (Casadei, 1995).

Among filtering techniques, the Lyne and Hollick (1979)
method is used in this study as the third method for base-
flow separation (RDF), as it appears to be the first proposed
and a widely used algorithm. Filtering techniques, that act
as a low-pass filter, filtering out the high frequency quick-
flow component of streamflow from the low frequency base-
flow component of streamflow, are recommended for
providing reproducible results (Lyne and Hollick, 1979;
Chapman, 1991; Boughton, 1993; Chapman and Maxwell,
1996). The Lyne and Hollick filter equation predicts the
quickflow qq component at time step t as:
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qqðtÞ ¼ aqqðt� 1Þ þ 1þ a
2
½qðtÞ � qðt� 1Þ� ð1Þ

subject to the restriction qq > 0 and the baseflow compo-
nent qb at time step t as the difference between total
streamflow q and quickflow qq:

qbðtÞ ¼ qðtÞ � qqðtÞ ð2Þ

subject to the restriction qb 6 q, where a is the filter param-
eter affecting the degree of attenuation. Accordingly to
Nathan and McMahon (1990), the value of the filter that
yield the most acceptable results, in term of baseflow sep-
aration, is in the range 0.9–0.95. The filter is passed three
times over the data, forward, backward and forward again,
for a larger smoothing effect, as suggested by Nathan and
McMahon (1990). A few high-attenuation filter passes over
the data to minimize phase distortion and baseflow attenu-
ation was, moreover, suggested by Spongberg (2000).

The problem of identifying baseflow hydrograph on a
continuous basis has also been dealt with physically based
runoff models that explicitly account for baseflow modeling
modules. There exist a large number of proposed models in
the literature which can be potentially used to this aim.
Among these we focus our attention on a flexible stochastic
Figure 1 The study area, stations locatio
shot-noise model proposed by Murrone et al. (1997) to mod-
el daily streamflow series for poorly gauged watersheds.
The model deterministic response function is assumed to
be linear and to describe the functioning of four linear par-
allel conceptual reservoirs, each related to a conceptual
source of discharge: c3 groundwater component, c2 deep
subsurface flow component, c1 shallow subsurface flow
component and c0 surface runoff component. The system
response to a rainfall event is the outcome of a linear com-
bination of the single reservoir response functions

hðtÞ ¼ c0dð0Þ þ c1
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where ci (i = 0, 1, 2, 3) represents the recharge coefficients
and Ki the linear reservoir response times. For daily data
used in this study, the surface runoff component c0 delay
time is smaller than the time scale of aggregation and can
thus be modeled as a random uncorrelated linear channel
process rather than a linear reservoir process, with d(0)
the Dirac impulse, for t = 0. This approach has been applied
as the fourth method (conceptual filter method CFM) for
n and hydro-geomorphological classes.
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baseflow separation. To set up a repeatable procedure to
derive the BFI index related to the baseflow discharge,
the latter has been assumed as the sum of c2 deep subsur-
face flow and c3 groundwater processes.

Hydrologic data consist of daily streamflow time series
for 28 sites mainly located within the Campania region,
Southern Italy, covering a region of about 25,000 km2. The
location of the gauging stations is shown in Fig. 1. The
source of streamflow data is the Servizio Idrografico e Mare-
ografico Italiano SIMI. The record length ranges from 6 to 65
years. The size of the basins ranges between 10 and
5000 km2. More catchment data are presented in Table 1
that will be discussed later.

Hydrograph separation performances are assessed in
terms of average annual BFI and standard deviation and in
terms of p, the mean percentage by which estimated base-
flow deviates from minimum annual streamflow, also used
by Furey and Gupta (2001) in assessing the filter they pro-
posed. Small values of standard deviation indicate a stable
estimate of BFI, that is desirable when only short stream-
flow time series are available for baseflow index estimation.
The Institute of Hydrology (1980) report a standard devia-
tion of 0.04 for BFI stable estimation. Large values of p sug-
gest that estimated baseflow time series are not
representative of true baseflow. Although none of the pre-
sented techniques would confidently determine baseflow
Table 1 Some details of catchments used in the study: referenc
annual precipitation, mean topographic catchment elevation, me
area

Catchment Map reference Area (km2)

