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Abstract

15N tracing studies in combination with analyses via process-based models are the current ‘‘state-of-the-art’’ technique to quantify

gross nitrogen (N) transformation rates in soils. A crucial component of this technique is the optimization algorithm which primarily

decides how many model parameters can simultaneously be estimated. Recently, we published a Markov chain Monte Carlo (MCMC)

method which has the potential to simultaneously estimate large number of parameters in 15N tracing models [Müller et al., 2007.

Estimation of parameters in complex 15N tracing models by Monte Carlo sampling. Soil Biology & Biochemistry 39, 715–726].

Here, we present the results of a reanalysis of datasets by Kirkham and Bartholomew [1954. Equations for following nutrient

transformations in soil, utilizing tracer data. Soil Science Society of America Proceedings 18, 33–34], Myrold and Tiedje [1986.

Simultaneous estimation of several nitrogen cycle rates using 15N: theory and application. Soil Biology & Biochemistry 18, 559–568] and

Watson et al. [2000. Overestimation of gross N transformation rates in grassland soils due to non-uniform exploitation of applied and

native pools. Soil Biology & Biochemistry 32, 2019–2030] using the MCMC technique. Analytical solutions such as the ones derived by

Kirkham and Bartholomew [1954. Equations for following nutrient transformations in soil, utilizing tracer data. Soil Science Society of

America Proceedings 18, 33–34] result in gross rates without uncertainties. We show that the analysis of the same data sets with the

MCMC method provides standard deviations for gross N transformations. The standard deviations are further reduced if realistic data

uncertainties are considered. Reanalyzing data by Myrold and Tiedje [1986. Simultaneous estimation of several nitrogen cycle rates using
15N: theory and application. Soil Biology & Biochemistry 18, 559–568] (Capac soil) resulted in a model fit similar to the one of the

original analysis but with more precise estimates of gross N transformations. In addition, our analysis showed that small N

transformations such as heterotrophic nitrification, which was neglected in the original analysis, could be quantified for this soil. Watson

et al. [2000. Overestimation of gross N transformation rates in grassland soils due to non-uniform exploitation of applied and native

pools. Soil Biology & Biochemistry 32, 2019–2030] provided evidence of a non-uniform exploitation of applied and native N that led to

an overestimation of gross N transformations. Reanalyzing the data (CENIT soil, low N application) with the Müller et al. [2007.

Estimation of parameters in complex 15N tracing models by Monte Carlo sampling. Soil Biology & Biochemistry 39, 715–726] model

where NHþ4 oxidation was set to Michaelis–Menten kinetics resulted in a satisfactory fit between modeled and observed data, indicating

that the observed artifact by Watson et al. [2000. Overestimation of gross N transformation rates in grassland soils due to non-uniform

exploitation of applied and native pools. Soil Biology & Biochemistry 32, 2019–2030] was mainly due to inappropriate kinetic settings.

Our study shows that the combination of a MCMC method with 15N tracing models is able to consider more complex and possibly more

realistic models and kinetic settings to estimate gross N transformation rates and thus overcomes restriction of previous 15N tracing

techniques.
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1. Introduction

The internal nitrogen (N) cycle in soil involves all
processes which transform N from one chemical form to
another and the transport of N between different pools (Hart
et al., 1994). A pool is defined as ‘‘a fraction of nitrogen
distinguishable by chemical analysis’’ (Barraclough, 1991).
Gross N transformation rates provide important informa-
tion on the mechanisms and dynamics of the internal N
cycle. Therefore, the quantification of gross N transforma-
tions is of major interest for soil scientists, plant
nutritionists and ecologists. In the 1950s Kirkham and
Bartholomew (1954) developed the theoretical basis for
quantifying gross N transformations based on the labeling
and subsequent dilution of 15N in soil N pools. The
traditional 15N dilution technique is based on the labeling
of a product pool and its subsequent monitoring over time
for isotopic excess and N content. A dilution of this pool
indicates a flow of N into this pool at natural abundance or
low 15N enrichment, while the outflow of this pool uses the
isotopes at the given proportion and therefore does not
change the isotopic composition (Hart et al., 1994; Stark,
2000; Booth et al., 2005). The dilution and pool size
changes are used to estimate the production and consump-
tion of the labeled N pool using at least two measuring
points and an analytical model (Kirkham and Bartholo-
mew, 1954). In contrast 15N tracing techniques rely on the
labeling of a substrate pool and the subsequent determina-
tion of the 15N label in various product pools (Stark, 2000).
This technique was originally developed to determine the
fate of 15N after a period of exposure (Schimel et al., 1989).
Measuring the isotopic composition and the size of
different N pools over a period of time allows the
quantification of various gross N transformation rates.
Combining both, the dilution and tracing technique,
provides the means for a more detailed analysis of the N
cycle in soils. For instance, applying the principles of
isotopic dilution and enrichment, Barraclough and Puri
(1995) were able to separate gross NO�3 production into a
heterotrophic and autotrophic pathway.

