

Available online at www.sciencedirect.com





Catalysis Communications 8 (2007) 589-592

www.elsevier.com/locate/catcom

# Resistance to sulfidation of the catalytic reduction of $NO_x$ over $Ag/Al_2O_3$ by controlling the loadings of Ag and $Ag^+$

Rui Ke<sup>a,\*</sup>, Qiang Chen<sup>a</sup>, Junhua Li<sup>b</sup>, Yongqing Zhu<sup>b</sup>, Jiming Hao<sup>b</sup>

<sup>a</sup> Department of Mechanical Engineering, Tsinghua University, Beijing, PR China <sup>b</sup> Department of Environment Science and Engineering, Tsinghua University, Beijing, PR China

Received 18 January 2006; received in revised form 28 April 2006; accepted 2 May 2006 Available online 19 May 2006

# Abstract

SO<sub>2</sub> strongly decreased the catalytic activities of low loading Ag/Al<sub>2</sub>O<sub>3</sub> below 500 °C in selective catalytic reduction (SCR) of NO<sub>x</sub> by propene with or without the assistance of non-thermal plasma (NTP), which was mainly attributed to the competition between SO<sub>2</sub> and NO. By controlling the loadings of Ag and Ag<sup>+</sup> over alumina, the resistance of SO<sub>2</sub> was remarkably enhanced between 400 °C and 500 °C in thermal SCR. In the NTP-assisted SCR, most of the NO<sub>x</sub> conversions were also apparently recovered from 250 °C to 500 °C. © 2006 Elsevier B.V. All rights reserved.

*Keywords:* Non-thermal plasma; Selective catalytic reduction; Lean burn;  $NO_x$ ; Ag/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>; Propene

# 1. Introduction

Silver oxide supported on alumina catalysts have raised a lot of interest in reducing  $NO_x$  in the presence of excess  $O_2$ , and have shown high  $NO_x$  conversions and hydrothermal stability when using propene or actual diesel fuel as reductant [1]. Moreover, the  $NO_x$  reduction can be further enhanced by the assistance of non-thermal plasma [2], which remarkably promotes the activation of the hydrocarbon reductants. However, the SO<sub>2</sub> resistance of silver catalysts was unsolved so far both in thermal SCR and NTP-assisted SCR [5,6]. Regarding the effect of sulfidation, it has been found that silver sulfate [3] and alumina sulfate [4] over  $Al_2O_3$  has limited influence in  $C_3H_6$ -SCR. Meunier and Ross [5] suggested that the reduction of  $ad-NO_x$  species or NO<sub>2</sub> over low loading Ag/Al<sub>2</sub>O<sub>3</sub> most probably occurred on the alumina. Our recent research on the competitive adsorption of SO<sub>2</sub> and NO showed that SO<sub>2</sub> had advantage to deprive the alkaline sites that  $ad-NO_x$  occupied over alumina.

In order to promote the adsorption of  $NO_x$  in the presence of SO<sub>2</sub>, one way is to provide new kinds of alkaline sites that preferentially bind to  $NO_x$ . According to the hard-soft acid-base concepts of Ralph Pearson [6], SO<sub>2</sub> is a harder acid than NO and has advantage in competition for hard alkaline sites over alumina. However, it is quite on the contrary if soft alkaline sites are presented over the catalyst. It is supposed that  $ad-NO_x$  is preferential over soft alkaline sites. Recently, the role of silver in C<sub>3</sub>H<sub>6</sub>-SCR over Ag/Al<sub>2</sub>O<sub>3</sub> has been extensively clarified [7]. Silver ion Ag<sup>+</sup> and metallic silver are considered to be effective in NO reduction and NO oxidation, respectively. In this study, the SO<sub>2</sub> effect in thermal SCR and NTP-assisted SCR were investigated. Meanwhile, metallic silver was purposely used as a soft alkaline site for  $ad-NO_x$  reduction in cooperation with  $Ag^+$  to obtain high SO<sub>2</sub> resistance. NTP was used to provide SCR with activated reductants for activity enhancement at low temperature regions.