Alento @ Casalvelino 1 270
Bussento @ Caselle in Pittari 2 125
Bussento @ Sicili 3 255
Calore Irpino @ Apice 4 532
Calore Irpino @ Montella 5 130
Calore Irpino @ Solopaca 6 2991
Calore Lucano @ Persano 7 805
Carpino @ Carpinone 8 69
Cosa @ Ceccano 9 312
Fibreno @ Brocco 10 47
Giovenco @ Pescina 11 138
Liri @ Isola Liri 12 586
Liri @ Sora 13 480
Melfa @ Atina 14 86
Melfa @ Picinisco 15 38
Rapido @ S. Elia Fiumerapido 16 73
Rio Mollo @ Settignano 17 69
Sacco @ Ceccano 18 912
Sarno @ S. Valentino Torio 19 46
Sele @ Albanella 20 3216
Sele @ Contursi 21 322
Tammaro @ Paduli 22 675
Tammaro @ Pago Veiano 23 558
Tanagro @ Polla 24 660
Torano@ Piedimonte Matese 25 18
Tusciano @ Olevano sul Tusciano 26 102
Volturno @ Amorosi 27 2029
Volturno @ Cancello Arnone 28 5586
contribution without field observation, we assume that the
most reliable technique is the procedure which exhibits
the lower standard deviation and p values. The mentioned
statistics are illustrated in Table 2 for each of the hydro-
graph separation algorithms we applied. SMT and RDF show
the smaller standard deviation values, in both cases around
0.07, whereas MMSF and CFM appear to be the less stable
techniques with values of 0.13 and 0.11, respectively, for
the standard deviation. The mean percentage by which esti-
mated baseflow deviates from minimum annual streamflow
is, on average, 25% for SMT, 32% for RDF and 30% for CFM (it
is not possible to evaluate p for MMSF technique because it
only gives one value of baseflow per year). It is, moreover,
systematically higher for RDF compared to SMT. CFM has the
benefit to be a conceptual approach, predicting BFI on a
physical processes base rather than empirically, but its per-
formance is likely to be affected by model parameters esti-
mation. Based on these comments, in spite of its empirical
basis, the Smoothed Minima Technique is indicated as the
most reliable procedure for our study area.

Long-term BFI indexes, the ratio between the whole sep-
arated baseflow and streamflow series volumes, derived
from the previously illustrated approaches are also com-
pared in Table 3 and graphically in Fig. 2. The results show
that the correlation between the hydrograph separation
methods is rather large and, in particular, the stronger cor-
e map number, drainage area, mean annual discharge, mean
an topographic catchment slope and percentage of forested

Qmean (m3/s) MAP (mm) Hmean (m) pmean FOR

4.33 1254 328 10.4 52
5.19 1398 667 12.7 62
6.48 1589 779 13.4 65
8.64 1119 611 8.2 30
2.11 1417 1004 13.7 71

33.25 1107 546 7.4 22
21.93 1362 658 10.4 40
1.71 1077 898 8.9 55
1.61 1417 728 9.4 36
9.39 1369 491 8.3 32
1.00 859 1298 13.2 26

28.09 1251 1024 12.1 52
14.88 1107 1060 12.3 57
3.96 1572 1397 21.1 49
0.91 1492 1074 15.8 78
1.75 1463 816 12.4 60
0.71 1378 946 13.0 26

11.21 1268 439 7.3 25
8.64 1032 240 9.8 11

55.61 1197 684 10.0 39
10.12 1336 711 12.4 46
9.26 992 597 6.1 17
6.02 1102 633 6.1 20
9.72 1288 792 9.4 39
3.00 1283 949 15.1 78
3.60 1633 961 15.8 85

36.69 1387 590 9.4 45
80.45 1183 534 8.2 31



Table 2 Comparison of annual BFI index mean and standard deviation and p percentage by which estimated baseflow deviates
from annual minimum streamflow