Kirkham and Bartholomew (1954) presented for the first
time an analytical solution to quantify gross N transforma-
tion rates based on the 15N dilution theory. Their model
considered one organic (‘‘unavailable nitrogen in soil organic
matter’’) and one mineral (‘‘nitrate nitrogen’’) N pool with
one in- and outflow, i.e. mineralization and immobilization.
In the following year the same authors presented a more
complex solution (Kirkham and Bartholomew, 1955), which
considered the same two N pools as above but they were now
connected via two transformations. Since this pioneering
work other analytical equations for mineralization and
immobilization have been developed. Smith et al. (1994)
and Takahashi (2001) reviewed the analytical solutions and
came to the conclusion that they are most suitable for short
measurement intervals where remineralization can be ne-
glected. Furthermore, Nishio et al. (1985) presented an
analytical equation to quantify also gross nitrification.
Building more complex and therefore arguably more realistic
models of the N cycle requires numerical solutions (Nason
and Myrold, 1991). Moreover analytical solutions can only
estimate combined transformations. So in reality they do not
quantify specific processes (e.g. mineralization and immobi-
lization) but only the combined gross production and
consumption of the labeled pool (Barraclough and Puri,
1995; Schimel, 1996), which can lead to inconsistencies. For
instance ignoring remineralization of labeled N (as in most
analytical solutions) can lead to an underestimation of the
gross N rates (Tietema and van Dam, 1996). Another
drawback of analytical solutions is that they do not provide
uncertainties for the estimated parameters, i.e. according to
Nason and Myrold (1991) ‘‘these solutions are attractive
because they are exact and require only initial and final
conditions to obtain parameter estimates. However, no
statistical information on the reliability of the rate estimates
is given by this method’’.
The limitations of the analytical solutions resulted in the

development of several dynamic models which are solved
numerically (Myrold and Tiedje, 1986; Bjarnason, 1988;
Müller et al., 2004). The purpose of these so-called 15N
tracing models is to calculate gross N rates for particular
data sets (Mary et al., 1998). Therefore they are funda-
mentally different from simulation models which should be
valid for diverse data sets and therefore provide a general
process description. Tracing models represent always the
most simple description of the N cycle which is sufficient to
analyze the data set in question and may vary for different
soils (Myrold and Tiedje, 1986). Hence, tracing models
allow the simultaneous estimation of several N transforma-
tions in particular when multiple fluxes dilute or enrich a N
pool with 15N (Myrold and Tiedje, 1986; Mary et al., 1998).
They consist at least of three N pools (i.e. NHþ4 , NO�3 and
organic N) but more complex models are also possible (e.g.
Tietema and van Dam, 1996; Mary et al., 1998; Müller
et al., 2004; Stange and Döhling, 2005). In contrast to
analytical solutions, numerical 15N tracing models take
into account possible interactions between transforma-
tions. All numerical 15N tracing models have in common
that model parameters are estimated via non-linear
optimization routines. Myrold and Tiedje (1986) and
Müller (2004) used the Simplex algorithm and the
Levenberg–Marquardt algorithm, respectively, to estimate
a unique parameter set for the entire duration of an
experiment. In contrast, the FLUAZ model (Mary et al.,
1998) estimates transformation rates only between two
successive time points via the Haus–Marquardt algorithm
and calculates afterwards average N transformation rates
over the entire experimental duration. In all of the above
mentioned analysis models the number of fitted parameters
should be ideally much lower than the number of observed
variables to avoid problems due to over-parameterization.
The optimization algorithms used in these models are
prone to finding parameters which are representative for
local but not inevitably for global minima (Müller et al.,
2007). This provides a severe restriction for the development
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Box 1
Abbreviations used in the text

Abbreviation Description

N Nitrogen
NHþ4 Ammonium
NO�3 Nitrate
Norg Organic Nitrogen
Nlab Labile organic Nitrogen
Nrec Recalcitrant organic Nitrogen
NHþ4 ads Adsorbed Ammonium
NO�3 sto Stored Nitrate
MNorg Mineralization of Norg

MNrec Mineralization of Nrec

MNlab Mineralization of Nlab

INH4
Immobilization of NHþ4

INO3
Immobilization of NO�3

ONH4
Oxidation of NHþ4 to NO�3

ONorg Oxidation of Norg to NO�3
ONrec Oxidation of Nrec to NO�3
RNH4a

Release of adsorbed NHþ4
RNO3s

Release of stored NO�3
DNO3

Dissimilatory NO�3 reduction to
NHþ4

RNO3
Denitrification

MCMC Markov chain Monte Carlo
MA Metropolis algorithm
PDF Probability density function
OLS Ordinary least square
QWE Quadratic weighted error
avg. Average
SD Standard deviation
Se Standard error
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of more complex 15N tracing models (e.g. consideration of
Michaelis–Menten kinetics and further N species such as
nitrite and gaseous N) (Müller et al., 2007).

To overcome these restrictions we recently presented a
new approach for parameter estimation in 15N tracing
models based on a Markov chain Monte Carlo (MCMC)
method in combination with the Metropolis algorithm
(MA) (Müller et al., 2007). We showed that this technique
is able to unambiguously estimate a large number of
parameters in 15N tracing models and allows therefore
complex process descriptions of the N cycle in soils (Müller
et al., 2007). The key feature of this technique is a random
walk algorithm, which avoids trapping in local minima of
the misfit function.