# 2. Experimental

Ag/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> was prepared by a single step sol–gel method. AgNO<sub>3</sub> and Ag<sub>2</sub>SO<sub>4</sub> were chosen as the precursor of Ag. High loading of AgNO<sub>3</sub> was thought to form Ag clusters on alumina support, while Ag<sub>2</sub>SO<sub>4</sub> should remain undecomposed at the calcine temperature of 550 °C. By appropriately controlling the proportion of AgNO<sub>3</sub> and

<sup>\*</sup> Corresponding author. Tel.: +86 1062794369.

E-mail address: reesimon97@mails.tsinghua.edu.cn (R. Ke).

<sup>1566-7367/\$ -</sup> see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.catcom.2006.05.015

Ag<sub>2</sub>SO<sub>4</sub>, it is tried to control the loadings of Ag and Ag<sup>+</sup> over alumina. The final obtained catalysts were sieved to 0.15–0.28 mm for later use. The sulfated Ag/Al<sub>2</sub>O<sub>3</sub> samples were obtained by pretreating the fresh samples in 100 ppm SO<sub>2</sub> and 8% O<sub>2</sub> for 24 h at 450 °C. The samples used in this paper were named as (F/S)-AgxN–AgyS, in which F or S means a fresh or sulfated sample while AgxN and AgyS means *x*-wt% Ag and *y*-wt% Ag of the sample were from AgNO<sub>3</sub> and Ag<sub>2</sub>SO<sub>4</sub>, respectively.

The activity test system is of the PPCR (post plasma catalytic reactor) type. Non-thermal plasma was generated in a cylinder type dielectric barrier discharge (DBD) reactor with sinusoidal 5 kV high voltage of 50 Hz power input. The catalysts were placed in a quartz tube reactor downstream from the plasma reactor with the dosage of 0.25 g. The total flow of the feed gas was 100 mL/min and the space velocity was  $14,000 h^{-1}$ . During the activity test, the reaction temperature went from low to high temperature. The data points were obtained in an approximately 'steady' status of the SCR reaction, during which the activities observed did not change. The concentration of NO<sub>x</sub> was analyzed by a NO–NO<sub>2</sub>–NO<sub>x</sub> analyzer (Thermo Electron Model 44).

#### 3. Results and discussion

It has been reported that the sulfidation of low loading  $Ag/Al_2O_3$  (e.g. 1.2-wt%) causes a permanent loss of activity [5]. Fig. 1 shows the SO<sub>2</sub> effects on both thermal SCR and NTP-assisted SCR over 5-wt%  $Ag/Al_2O_3$ . In thermal SCR without SO<sub>2</sub> poisoning, the effective temperature window covered from 400 °C to 550 °C over fresh  $Ag/Al_2O_3$  with a NO<sub>x</sub> conversion above 60%. This temperature window was extended to from 200 °C to 550 °C in NTP-assisted SCR. After the  $Ag/Al_2O_3$  sample was poisoned by SO<sub>2</sub> for 24 h, the activities at below 550 °C were obviously lost both in thermal SCR and in NTP-assisted SCR with



Fig. 1. NO<sub>x</sub> conversions under the following process: SCR over F-Ag5N ( $\triangle$ ), NTP–SCR over F-Ag5N ( $\triangle$ ), SCR over S-Ag5N in the absence of SO<sub>2</sub> ( $\bigtriangledown$ ), SCR over S-Ag5N exposed to SO<sub>2</sub> ( $\blacksquare$ ), NTP–SCR over S-Ag5N exposed to SO<sub>2</sub> ( $\blacksquare$ ), Conditions: NO, 1000 ppm; C<sub>3</sub>H<sub>6</sub>, 1000 ppm; O<sub>2</sub>, 8%; SO<sub>2</sub>, 100 ppm; balance gas, N<sub>2</sub>; GSHV, 14,000 h<sup>-1</sup>.