Catchment MMSF SMT RDF CFM

Mean SD Mean SD p Mean SD p Mean SD p

Alento @ Casalvelino 0.08 0.063 0.295 0.102 18.41 0.389 0.106 37.84 0.401 0.121 31.91
Bussento @ Caselle in Pittari 0.47 0.113 0.661 0.054 26.76 0.751 0.056 34.36 0.657 0.110 40.12
Bussento @ Sicili 0.59 0.077 0.629 0.074 14.17 0.748 0.053 24.82 0.600 0.136 13.17
Calore Irpino @ Apice 0.28 0.174 0.492 0.073 18.15 0.579 0.088 13.34 0.567 0.109 20.52
Calore Irpino @ Montella 0.19 0.151 0.526 0.105 5.98 0.590 0.097 7.94 0.562 0.112 21.48
Calore Irpino @ Solopaca 0.14 0.088 0.393 0.088 38.19 0.477 0.093 49.70 0.495 0.113 46.75
Calore Lucano @ Persano 0.17 0.083 0.348 0.086 28.70 0.407 0.092 21.80 0.411 0.097 33.89
Carpino @ Carpinone 0.45 0.247 0.642 0.061 27.99 0.718 0.056 35.59 0.718 0.099 20.05
Cosa @ Ceccano 0.13 0.110 0.433 0.107 30.53 0.507 0.088 45.86 0.511 0.082 40.03
Fibreno @ Brocco 0.77 0.199 0.838 0.016 9.54 0.914 0.026 15.09 0.722 0.109 >> 100
Giovenco @ Pescina 0.61 0.142 0.662 0.048 11.41 0.772 0.045 22.67 0.641 0.111 16.69
Liri @ Isola Liri 0.57 0.124 0.664 0.052 20.34 0.771 0.058 29.88 0.654 0.142 21.53
Liri @ Sora 0.39 0.169 0.588 0.077 31.42 0.676 0.077 48.43 0.610 0.107 38.62
Melfa @ Atina 0.30 0.210 0.614 0.067 28.21 0.637 0.083 35.47 0.670 0.177 35.69
Melfa @ Picinisco 0.43 0.253 0.626 0.071 43.84 0.690 0.072 52.23 0.656 0.137 50.39
Rapido @ S. Elia Fiumerapido 0.79 0.160 0.797 0.034 11.40 0.907 0.039 19.28 0.703 0.091 4.84
Rio Mollo @ Settignano 0.05 0.047 0.227 0.081 66.56 0.284 0.095 �100 0.324 0.103 79.47
Sacco @ Ceccano 0.11 0.064 0.308 0.090 50.14 0.412 0.082 60.57 0.375 0.106 51.50
Sarno @ S. Valentino Torio 0.77 0.203 0.821 0.023 16.65 0.903 0.034 21.65 0.793 0.061 19.62
Sele @ Albanella 0.28 0.171 0.500 0.098 34.07 0.583 0.094 43.70 0.483 0.140 35.84
Sele @ Contursi 0.49 0.105 0.572 0.112 19.77 0.657 0.203 38.63 0.534 0.122 8.75
Tammaro @ Paduli 0.02 0.021 0.368 0.113 12.88 0.436 0.093 33.10 0.490 0.117 40.15
Tammaro @ Pago Veiano 0.04 0.066 0.352 0.097 1.34 0.437 0.074 11.78 0.442 0.145 29.84
Tanagro @ Polla 0.23 0.084 0.439 0.066 42.87 0.547 0.070 51.66 0.460 0.092 43.34
Torano@ Piedimonte Matese 0.76 0.249 0.811 0.036 10.63 0.891 0.040 19.43 0.664 0.179 6.42
Tusciano @ Olevano sul Tusciano 0.50 0.069 0.694 0.054 24.49 0.781 0.054 32.90 0.717 0.114 25.32
Volturno @ Amorosi 0.34 0.175 0.490 0.105 18.31 0.602 0.104 28.51 0.534 0.089 16.32
Volturno @ Cancello Arnone 0.32 0.128 0.504 0.095 20.260 0.611 0.080 33.430 0.513 0.119 26.89
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relation (R2 = 0.98) has been found between BFI from SMT
and BFI from RDF. Overall, the linear regression least square
fit relationships have a 45� slope coefficient and a practi-
cally negligible intercept, except that for MMSF. BFI from
MMSF appears to be biased of about 30% compared to BFI
from SMT: values from MMSF are systematically lower. BFI
from CFM also appears to be biased compared to BFI from
SMT, with systematically higher values.

On the role of the catchment permeability
index in a mediterranean environment: the
case study

The studied region

The study region is a complex relief area, with inland
highlands running north-west to south-east and wide and
flat plains facing the Tirrenian Sea, where all the river
channels included in this analysis flow into. The geology
is rather variable: it includes marly clayey impermeable
complex in the north-east area, fissured calcareous and
dolomitic complex in the central area, representing the
most important regional acquifer with the highest poten-
tial infiltration coefficient, and alluvial complex along
the coastline. About 30% of the study area can be consid-
ered as permeable and about 32% is covered by forest.
The following physiographic characteristics have been
computed for each catchment: drainage area (km2), mean
annual precipitation (mm), mean topographic catchment
elevation (m), mean topographic catchment slope (%),
land use (%) and geology (%). Land use is represented by
the percentage of forested area and geology is repre-
sented by the introduced permeability index P1. The com-
putation of this index will be later illustrated. Some
details of the catchments are given in Table 1.
Hydro-geomorphological classification and BFI
prediction

With regard to the infiltration process, geological and
morphological features of the studied region make possi-
ble the identification of three main hydro-geomorphologi-
cal groups that can be used in water balance assessment
(Celico et al., 1989). Groups result from the combination
of three variables. These are geology, mean topographic
catchment slope (pmean) and forested percentage area
(FOR). Celico et al. (1989) suggested to use geology data
to replace insufficient soil properties data, as it is known
that soil is the result of the rock weathering processes
and its properties are highly related to the substrate