The aim of the present study was to show the
applicability of the MCMC technique to estimate gross N
transformation rates of previously published data sets by
Kirkham and Bartholomew (1954), Myrold and Tiedje
(1986) and Watson et al. (2000). In particular the Watson
et al. (2000) results have been controversially discussed
(Stark and Schimel, 2001; Cliff et al., 2002; Watson et al.,
2002; Luxhøi et al., 2003) and already reanalyzed with
different models (Watson et al., 2002; Herrmann et al.,
2005).

All abbreviations used in the text are explained in Box 1.

2. Methods

2.1. Monte Carlo sampling

The method used to quantify gross N transformation
rates is described in detail by Müller et al. (2007). This 15N
analysis tool combines an analysis model, i.e. the different
N pools and transformations, with an algorithm for
parameter estimation. Both parts are independent and
can therefore easily be replaced by different versions.
Different analysis models were used for each data set which
are described in detail in Section 2.2. For the parameter
estimation we used the MA (Metropolis et al., 1953), the
most efficient MCMC method (Tarantola, 2005).

Harmon and Challenor (1997) have shown that the
estimated parameter values obtained with the MA in
combination with Monte Carlo sampling provide the true
parameter ranges. In each iteration a new parameter set is
tested and compared with the previous one. The change of
each parameter is governed by a random step width and
direction. After creating the new parameter set the
algorithm calls the analysis model.

After each model run the misfit between observed
data and model output is calculated with a misfit-function
f(m) and compared to the misfit of the previous iteration.
If the misfit is reduced (i.e. a better fit between the
model and observed data) the new parameter set is
accepted. Otherwise, if the misfit is increased, a like-
lihood-function

LðmÞ ¼ expð�1
2
f ðmÞÞ (1)
is compared with a uniformly distributed random number
(Xrand). The new parameter set is only rejected if
L(m)oXrand. This step of the MA allows the acceptance
of an increased misfit and avoids the algorithm to be
trapped in local minima (Müller et al., 2007). The
acceptance rate is calculated by dividing the number of
accepted steps with the total number of iterations. The
acceptance rate should be between 0.23 and 0.44 (Gelman
et al., 2003).
After a sufficient number of iterations (in most cases

10,000–50,000) the algorithm stops the optimization
procedure. This stop point is controlled by a user defined
minimal number of iterations and a reduction factor R̂

(Gelman et al., 2003; Müller et al., 2007). This factor
compares the within and between variance of three
simultaneously occurring optimization sequences. The
algorithm stops if the minimal number of iterations is
reached and R̂ is near one for each parameter (in most
cases o1.1). The optimization procedure results in a
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probability density function (PDF) for each model para-
meter, from which parameter averages, standard deviations
and a correlation coefficient matrix are calculated. Para-
meter averages for left-truncated PDFs were calculated for
the distribution between zero and the median. Tests
showed that this parameter range is normally distributed
and can therefore be used for statistical calculations (note:
this method was only applied to the PDF of the parameter
ONorg for the Myrold and Tiedje (1986) data set).

The MA is programmed in the software MatLab
(Version 7.2, The MathWorks Inc.), which calls models
that are separately set up in Simulink (Version 6.4, The
MathWorks Inc.).
2.2. Data sets

2.2.1. Kirkham and Bartholomew (1954)

Kirkham and Bartholomew (1954) derived analytical
solutions for their 2-pool model (organic and mineral N,
Fig. 1) to calculate gross N mineralization and immobiliza-
tion rates of seven data sets which differed in soil type
and amendments (see Kirkham and Bartholomew, 1954,
Table 1). We rebuilt their model in Simulink to estimate the
two N transformation rates with the MCMC method for
all seven data sets. Apart from the analytical solutions
developed by Kirkham and Bartholomew (1954) we also
organic N
mineralization

immobilization

mineral N

Fig. 1. Conceptual 15N tracing model to analyze gross N transformations

(Kirkham and Bartholomew, 1954).

Table 1

Estimated values for mineralization and immobilization [lb acre�1 d�1] with the

sets reported by Kirkham and Bartholomew (1954)

Soil Amendment Time (days) Mineralization

MCMC Analy

Avg. SD K&B

Marshall Corn stalks 0–10 1.64 0.26 1.62

Clarion Corn stalks 0–10 1.55 0.24 1.54

10–73 0.89 0.07 0.87

Marshall None 0–10 3.39 0.23 3.40

10–73 0.88 0.06 0.87

Clarion Alfalfa 0–10 1.48 0.27 1.46

10–73 1.24 0.06 1.22

aK&B: Kirkham and Bartholomew (1954); S: Shen et al. (1984); T: Tiedje et a

Takahashi (2001)].
compared our results with the three additional analytical
solutions presented by Takahashi (2001). Since Kirkham
and Bartholomew (1954) did not provide any uncertainties
of their data we evaluated f(m) using an ordinary least
square (OLS). To estimate the effect of uncertainties in
experimental data on parameter uncertainties we used
additionally f(m) in form of a quadratic weighted error
(QWE) assuming a 1% standard deviation of experimental
data. The deviation is very narrow but is ideal to illustrate
the difference between f(m) using OLS and QWE. Because
of the pioneering character of the work by Kirkham and
Bartholomew (1954) and the fact that the values of the
originally reported gross N transformations are well
known in the scientific community, we decided to use the
original units [lb acre�1 d�1] instead of the SI units (note
one lb acre�1 d�1 corresponds to 0.1121 gm�2 d�1).