100 ppm SO<sub>2</sub> in the feed gas. The assistance of NTP provided an activity enhancement of only 7–20% at below 400 °C under the SO<sub>2</sub> poisoning condition which was far lower than that could be achieved under the condition without SO<sub>2</sub> poisoning. If SO<sub>2</sub> was not present in the feed gas, the sulfidation of 5-wt% Ag/Al<sub>2</sub>O<sub>3</sub> sample caused mainly the loss of SCR activities below 400 °C while the activities above 400 °C did not apparently decrease.

Fig. 2 shows the variation of intermediate species during the SO<sub>2</sub> poisoning process in C<sub>3</sub>H<sub>6</sub>-SCR over 5-wt% Ag/ Al<sub>2</sub>O<sub>3</sub>. Typical intermediates including nitrates (1590 cm<sup>-1</sup>  $rac{1}{2}$   $rac{2}{3}$ . Typical intermediates including nitrates (1590 cm<sup>-1</sup>, 1550 cm<sup>-1</sup>, 1298 cm<sup>-1</sup>, 1253 cm<sup>-1</sup>), acetate (1560 cm<sup>-1</sup>, 1454 cm<sup>-1</sup>) and enolic species (1637 cm<sup>-1</sup>) [8] in C<sub>3</sub>H<sub>6</sub>-SCR were observed without SO<sub>2</sub> in the feed gas. After SO2 was added, obvious sulfate species occurred at  $1350 \text{ cm}^{-1}$  and  $1170 \text{ cm}^{-1}$  with the decrease of nitrate species at  $1550 \text{ cm}^{-1}$ , which revealed that the adsorption of  $SO_2$  was superior to that of  $NO_x$ . With the assistance of NTP, the amount of NCO species  $(2231 \text{ cm}^{-1})$  [8] and enolic species apparently increased, which were thought to be essential in SCR reactions, while no promotion effect was found for the nitrate species at  $1550 \text{ cm}^{-1}$ . The evidences above suggested that NTP could not promote the adsorption of  $NO_x$  during the  $SO_2$  poisoning process, which led to the low activities even in the presence of abundant NCO and enolic species.

In order to improve the resistance to SO<sub>2</sub>, the loading of Ag/Al<sub>2</sub>O<sub>3</sub> was purposely increased with different silver precursor. The results were presented in Fig. 3. Pure Ag<sub>2</sub>SO<sub>4</sub> was found to be ineffective in thermal C<sub>3</sub>H<sub>6</sub>-SCR between 250 °C and 550 °C, which might be attributed to the small surface area of Ag<sub>2</sub>SO<sub>4</sub>. With the assistance of NTP, slight enhancement of NO<sub>x</sub> conversions (less than 30%) were achieved which should come from NO oxidation and propene activation by NTP. All the 8-wt% Ag/Al<sub>2</sub>O<sub>3</sub> samples



Fig. 2. Dynamic changes of DRIFTS spectra over F-Ag5N at 450 °C during the process of SCR for 40 min (1), adding SO<sub>2</sub> into the feed gas and dwelling for 40 min (2), turning on non-thermal plasma for NTP–SCR for 40 min (3). Conditions: NO, 1000 ppm;  $C_3H_6$ , 1000 ppm;  $O_2$ , 8%; SO<sub>2</sub>,100 ppm; balance gas, N<sub>2</sub>.



Fig. 3. NO<sub>x</sub> conversions in thermal SCR over S-Ag6N–Ag2S ( $\triangle$ ), S-Ag4N–Ag4S ( $\blacksquare$ ), S-Ag2N–Ag6S ( $\bigtriangledown$ ), S-Ag8N ( $\blacklozenge$ ), S-Ag8S ( $\blacktriangle$ ), pure Ag<sub>2</sub>SO<sub>4</sub> ( $\blacktriangledown$ ) and in NTP-assisted SCR over pure Ag<sub>2</sub>SO<sub>4</sub> ( $\Box$ ). Conditions: NO, 1000 ppm; C<sub>3</sub>H<sub>6</sub>, 1000 ppm; O<sub>2</sub>, 8%; SO<sub>2</sub>, 100 ppm; balance gas, N<sub>2</sub>; GSHV, 14,000 h<sup>-1</sup>.