Table 3 Long-term BFI indexes comparison

Catchment BFI

MMSF SMT RDF CFM

Alento @ Casalvelino 0.08 0.32 0.38 0.33
Bussento @ Caselle in Pittari 0.47 0.70 0.75 0.88
Bussento @ Sicili 0.59 0.66 0.74 0.64
Calore Irpino @ Apice 0.28 0.54 0.58 0.52
Calore Irpino @ Montella 0.19 0.58 0.59 0.57
Calore Irpino @ Solopaca 0.14 0.43 0.48 0.48
Calore Lucano @ Persano 0.17 0.36 0.39 0.34
Carpino @ Carpinone 0.45 0.70 0.72 0.71
Cosa @ Ceccano 0.13 0.50 0.50 0.46
Fibreno @ Brocco 0.77 0.87 0.91 0.84
Giovenco @ Pescina 0.61 0.70 0.77 0.75
Liri @ Isola Liri 0.57 0.71 0.77 0.73
Liri @ Sora 0.39 0.64 0.67 0.64
Melfa @ Atina 0.30 0.68 0.65 0.61
Melfa @ Picinisco 0.43 0.66 0.69 0.59
Rapido @ S. Elia Fiumerapido 0.79 0.84 0.90 0.85
Rio Mollo @ Settignano 0.05 0.25 0.28 0.35
Sacco @ Ceccano 0.11 0.34 0.41 0.38
Sarno @ S. Valentino Torio 0.77 0.86 0.90 0.91
Sele @ Albanella 0.28 0.54 0.58 0.47
Sele @ Contursi 0.49 0.58 0.65 0.52
Tammaro @ Paduli 0.02 0.42 0.44 0.45
Tammaro @ Pago Veiano 0.04 0.39 0.44 0.46
Tanagro @ Polla 0.23 0.48 0.54 0.48
Torano@ Piedimonte Matese 0.76 0.85 0.89 0.79
Tusciano @ Olevano sul Tusciano 0.50 0.73 0.78 0.69
Volturno @ Amorosi 0.34 0.55 0.61 0.57
Volturno @ Cancello Arnone 0.32 0.55 0.61 0.58
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Figure 2 Relationships between BFI values estimated by MMSF, SMT, RDF and CFM approaches.
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lithology. Highly fractured carbonatic deposits are one of
the main features of the studied region; they are re-
garded as the pervious catchment areas. Hydro-geomor-
phological groups represent classes of soils–geology–
vegetation having the same runoff potential under similar
storm and cover conditions and are listed below in
decreasing permeability order:

(1) bare calcareous and dolomitic complex areas with
mean catchment slope above 10% (class A);
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(2) forested calcareous and dolomitic complex areas with
mean catchment slope above 15% (class B);

(3) impervious areas with mean catchment slope below
10% (class C).

Extensive soil surveys are not needed for the identifica-
tion of the mentioned classes: soils – geology types are de-
rived from 1:100.000 digital geological map, land cover is
derived by the Corine Land Cover system and mean topo-
graphic catchment slope is derived from DEMs. This classifi-
cation, illustrated in a GIS map in Fig. 1 for the studied
region, has been successfully used for flood prediction in
ungauged basins in the same region we investigated (VAlut-
azione delle PIene in Campania; Rossi and Villani, 1994). A
runoff coefficient was associated to each class, with class
A being the lowest production runoff class and class C being
the highest runoff production class. Forest covering carbo-
natic areas causes, in this region, a reduction of the carbo-
natic high infiltration capacity of about 40–50% thus land
cover, besides catchment geology, was indicated as a main
variable for regional flood prediction.

The same hydro-geomorphological classification is ini-
tially proposed in this study for regional BFI prediction,
assigning a BFI value to each class. This approach is similar
to other studies that documented high values of BFI ex-
plained variance: Boorman et al. (1995) found the 79% of ex-
plained variance in UK; Schneider et al. (2007) found the
68% in England and Wales, whereas outside this region the
explained variance decreases, especially for Mediterranean
basins. The BFI for a particular catchment can be computed
as

BFI ¼ BFIA
AA

A
þ BFIB

AB

A
þ BFIC

AC

A
þ BFImin; ð4Þ

where BFIi is the BFI associated to the class i, BFImin is a con-
stant value added to account for the observed BFI lower lim-
it of about 30%, A is the catchment drainage area and Ai is
the catchment area which belongs to the class i. BFIi are
estimated as the least square regression coefficients based
on the discharge data of the studied catchments. A regional
low flow index estimation approach based on the hydro-geo-
morphological classification performed very poorly for the
studied area: explained variance only amount to 17%, with
underestimated large BFI values and overestimated small
BFI values.