2.2.2. Myrold and Tiedje (1986)

Around 30 years after Kirkham and Bartholomew
(1954) the first numerical 15N tracing model to quantify
gross N transformations was presented by Myrold and
Tiedje (1986). They analyzed several data sets with their
model but in only one data set both NHþ4 and NO�3 were
concurrently labeled with 15N (data from Capac soil). Such
a ‘‘mirror image’’ approach is required for the simulta-
neous estimation of process specific gross N transformation
rates (e.g. division of gross NO�3 production into NHþ4
oxidation and organic N oxidation, see Barraclough and
Puri, 1995). Since experimental data were no longer
available (Myrold, D. D.; pers. comm.), we extracted
the data from Fig. 3 in Myrold and Tiedje (1986) using
the software SigmaScan 3.02 (Jandel Scientific). For the
analysis of the data we used the model presented by
Myrold and Tiedje (1986) (Fig. 2), but allowed hetero-
trophic oxidation (ONorg) to proceed. In accordance with
Myrold and Tiedje (1986) the kinetics of all transforma-
tions were set to first-order. From time point 288 h
onwards we used for both 15N treatments the 15NO�3
excess reported for the NHþ4 treatment, because no data
MCMCmethod (OLS function) and different analytical solutions for data

Immobilization

tical solutionsa MCMC Analyt.sol.a

S T Y Avg. SD K&B S

1.60 1.62 1.61 3.24 0.23 3.22 3.20

1.53 1.53 1.54 1.75 0.21 1.74 1.73

0.82 0.85 0.86 1.20 0.07 1.17 1.12

3.41 3.39 3.41 0.59 0.20 0.60 0.61

0.86 0.86 0.87 0.69 0.05 0.68 0.67

1.46 1.46 1.46 1.38 0.25 1.36 1.36

1.22 1.19 1.22 0.62 0.06 0.61 0.61

l. (1981); Y: Yamamuro, 1988 [formulas taken from Smith et al. (1994) and
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Fig. 2. Conceptual 15N tracing model to analyze gross N transformations

(Myrold and Tiedje, 1986).

NrecNlab

NH4
+
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NH4
+ NO3

-

NO3
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MNrecMNlab ONrec

ONH4

DNO3

INO3INH4

RNH4a 
RNO3s 

Fig. 3. Conceptual 15N tracing model to analyze gross N transformations

(Müller et al., 2007). N-pools and -transformations in grey are not

considered in the analysis. (Note, the model presented here represents a

basic model structure which has to be adapted to the particular situation,

see text for further explanations.)
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were reported for the second treatment. We assumed that
this procedure is valid because of the similarity of the
previous 15N abundance in both treatments (see Myrold
and Tiedje, 1986, Fig. 3). For the misfit function f(m) we
used a QWE function. We assumed a standard deviation
for the observed data of 10%. This was needed due to
difficulties to extract single data from Fig. 3 in Myrold and
Tiedje (1986).

2.2.3. Watson et al. (2000)

Recently, Watson et al. (2000) found evidence for an
overestimation of gross N transformation rates caused by
an unequal exploitation of native and applied N in
particular after small N additions with high 15N enrich-
ments. This hypothesis lead to a controversial discussion
(Stark and Schimel, 2001; Cliff et al., 2002; Watson et al.,
2002; Luxhøi et al., 2003) and subsequent reanalyzes of the
data sets with different models (Watson et al., 2002;
Herrmann et al., 2005). Because of the immense impor-
tance of whether such an artifact exists or not, we decided
to reanalyze the Watson et al. (2000) data using the 15N
tracing model presented by Müller et al. (2007; Fig. 3). The
underlying assumption in this model is that applied and
native N pools are uniformly exploited. We selected the
CENIT data because this was also the data set used in the
‘‘response to the editor’’ by Watson et al. (2002) and is
therefore ideal for model comparisons. Nitrogen
(2 mgNg�1 soil) was applied to the soil so that either
NHþ4 or NO�3 was labeled with 15N at 99.8 atom% excess.
To compare estimates for gross N transformations with
published rates for the same experiment (Watson et al.,
2000, 2002; Herrmann et al., 2005) we calculated total
mineralization ðMNlab þMNrecÞ, NHþ4 consumption
(INH4

þONH4
), total nitrification (ONH4

þONrec) and
NO�3 consumption (INO3

þDNO3
) (Fig. 3). For N trans-

formations following first-order kinetics, average rates
were calculated by integrating the gross N rates over the
experimental period divided by the total time. This was
also applied to gross N transformations reported by
Herrmann et al. (2005). Following Müller et al. (2007) we
analyzed the data either with NHþ4 oxidation set to first-
order kinetics (run1) or set to Michaelis–Menten kinetics
(run2). All other kinetic settings were identical to Müller
et al. (2007).