showed higher resistance to SO<sub>2</sub> relative to the 5-wt% Ag/ Al<sub>2</sub>O<sub>3</sub> sample. The S-Ag6N–Ag2S sample whose silver were from both Ag<sub>2</sub>SO<sub>4</sub> and AgNO<sub>3</sub> showed higher SO<sub>2</sub> resistance at 400–500 °C among all samples. This promotion effect might be resulted from appropriate proportion of Ag<sup>+</sup> and metallic Ag over alumina. It is worth mentioning that silver from AgNO<sub>3</sub> are probably easier to conglomerate when calcined at high temperature. The introduction of Ag<sub>2</sub>SO<sub>4</sub> may enhance the dispersion of Ag<sup>0</sup> and prevent the formation of large silver particles. However, large proportion of Ag<sub>2</sub>SO<sub>4</sub> can decrease the amount of reduced silver sites over alumina, which is also unfavorable for the purpose of SO<sub>2</sub> resistance. More detailed characterization on this phenomenon will be presented in other papers.

Fig. 4 shows the comparison of the  $NO_x$  conversions in thermal SCR and NTP-assisted SCR over S-Ag4N-Ag4S

relative to those over S-Ag5N, exposing to SO<sub>2</sub>. It is seen that the NO<sub>x</sub> conversions of S-Ag4N–Ag4S sample were much higher than those of S-Ag5N between 400 °C and 500 °C in thermal C<sub>3</sub>H<sub>6</sub>-SCR. In addition, the NO<sub>x</sub> conversions below 400 °C could also be apparently enhanced with the assistance of NTP in the presence of SO<sub>2</sub>. More than 60% NO<sub>x</sub> conversions were achieved in a wide temperature window of 300–550 °C. The assistance of NTP favored the oxidation of NO, the activation of propene and the direct formation of N-containing organics, which were very important over a sulfated Ag/Al<sub>2</sub>O<sub>3</sub>. The maximal NO<sub>x</sub> conversion over S-Ag4N–Ag4S was about 10% lower than that over fresh 5-wt% Ag/Al<sub>2</sub>O<sub>3</sub>. This should be resulted from the sulfidation of the alumina support.

The adsorption competition between SO<sub>2</sub> and NO<sub>x</sub> was observed to be very contrary over sulfated 8-wt% Ag/ Al<sub>2</sub>O<sub>3</sub> relative to sulfated 5-wt% Ag/Al<sub>2</sub>O<sub>3</sub> (Fig. 5). At the beginning of the SCR over the sulfated 8-wt% Ag/ Al<sub>2</sub>O<sub>3</sub> sample which was just sulfated in 100 ppm SO<sub>2</sub> + 8% O<sub>2</sub> for 24 h, the NO<sub>x</sub> conversion was quite low (about 60%). As the reaction continued, it gradually increased with time and finally stabilized at 80%. We speculate that the Ag<sup>0</sup> soft alkaline sites were mainly occupied by ad-SO<sub>x</sub> after the sulfidation. When NO and C<sub>3</sub>H<sub>6</sub> was added into the feed gas, the adsorption of NO<sub>x</sub> gradually deprived the alkaline sites occupied by ad-SO<sub>x</sub> as the SCR reaction continued.

Based on the evidences above and other literature [5,9], an interesting rule could be concluded that the loading and proportion between  $Ag^+$  and metallic silver were essential to the adsorption competition between SO<sub>2</sub> and NO<sub>x</sub>. Over the Ag/Al<sub>2</sub>O<sub>3</sub> samples with very low Ag loadings (e.g. 1.2%), the sulfidation caused a permanent poisoning effect between 400 °C and 550 °C [5]. However, this depended on the presence of SO<sub>2</sub> in the reaction mixture over 5-wt% or 2-wt% [9] Ag/Al<sub>2</sub>O<sub>3</sub>, which showed that SO<sub>2</sub> was of superiority in the adsorption competition with NO. If it was



Fig. 4. NO<sub>x</sub> conversions over Ag/Al<sub>2</sub>O<sub>3</sub> samples exposed to SO<sub>2</sub> in the following process: SCR over S-Ag5N ( $\bigtriangledown$ ), SCR over F-Ag5N ( $\blacksquare$ ), NTP-assisted SCR over S-Ag4N–Ag4S ( $\blacktriangle$ ). Conditions: NO, 1000 ppm; C<sub>3</sub>H<sub>6</sub>, 1000 ppm; O<sub>2</sub>, 8%; SO<sub>2</sub>, 100 ppm; balance gas, N<sub>2</sub>; GSHV, 14,000 h<sup>-1</sup>.