Flood events occur on a small temporal scale, and to
estimate the flood runoff volume it is very important to
understand in which measure each portion of the catchment
contributes. The BFI is instead the result of a long-term
water balance and in this case it would be more important
to understand whether a particular portion of the catch-
ment contributes rather than in which measure it contrib-
utes. In the Mediterranean region, a typical runoff process
is the infiltration excess process and the infiltration phe-
nomenon itself is a threshold phenomenon limited by the
soil properties. In this sense, it is plausible to consider that
the vegetation has not a relevant role on long-term water
balance. In the light of these comments, a simple partition
of catchment area into permeable areas and impervious
areas can be proposed for BFI regional estimation. This par-
tition is only based on lithological and hydrogeological char-
acteristics of the studied region neglecting the land use
effect. In this simplified schematization, permeable areas
Aperm, that for the case study correspond to the sum of AA

and AB, are the only source of baseflow contribution and
Eq. (4) becomes

BFI ¼ BFIperm
Aperm

A
þ BFImin ð5Þ

with BFIperm being the BFI value of the permeable complex.
The ratio Aperm/A is indicated as the catchment permeabil-
ity index P1 and the regional BFI index is then calculated as

BFI ¼ BFIperm � P1þ BFImin ð6Þ

with BFIperm and BFImin being the least square regional
regression parameters based on the discharge and catch-
ment features data of the studied area. The goodness-of-
fit of this model will be discussed in the following para-
graph, but it is worth to notice here that the region partition
into permeable areas and impervious areas, make possible
(i) the introduction of a permeability index, at the catch-
ment scale, which summarizes, in a single measure, the
whole catchment features, with regard to the infiltration
process, and (ii) the prediction of the BFI from such measure
in a data parsimonious regional regression approach.
Results and discussion

Regional regression and multiple regional
regression approaches

Regional BFI prediction in ungauged catchments is based on
the introduced permeability index P1 used as independent
variable in a simple linear regression model:

BFI ¼ BFIperm � P1þ BFImin ¼ A� P1þ B ð7Þ

Even though the Smoothed Minima Technique has been
found to be the most reliable baseflow separation algorithm
for the studied area, since one of the goal of the paper was
to find the optimal regional regression model for BFI predic-
tion, all of the combinations between the permeability in-
dex and separation algorithm have been investigated to
find the optimal combination. To this aim regional regres-
sion coefficients A and B have been estimated for each of
the hydrograph separation procedures and regional predic-
tion equations are illustrated in Fig. 3. Empirical points
(P1, BFI) have been removed, highlighting the regression
lines and R2 as the measure of the degree of dispersion
around them. Prediction equations, derived from different
hydrograph separation methods, are almost parallel mean-
ing that the relationship between BFI and P1 does not
change for different BFI evaluation. Estimates given by
SMT, RDF and CFM are comparable with a comparable ex-
plained variance of about 63% for the RDF method, about
68% for the SMT method and about 53% for the CFM method.
The use of the MMSF method instead induces underesti-
mated values of regional BFI of about 30–40% compared
to other baseflow separation techniques, as it could have
been already observed in Fig. 2.

Geological influence on baseflow has been found to be
dominant within the studied area. Fig. 4 shows scatter plots
and correlation coefficients for BFI, Hmean mean topographic
catchment elevation, pmean mean topographic catchment
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Figure 3 Regional regression prediction equations relating BFI to P1 permeability index.
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Figure 4 Scatter plot and correlation matrix for BFI and basin
and climate characteristics (P1 permeability index, Hmean mean
topographic catchment elevation, pmean mean topographic
catchment slope, MAP mean annual precipitation, FOR per-
centage of forested area).
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slope, MAP mean annuala precipitation, FOR percentage of
forested area and P1 permeability index. Row and column
intersection, for a couple of target variables, defines, in
the upper part of the matrix, the scatter plot between such
variables and, in the lower part of the matrix, their degree
of correlation. The BFI appears to be very poorly related to
the mentioned physical catchment descriptors except that
for the P1 permeability index. The weak correlation coeffi-
cient between the BFI and the percentage of forested area,
highlights the fact that while for flood prediction land cover
data are of great importance this is not the case for low flow
indexes prediction in the studied region, underpinning the
choice to ignore the land cover effect and simply partition
catchment area on the base of lithological features, to cal-
culate the permeability index. The studied region is charac-
terized by highly fractured carbonatic deposits and their
features explain some of the stronger correlations illus-
trated in Fig. 4, such as the positive trend between Hmean

and pmean (typical for carbonatic relieves) and the positive
trend between pmean and FOR, with the percentage of for-
ested area being larger for higher catchment slope, that is
for the carbonatic relieves. Fig. 4 also shows a weak corre-
lation between the mean annual precipitation MAP and the
BFI proving that climate seems not to represent a key vari-
able in this study.