3. Results

3.1. Kirkham and Bartholomew (1954)

Kirkham and Bartholomew (1954) analyzed seven data sets
which differed in soil type and amendments. While the
analytical calculations resulted in gross N transformation rates
without uncertainties the MCMC technique produces a PDF
from which parameter averages and uncertainties can be
calculated. For all seven data sets the two gross N
transformations were characterized by well-defined PDFs.
Fig. 4A shows exemplary the PDFs for data set 1 (Marshall-
soil amended with corn stalks). The estimated average gross N
transformations were for all seven data sets in good agreement
with the analytical solutions (Table 1). The analytical solutions
resulted in slightly different rates but were all within the
estimated standard deviations and even the interquartile range
(i.e. between the 25th and 75th percentile) (see boxplot Fig. 4).
Due to the high number of iterations (i ¼ 10,000) a statistical
test for the comparison of results is inappropriate (Yoccoz,
1991). Assuming a 1% standard deviation of observed data
resulted in PDFs with similar average values but considerably
reduced parameter uncertainties. This is illustrated in Fig. 4 for
the Marshall soil amended with corn stalks. Kirkham and
Bartholomew (1954) calculated mineralization and immobili-
zation rates of 1.62 and 3.22 [lbacre�1d�1], respectively, while
the MCMC method resulted in values of 1.6470.26 and
3.2470.23 [lb acre�1d�1] (OLS) or 1.6370.14 and 3.2270.09
[lb acre�1 d�1] (QWE).

3.2. Myrold and Tiedje (1986)

The MCMC method resulted in a fit similar to the one
presented by Myrold and Tiedje (1986) (Fig. 5). While
Myrold and Tiedje (1986) considered four gross N
transformations we also included ONorg (heterotrophic
nitrification). This rate was very small and characterized
by a left-truncated PDF (inset Fig. 5). However, our
analysis indicated that a slightly positive ONorg rate
contributed to a reduction of f(m). At a first glance it
looks like that the estimated parameters of both methods
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(Table 2) were markedly different. However, considering
the reported parameter uncertainties a different picture
emerges. While Myrold and Tiedje (1986) reported
uncertainties in standard errors (Se) we report our
uncertainties in standard deviations (SD). It is unclear
how Myrold and Tiedje (1986) derived the Se, in parti-
cular how many replications were considered for cal-
culation. Assuming a number of n ¼ 5 (from Fig. 3 in
Myrold and Tiedje, 1986) it can easily be seen that the
averages7SD reported by Myrold and Tiedje (1986)
include the values estimated by the MCMC method or
at least overlap (RNO3

). Therefore, the MCMC results
in much lower uncertainty ranges and therefore provides
a method to estimate gross N rates with increased
precision.
3.3. Watson et al. (2000)

The two optimization runs for the data from CENIT
(2 mgNg�1 soil) differed in the kinetics used for NHþ4
oxidation (ONH4

). In run1 where ONH4
was described

by first-order kinetics a distinct discrepancy between
measured and modeled 15N excess values of the NO�3 pool
was observed (Fig. 6 A2, B2). This discrepancy diminished
in run2 where ONH4

was described by Michaelis–Menten
kinetics (Fig. 6). Introducing Michaelis–Menten kinetics
influenced the values of the other parameters and the
combined N transformations (Tables 3 and 4). Except
for INH4

all gross N transformations were different
between both optimization runs. Our estimated gross
NHþ4 immobilization INH4

(Table 3) was in both runs
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Fig. 5. Measured and modeled N concentrations and 15N enrichments of ammonium (NHþ4 ) and nitrate (NO�3 ) of the Capac soil for the Myrold and

Tiedje (1986) analysis (A) and the MCMC method (B) and the probability density plot for heterotrophic nitrification (ONorg).

Table 2

Estimated first-order parameters of N transformation rates [day�1] for the

Capac soil with the MCMC method and values reported by Myrold and

Tiedje (1986)

Nrate MCMC Myrold and Tiedje (1986)

Avg. SD
a Avg. Se

a

MNorg 0.0142 0.0020 0.0104 0.0210

INH4
0.2312 0.0517 0.1080 0.0810

ONH4
1.5418 0.1139 1.2300 0.1400

RNO3
0.0261 0.0092 0.0132 0.0052

ONorg 0.0026 0.0015 ND

aNote: while Myrold and Tiedje (1986) report uncertainties in standard

errors (Se) we report our uncertainties in standard deviations (SD).
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similar to the rate of 0.7525 mgNg�1 soil h�1 reported by
Watson et al. (2000). The total mineralization
(1.0370.05 mgNg�1 soil h�1) is the only combined N
transformation which was equal among the MCMC
method (run1) and the previous studies, while NHþ4
consumption and total nitrification were smaller using the
MCMC method and NO�3 consumption was higher than
reported values (Table 4). Using Michaelis–Menten
kinetics approximately halved the total mineralization
and NO�3 consumption compared to the first run, while
NHþ4 consumption and total nitrification were not influ-
enced by the change in the kinetics for ONH4

(Table 4).
NO�3 consumption was still greater in run2 than the
reported values by Watson et al. (2000, 2002) and
Herrmann et al. (2005) (Table 4).
4. Discussion