Fig. 5. The NO<sub>x</sub> conversion in dependence of time over F-Ag4N–Ag4S exposed to SO<sub>2</sub> at 450 °C. Conditions: NO, 1000 ppm; C<sub>3</sub>H<sub>6</sub>, 1000 ppm; O<sub>2</sub>, 8%; SO<sub>2</sub>, 100 ppm; balance gas, N<sub>2</sub>; GSHV, 14,000 h<sup>-1</sup>.

over the 8-wt% (or higher Ag loadings) Ag/Al<sub>2</sub>O<sub>3</sub> samples, the adsorption of  $NO_x$  turned to be preponderant and remarkable resistance to SO<sub>2</sub> could be obtained. Since the increase of Ag loading over alumina favored the formation of metallic silver, this could be explained that the increase of silver clusters provided more soft alkaline sites and promoted the adsorption of  $NO_x$ . It has been suggested in many literature that the reactions between N-containing organic species and  $ad-NO_x$  should be the final steps of  $NO_x$  reduction [5]. Since the oxidation of the Ncontaining organic species only by O<sub>2</sub> often easily leads to the formation of  $NO_x$ , the proportion between N-containing organic species and  $ad-NO_x$  should be quite important for effective NO<sub>x</sub> reduction. Ag<sup>+</sup> in both Ag<sub>2</sub>O and Ag<sub>2</sub>SO<sub>4</sub> has been found to be effective C<sub>3</sub>H<sub>6</sub>-SCR [9]. It is speculated that Ag<sup>+</sup> contributed to the partial oxidation of hydrocarbon reductants and metallic silver might be useful for providing ad-NO<sub>x</sub> (x = 0.5-3) species.

# 4. Conclusion

Although low loading Ag/Al<sub>2</sub>O<sub>3</sub> catalysts are effective to reduce NO<sub>x</sub> with propene above 400 °C, their activities are strongly suppressed by SO<sub>2</sub> in both thermal SCR and NTPassisted SCR. It was found effective to enhance SO<sub>2</sub> resistance by increasing the silver loading and controlling appropriate  $Ag/Ag^+$  over alumina. With the assistance of NTP, better performance in low temperature region was also obtained. Metallic silver should be in the role of soft alkaline and preferentially build bonds with NO in the presence of  $SO_2$ .

# Acknowledgements

This work was financially supported by Natural Science Foundation of China (Grant Nos. 20507012 and 20437010).

# References

- [1] R. Burch, J.P. Breen, F.C. Meunier, Appl. Catal. B 39 (2002) 283.
- [2] Th. Hammer, Th. Kappes, M. Baldauf, Catal. Today 89 (2004) 5-14.
- [3] C.L. Aardahl, R.T. Rozmiarek, K.G. Rappe, D.P. Mendoza, P.W. Park, in: Proceedings of the 13th International Congress on Catalysis, 11–16, July, 2004, Paris, France.
- [4] R. Burch, T.C. Watling, Appl. Catal. B 17 (1998) 131.
- [5] F.C. Meunier, J.R.H. Ross, Appl. Catal. B 24 (2000) 23.
- [6] Z. He, Theory of Hard–Soft Acid–Base in Organic Chemistry, Science Pulishing House, Beijing, 1987.
- [7] N. Bogdanchikova, F.C. Meunier, M. Avalos-Borja, J.P. Breen, A. Pestryakov, Appl. Catal. B 36 (2002) 287.
- [8] Y. Yu, H. He, Q. Feng, H. Gao, X. Yang, Appl. Catal. B 49 (2004) 159.
- [9] P.W. Park, C.L. Boyer, Appl. Catal. B 59 (2005) 27.