Even though the database consists of very poor data, the
introduction of Hmean, pmean, FOR and MAP besides P1, in a
multiple linear regression equation

BFI ¼ BFIperm � P1þ BFImin

¼ a1 � P1þ a2 � Hmean þ a3 � pmean þ a4 � FORþ a5

� MAPþ b ð8Þ

increases the explained variance from about 68% to about
80%, the latter corrected to account for the larger number
of parameters to be estimated compared to the case of a
single independent variable, according to the following:

R2
cor ¼ 1� ð1� R2Þ k� 1

k� p
ð9Þ

with p is the number of model parameters and k is the
sample length. It can be observed that the increase in
the explained variance is rather significant but the least
square estimate parameters (a1 = 0.0066; a2 = � 6.28E-05;
a3 = � 0.0046; a4 = 0.0012; a5 = � 0.00047; b=0.9252) do
not appear as physically based as they appear in the case
of the simple regression. Despite this, it is however clear
that lithological properties are more relevant, in the stud-
ied region, as it would have been expected from the cor-
relation matrix inspection. For these reasons we proceed
in the following analysis referring to the simple linear
regression model (6). For an overall view, comparison be-
tween observed and predicted BFI from regional multiple
regression and hydro-geomorphological classes is given in
Fig. 5.
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Table 4 Catchment permeability index, according to dif-
ferent evaluations

Catchment P1 (%) P2 (%) P3 (%)

Alento @ Casalvelino 3 52 52
Bussento @ Caselle in Pittari 70 90 90
Bussento @ Sicili 85 85 85
Calore Irpino @ Apice 26 20 68
Calore Irpino @ Montella 84 67 74
Calore Irpino @ Solopaca 13 11 34
Calore Lucano @ Persano 14 14 14
Carpino @ Carpinone 34 65 65
Cosa @ Ceccano 42 62 62
Fibreno @ Brocco 80 89 89
Giovenco @ Pescina 35 64 64
Liri @ Isola Liri 49 40 49
Liri @ Sora 55 43 43
Melfa @ Atina 97 65 52
Melfa @ Picinisco 68 52 100
Rapido @ S. Elia Fiumerapido 87 68 68
Rio Mollo @ Settignano 10 65 65
Sacco @ Ceccano 10 60 60
Sarno @ S. Valentino Torio 70 63 63
Sele @ Albanella 36 33 33
Sele @ Contursi 47 47 47
Tammaro @ Paduli 8 6 30
Tammaro @ Pago Veiano 10 7 27
Tanagro @ Polla 48 95 95
Torano@ Piedimonte Matese 85 100 100
Tusciano @ Olevano sul Tusciano 78 70 70
Volturno @ Amorosi 39 32 90
Volturno @ Cancello Arnone 26 22 43
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Regional relationships assessment and comparison

Since the permeability index P1 is the only independent var-
iable used in this study for regional BFI prediction, we ex-
pect regional regression approaches performances to be
affected, to a large extent, by P1 and particular care has
to be taken in its computation. In the past, a permeability
index was already introduced within a national context, as
a variable accounting only for geological features and it is
interesting to compare different P evaluation and their per-
formances in regional models assessment.

The earliest permeability index was introduced in the
1930s from the Servizio Idrografico e Mareografico Italiano
SIMI, responsible, at that time, for the national rainfall
and streamflow gauging network management. It was the
result of a geological classification and derived only from
old geological maps completed in the 1920s. We refer to this
index as P2. Subsequently, a second index was introduced
within the national SIVAPI flood forecasting project (Sistema
Informativo territoriale per la VAlutazione delle PIene in
Italia, Gabriele, 1998). It was computed with the same cri-
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present analysis. Differences are rather evident between
P1, P2 and P3, with P2 and P3 comparable but not identical
and P1, on average, smaller than both P2 and P3. Figs. 6 and
7 show empirical regional prediction equations for BFI eval-
uation in ungauged sites, derived, respectively, for P2 and
P3. It can be observed that
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Figure 7 Regional regression prediction equa

Table 5 Long-term BFI prediction error (%) for each permeabilit

Catchment P1

MMSF SMT RDF CFM

Alento @ Casalvelino 37 12 17 24
Bussento @ Caselle in Pittari 8 2 1 21
Bussento @ Sicili 1 9 16 17
Calore Irpino @ Apice 12 9 10 3

Calore Irpino @ Montella 205 36 32 32
Calore Irpino @ Solopaca 22 2 1 5
Calore Lucano @ Persano 5 23 18 34
Carpino @ Carpinone 35 21 25 24
Cosa @ Ceccano 154 21 13 23
Fibreno @ Brocco 26 14 15 13

Giovenco @ Pescina 51 26 25 27
Liri @ Isola Liri 33 17 16 17
Liri @ Sora 6 1 2 2
Melfa @ Atina 125 33 22 31
Melfa @ Picinisco 16 5 4 15
Rapido @ S. Elia Fiumerapido 23 9 7 10
Rio Mollo @ Settignano 213 61 62 26
Sacco @ Ceccano 33 12 22 15
Sarno @ S. Valentino Torio 34 18 19 24
Sele @ Albanella 10 1 2 17
Sele @ Contursi 25 3 1 14
Tammaro @ Paduli 599 2 5 3
Tammaro @ Pago Veiano 242 5 4 5
Tanagro @ Polla 61 17 23 25
Torano@ Piedimonte Matese 22 9 10 4