4.1. Kirkham and Bartholomew (1954)

The main difference between the data analysis via
analytical solutions and the MCMC method is that the
numerical technique is able to calculate true parameter
uncertainties. Irrespective of observed data uncertainties
the MCMC method determines the PDF for each gross N
transformation, i.e. the statistical probability that the gross
N transformations are within a certain range (Fig. 4). The
various analytical solutions were different but all within the
average7SD ranges of the MCMC calculated values. This
example illustrates the analysis power of the MCMC
technique not only to provide a value for the gross N
transformation but also to determine uncertainty ranges.
The MCMC method provides more realistic parameter
uncertainties if misfit calculations are weighted by observed
data uncertainties (Müller et al., 2007) which can clearly be
seen comparing the analyses when f(m) was calculated as
OLS or QWE (Fig. 4). So far only one other method exists
to estimate standard errors of gross N transformations
calculated with analytical solutions which requires infor-
mation on data uncertainties (Luxhøi and Brockhoff,
2004). In contrast the calculation of gross N transforma-
tions via analytical solutions is usually based on observed
average values without consideration of data uncertainties.
Thus, our analysis highlights the importance of a
confidence interval for gross N transformations rather
than just the average rate. This is in line with theoretical
considerations and ecosystem studies emphasizing the
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Fig. 6. Measured and modeled N concentrations and 15N enrichments of ammonium (NHþ4 ) and nitrate (NO�3 ) of the CENIT soil (Watson et al., 2000)

for the two optimization runs (according to Table 3). A ¼ 15NH4 label; B ¼ 15NO3 label.

Table 3

Cumulated gross N transformation rates [mgNg�1 soil h�1] for the CENIT

soil (Watson et al., 2000) estimated with the MCMC method

Nrate Kinetic run1 run2

Avg. SD Avg. SD

INH4
Zero 0.708 0.088 0.738 0.098

INO3
Zero 0.297 0.078 0.117 0.068

MNrec Zero 0.985 0.045 0.494 0.093

MNlab First 0.041 0.017 0.090 0.026

ONH4
First/MMa 0.152 0.011 0.062 0.026

ONrec Zero 0.010 0.009 0.093 0.031

DNO3
Zero 0.019 0.002 0.041 0.006

arun1: first-order; run2: Michaelis–Menten kinetics.
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importance of parameter confidence intervals (Yoccoz,
1991; Quinn and Keough, 2002; Knorr and Kattge, 2005).

The model by Kirkham and Bartholomew (1954) (Fig. 1)
is able to quantify gross rates for total mineral N
production and consumption (Schimel, 1996). These two
rates are the sum of various process specific transforma-
tions (see e.g. Barraclough and Puri, 1995). However, to
quantify process specific gross N transformation rates
more detailed process-based 15N tracing models in
combination with more detailed 15N tracing experiments
are required.

4.2. Myrold and Tiedje (1986)

Myrold and Tiedje (1986) presented the first numerical
model to quantify process specific gross N transformations.
Our reanalysis with the MCMC method (Table 2) of their
most detailed data set (Capac soil, Myrold and Tiedje,
1986, Fig. 3) resulted in a fit between experimental data
and model output which was similar to the original analysis
(Fig. 5).
One of the main differences of our analysis to the

original one is that we were also able to identify oxidation
of organic N to NO�3 (heterotrophic nitrification, ONorg).
This process was included in the model by Myrold and
Tiedje (1986) but was set to zero, probably because the
value of this process was indistinguishable from zero.
Based on the well-defined PDF for ONorg (see inset Fig. 5)
our analysis provides for this process a value close to zero
but with an average7SD clearly above zero (Table 2). In
general, the parameter uncertainties reported by Myrold
and Tiedje (1986) are much higher than the MCMC values.
In case of the mineralization rate, the uncertainty by
Myrold and Tiedje (1986) is even higher than the average
value (Table 2), thus covering a wide range of possible
values. The parameter values (avg.7SD) determined with
the MCMC technique are in most cases within the range
reported by Myrold and Tiedje (1986) (Table 2). Therefore,
our method reduces the uncertainty ranges and provides
more precise estimates of gross N transformations.
The Myrold and Tiedje (1986) model (Fig. 2) did not

include processes such as immobilization of NO�3 (INO3
)

and dissimilatory NO�3 reduction to NHþ4 (DNO3
) which are

sometimes observed in soils (Cookson et al., 2006). Parkin
et al. (1985) who also used the Capac soil found an increase
of 15N abundance in the NHþ4 pool in the treatment where
the NO�3 pool had been labeled with 15N, which could have
been caused by DNO3

. Another explanation could be a fast
immobilization in combination with re-mineralization.
Both processes were tested in a previous study (Müller
et al., 2004) where it was shown that DNO3

was the most
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Table 4

Combined N transformations [mgNg�1 soil h�1] for the CENIT soil (Watson et al., 2000) using the MCMC method and previously published rates

(Watson et al., 2000, 2002; Herrmann et al., 2005)

Nrate MCMC run1 MCMC run2 Watson et al.a Herrmann (2005)