Tusciano @ Olevano sul Tusciano 10 1 1 5
Volturno @ Amorosi 6 3 1 2
Volturno @ Cancello Arnone 22 12 12 13

Bold values provide the minimum prediction errors associated to a pa
1. P2 and P3 have comparable BFI predictive ability, caused
by the similarity in their evaluation;

2. P1 has a better BFI predictive ability, compared to P2
and P3, for each of the used hydrograph separation tech-
niques, with the larger least squares LS correlation coef-
ficient R2 related to the SMT method (0.68);
y = 0.0040x + 0.379

R
2
 = 0.272

y = 0.005x + 0.057

R
2
 = 0.236

y = 0.0036x + 0.366

R
2
 = 0.233

y = 0.003x + 0.379

R
2
 = 0.230

80 100
)

MSSF

SMT

RDF

CFM

DF

SMT

tions relating BFI to P3 permeability index.

y index and for each baseflow separation procedure

P2 P3

MMSF SMT RDF CFM MMSF SMT RDF CFM

352 64 81 79 296 55 72 70
16 1 1 19 8 2 2 21
12 1 5 8 18 3 2 5
25 12 11 6 42 12 14 18

125 14 9 12 121 14 9 12
20 1 5 4 64 7 14 4
8 60 27 38 24 42 15 26
6 7 10 10 15 11 14 14

206 31 24 34 174 25 18 28
30 18 19 16 35 19 21 18
31 14 11 16 38 18 15 19
46 24 23 24 47 25 24 24
19 12 13 12 31 18 19 17
44 2 7 3 7 10 18 9
15 10 12 1 31 12 9 23
45 25 24 24 50 28 27 27

778 136 148 82 690 125 138 74
254 60 82 61 215 52 73 54
46 27 28 31 52 30 31 34
2 4 4 13 20 11 11 5

31 7 3 10 41 13 8 4
609 5 3 1 938 13 13 9
230 7 11 4 333 12 18 2

144 42 52 52 128 40 48 48
22 11 13 6 27 12 15 8
11 12 12 6 19 15 16 10
22 10 5 8 49 21 26 21
31 15 12 15 14 9 5 9

rticular catchment.



Table 6 Regional prediction equations performances (std, bias, RMSE, R2), jackknife errors estimates (mt, ma, me) and 95%
confidence interval for A intercept and B slope prediction equations parameters

Regression equation std bias RMSE R2 mt ma me Aconf Bconf

P1-MMSF 0.235 0.002 0.235 0.515 0.795 0.725 0.326 ±0.120 ±0.0022
P1-SMT 0.169 �0.002 0.169 0.678 0.149 0.137 0.058 ±0.070 ±0.0013
P1-RDF 0.176 �0.001 0.171 0.63 0.148 0.136 0.058 ±0.076 ±0.0014
P1-CFM 0.165 0.001 0.165 0.535 0.174 0.162 0.066 ±0.082 ±0.0015
P2-MMSF 0.235 �0.001 0.235 0.295 1.231 1.135 0.477 ±0.169 ±0.0028
P2-SMT 0.169 0.001 0.169 0.27 0.248 0.233 0.085 ±0.124 ±0.0021
P2-RDF 0.176 0.000 0.176 0.283 0.240 0.225 0.083 ±0.125 ±0.0021
P2-CFM 0.165 0.002 0.165 0.264 0.226 0.212 0.079 ±0.121 ±0.0020
P3-MMSF 0.235 0.000 0.235 0.236 1.362 1.261 0.512 ±0.228 ±0.0035
P3-SMT 0.169 0.002 0.169 0.233 0.263 0.247 0.091 ±0.164 ±0.0025
P3-RDF 0.176 �0.001 0.176 0.272 0.251 0.234 0.091 ±0.164 ±0.0025
P3-CFM 0.165 0.003 0.165 0.230 0.233 0.218 0.083 ±0.160 ±0.0024
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3. regardless to the approach used to compute the perme-
ability index and to the baseflow separation technique, a
minimum value of about 0.4 for the BFI is expected for
the permeability index lower limit; overall, the BFI
appears to increase from about 0.4 to about 0.7 over
the full range of variation for the permeability index;

4. for a particular hydrograph separation technique, the
empirical relationships between BFI and the permeability
index, for each of the introduced permeability index,
have a very similar intercept (A) and slope (B) parame-
ters. As a consequence, regional BFI estimations for
ungauged sites derived from regression prediction equa-
tions are very similar, except for the degree of dispersion
around the regression line, which is very large when using
P2 and P3 as the independent regional variables.

5. A more accurate geological features’ spatial variability
description through higher resolution geological map
enhances a finer delineation of permeable and impervious
areas and the regressionmodel performance, reducing the
average long-term BFI index prediction error from 23% to
14%. Regional prediction equations are compared in Table
5 in terms of long-term BFI prediction errors (%), for each
of the separationhydrograph technique and for eachof the
permeability index. The minimum prediction errors are
highlighted: it is evident that P1 is more frequently, com-
pared to P2 and P3, associatedwith the lowest percentage
errors. Maximum prediction error is about 64% when using
P1, 148% for P2 and 137% for P3, whereas on average it is
about 14% for P1, 22% for P2 and 23% for P3.

Regional prediction equations are further compared in
terms of more conventional statistics such as variance, bias,
root mean square error RMSE besides the correlation coeffi-
cient R2 (Table 6). The same table also provides jackknife
errors estimates derived from the application of the jack-
knife resampling procedure, to assess different sources of
error such as mean total true error, mean apparent error,
a measure of goodness of fit, and mean expected excess er-
ror, a measure of model robustness (Efron, 1982). More
measures of statistical error are given in terms of confi-
dence intervals, estimated at 5% significance level, for the
intercept (Aconf) and the slope (Bconf) parameters of the re-
gional prediction equations.
The results of the analysis indicate that, on one hand,
the choice of a particular technique for baseflow separation
is not extremely relevant and that, on the other hand, more
relevance to this study has the computation of the perme-
ability index at the catchment scale, which has the poten-
tial to be a BFI indicator even though it is derived from an
apparently over-simplified schematization. Among the
twelve regional prediction equations, regression relation-
ships using P1 as an independent variable have better per-
formance compared to others. They are characterized by
the larger explained variance and the larger goodness-of-
fit (larger R2 values and smaller ma errors), the smaller
model parameters estimation uncertainty (narrower confi-
dence intervals) and represent the more robust approaches
(smaller ME errors values).

Conclusions

This paper has presented a regional regression approach to
predict the BFI index at ungauged sites, based on the intro-
duction of a permeability index P1, within a Mediterranean
region and data scarcity context. Two criterion of catch-
ment area partition have been compared to calculate the
permeability index: on one hand, a comprehensive soil–
vegetation–morphology classification, proposed in the past
and successfully used for flood prediction in ungauged sites,
and on the other hand, a simple permeable and impervious
areas classification. Likely because of the differences be-
tween long-term water balance and short temporal scale
events water balance, the latter, which is the simpler crite-
rion, has a favourable performance: in the investigated
area, where catchment geology has been found to be the
most relevant variable for low flow index estimation, the
explained variance is about 68%. To estimate the more suit-
able regional relationship, different algorithms for baseflow
separation have been considered. Twelve linear regression
equations resulted from the combinations of computed BFI
(MMSF, SMT, RDF, CFM) and computed P (P1, P2, P3). They
have been compared in terms of conventional statistics
(variance, bias, root mean square error RMSE and correla-
tion coefficient R2) and of jackknife prediction errors.

The choice of a particular baseflow separation tech-
nique, excluding the empirical MMSF, which has resulted
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to be the less stable procedure for the investigated area,
seems not to be extremely relevant to the presented analy-
sis. The well-known Smoothed and Minima Technique has
been, however, found to be the most suitable, stable and
reliable procedure for the studied region. More relevance
has appeared to have the computation of the permeability
index: although the estimation of P1 appears to be derived
from an over-simplified schematization, it has been shown
that a detailed spatial variability description of lithological
and hydrogeological features reduces the average long-term
BFI index prediction error from 23% to 14% and moreover in-
creases the explained variance from 23% to 68%. It is also
interesting to observe that, even though the use of P1 in-
creases model performances, estimated model parameters
for the twelve regression model equations are very similar,
thus, on average, predicted BFI values at an ungauged site
are very similar, regardless to the approach used to define
P, but differing in the degree of dispersion around the
regression line. This consideration reduces somehow the
uncertainties in catchment permeability index definition in
the sense that the major influence of catchment features
affecting baseflow production has been captured by the
simple introduced scheme.

As the consequent findings of the current analysis are
certainly related to the investigated database, an extension
of the database itself to contiguous regions has been
planned. This would improve, refine and systematize the
definition of the introduced catchment permeability index
P1, taking advantage of the application to different environ-
ments and, moreover, this would increase the non-homoge-
neities in the data, including climatic features that may
affect regional relationships estimation. The presented
analyses have furthermore the role of a preparatory step to-
ward a comprehensive framework of more low flow indexes
estimation which has already been tested on a more limited
region (Longobardi and Villani, 2007). In such a framework,
measures of environmental minimum flow requirements,
flow-duration and flow-frequency curves parameters are re-
lated to the BFI evaluation from regional catchments
features.
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