Avg. SD Avg. SD Avg1 SD Avg2 Avg. SD

Total mineralization 1.03 0.05 0.58 0.10 0.99 0.04 0.99 1.10 0.08

NHþ4 consumption 0.86 0.09 0.80 0.10 1.12 0.07 1.12 1.21 0.05

Total nitrification 0.16 0.01 0.15 0.04 0.33 0.07 0.33 0.28 0.03

NO�3 consumption 0.32 0.08 0.16 0.07 0.10 0.01 0.08 0.03 0.05

aAvg1: Watson et al. (2000); Avg2: Watson et al. (2002) (no uncertainties reported).
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likely process to explain the increase in 15N abundance in
the NHþ4 pool when only NO�3 was labelled. In addition,
Parkin et al. (1985) concluded that their calculated
denitrification rate could have been overestimated if INO3

would occur. We included both rates (DNO3
and INO3

) in
the model by Myrold and Tiedje (1986) to test the
likelihood of these processes in the Capac soil. However,
the misfit of this model run was not improved (data not
shown). Our results showed that the model without DNO3

and INO3
but considering ONorg is the best model to use.

Such a decision is in line with Cox et al. (2006) who
emphasized that ‘‘models should be as simple as possible,
but no simpler’’.

One of the reasons for the differences of the uncertainty
ranges between our and the Myrold and Tiedje (1986)
analysis is related to the kind of misfit function used for the
optimization. While Myrold and Tiedje (1986) used the
OLS function we implemented a QWE function. As
discussed above, the parameter uncertainty range is
dependent on the type of misfit function used. The
uncertainties of the data are needed to calculate realistic
parameter uncertainties. This was already demonstrated on
the Kirkham and Bartholomew (1954) data comparing the
analysis when f(m) was set to OLS or QWE (1% data
uncertainty) (Fig. 4). Using OLS in a situation where
observed data are characterized by totally different value
ranges (e.g. see Fig. 5 A1, B1) would bias the optimization
procedure towards the highest values within the data set
and therefore influence the optimization results (Raupach
et al., 2005).

4.3. Watson et al. (2000)

Watson et al. (2000) quantified gross N transformations
in four different soils after labeling with 15N at two
concentrations. At low N application rates, Watson et al.
(2000) found, one day after fertilizer application, that 55%
of the added 15N–NHþ4 had entered the NO�3 pool (CENIT
soil). Since this was observed ‘‘without a concurrent
increase in the size of the unlabeled NO�3 pool’’ (Watson
et al., 2000), they concluded that a preferential consump-
tion of applied NHþ4 took place. The authors confirmed
this preferential use of applied N in their second analysis
and provided evidence that a ‘‘preferential nitrification of
applied 15NHþ4 occurred’’ (Watson et al., 2002). Herrmann
et al. (2005) reanalyzed the data and introduced separate
nitrification rates for added and native N. They estimated a
four-fold higher rate for added N and therefore confirmed
the preferential use of added N. They presumed that this
preferential use of added N resulted in an overestimation of
gross mineralization and nitrification. Moreover, Luxhøi
et al. (2003), who carried out a study very similar to the one
by Watson et al. (2000), concluded that the findings by
Watson et al. could be explained by a non-homogenous
distribution of applied N.
In our reanalysis we used the model presented by Müller

et al. (2007) which presents a suitable model to quantify
gross N transformations in temperate grassland soils. In the
first optimization run NHþ4 oxidation was described by first-
order kinetics. This first run resulted in average parameter
values that were similar to previous analyses (Table 4). We
observed a discrepancy between modeled and observed
15NO�3 contents (Fig. 6 A2, B2), which was similar to the
one observed by Watson et al. (2002). Based on the results of
run1 we confirmed that a preferential uptake of applied
NHþ4 could have occurred. However, after changing the
kinetics of NHþ4 oxidation to Michaelis–Menten (Müller
et al., 2007) no preferential usage of applied NHþ4 could be
detected anymore (Fig. 6). This emphasizes how crucial it is
to carefully select the most realistic kinetic settings. In
general, Michaelis–Menten is conceptually the best kinetics
to use for microbial transformations (Myrold and Tiedje,
1986), in particular at low NHþ4 concentrations where the
change from zero- to first-order kinetics occurs (Taylor and
Bottomley, 2006; Müller et al., 2007). Our second optimiza-
tion run resulted in a gross mineralization and gross
nitrification which were considerably lower (42% and
55%, respectively) than the transformations estimated by
Watson et al. (2000, 2002) (Table 4). Herrmann et al. (2005)
found a 1.5–2.5-fold overestimation of gross mineralization
for the same data set. It should be noted that our estimate
for gross N mineralization with run2 is 1.9-fold lower than
the rate estimated by Herrmann et al. (2005). Moreover,
Watson et al. (2000) observed a higher mineralization rate
under low N application compared to the high N applica-
tion. If the real mineralization rate was lower, as suggested
by Watson et al. (2000), then it is not surprising that an
improved model fit to the data resulted in reduced
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mineralization rates as observed in run2 when ONH4
was

described by Michaelis–Menten kinetics. This example
shows that a switch of kinetics of one N transformation
can severely change the gross rates of other N transforma-
tions and highlights that a single gross N transformation
rate can only realistically be interpreted in concert with all
other simultaneously occurring N transformations. Using
the equation developed by Kirkham and Bartholomew
(1954), transformations such as INO3

could not be simulta-
neously estimated by Watson et al. (2000). Our reanalysis
showed that INO3

is characterized by a well-defined PDF
and thus supported the argumentation by Stark and Schimel
(2001). However, we also showed that DNO3

, another NO�3
consumption process, is responsible for �25% of the total
NO�3 consumption (Tables 3 and 4) and therefore is an
important process in the CENIT soil. Furthermore,
remineralization of immobilized mineral N is an important
transformation which was ignored in the original analysis
(Watson et al., 2000). Our reanalysis highlights the complex-
ity of N transformations in soil and shows that simple
models and inadequate kinetic settings can lead to erroneous
results. Great care should be exercised to select both, a
suitable model and appropriate kinetics for each N
transformation. An approach similar to the one presented
by Cox et al. (2006) who selected the most appropriate
model after a series of models had been tested seems most
promising.
5. Conclusions

The reanalysis of three 15N enrichment data sets
published over the last 50 years with a new analysis
method (MCMC) to estimate gross N transformations
highlighted the following points.
(1)
 For all gross N transformations not only average
values but also standard deviations can be estimated
even for data sets where no data uncertainties are
available.
(2)
 The application of the MCMC method resulted in
much narrower confidence intervals for the model
parameters (i.e. avg.7SD) and therefore provides more
precise estimates of gross N transformation rates.
(3)
 The change of kinetic settings for one N transformation
can considerably influence the gross rates of other N
transformations. NHþ4 oxidation is most realistically
described by Michaelis–Menten kinetics, whereas in-
appropriate kinetic settings for this transformation may
lead to wrong data interpretations.
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Stange, F., Döhling, F., 2005. 15N tracing model SimKIM to analyse the

NO and N2O production during autotrophic, heterotrophic nitrifica-

tion, and denitrification in soils. Isotopes in Environmental Health

Studies 41, 261–274.

Stark, J.M., 2000. Nutrient transformations. In: Sala, O.E., Jackson, R.B.,

Mooney, H.A., Howarth, R.W. (Eds.), Methods in Ecosystem Science.

Springer, New York, pp. 215–234.
Stark, J.M., Schimel, J.P., 2001. Errors in ‘Overestimation of gross N

transformation rates in grassland soilsy. Soil Biology & Biochemistry

33, 1433–1435.

Takahashi, S., 2001. Comparison of gross nitrogen mineralization rates by

zero-order models. Soil Science Society of America Journal 65,

244–246.

Tarantola, A., 2005. Inverse Problem Theory and Methods for Model

Parameter Estimation. Society for Industrial and Applied Mathe-

matics, Philadelphia, 342pp.

Taylor, A.E., Bottomley, P.J., 2006. Nitrite production by Nitrosomonas

europaea and Nitrosospira sp. AV in soils at different solution

concentrations of ammonium. Soil Biology & Biochemistry 38,

828–836.

Tiedje, J.M., Sørensen, J., Chang, Y.-Y.L., 1981. Assimilatory and

dissimilatory nitrate reduction: perspectives and methodology for

simultaneous measurement of several nitrogen cycle processes. In:

Clark, F.E., Rosswall, T. (Eds.), Terrestrial Nitrogen Cycles Processes,

Ecosystem Strategies and Management Impacts, vol. 33. Stockholm,

pp. 331–342.

Tietema, A., van Dam, D., 1996. Calculating microbial carbon and

nitrogen transformations in acid forest litter with 15N enrichment and

dynamic simulation modelling. Soil Biology & Biochemistry 28,

953–965.

Watson, C.J., Travers, G., Kilpatrick, D.J., Laidlaw, A.S., O’Riordan, E.,

2000. Overestimation of gross N transformation rates in grassland soils

due to non-uniform exploitation of applied and native pools. Soil

Biology & Biochemistry 32, 2019–2030.

Watson, C.J., Travers, G., Kilpatrick, D.J., Laidlaw, A.S., O’Riordan, E.

(Eds.), 2002. Response to Stark and Schimel’s letter to the editor

published in Soil Biology and Biochemistry 33, 1433–1435, 2001, Soil

Biology & Biochemistry 34, 553–555.

Yamamuro, S., 1988. A theoretical approach to the fate of nitrogen in

paddy field by using an NH4–
15N tracer technique. Japanese Journal of

Soil Science and Plant Nutrition 59, 538–548.

Yoccoz, N.G., 1991. Use, overuse and misuse of significance tests in

evolutionary biology and ecology. Bulletin of the Ecological Society of

America 72, 106–111.


	15N tracing models with a Monte Carlo optimization procedure provide new insights on gross N transformations in soils
	Introduction
	Methods
	Monte Carlo sampling
	Data sets
	Kirkham and Bartholomew (1954)
	Myrold and Tiedje (1986)
	Watson et al. (2000)


	Results
	Kirkham and Bartholomew (1954)
	Myrold and Tiedje (1986)
	Watson et al. (2000)

	Discussion
	Kirkham and Bartholomew (1954)
	Myrold and Tiedje (1986)
	Watson et al. (2000)

	Conclusions
	Acknowledgments
	References


