Catalysis Today 142 (2009) 215-219

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

MoO_x-based catalysts for the oxidative dehydrogenation (ODH) of ethane to ethylene Influence of vanadium and phosphorus on physicochemical and catalytic properties

N. Haddad^a, E. Bordes-Richard^b, A. Barama^{a,*}

^a Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, USTHB, BP32 El Alia, 16111 Bab Ezzouar, Alger, Algeria ^b Unité de Catalyse et de Chimie du Solide, UMR CNRS 8181, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France

ARTICLE INFO

Article history: Available online 4 November 2008

Keywords: Molybdenium oxides Vanadium oxides MoVPO oxides ODH ethane

ABSTRACT

The influence of vanadium and phosphorus on the physicochemical properties of the MoO_x oxide and on its catalytic properties in the oxidation of ethane to ethylene is examined. A series of MoO_x, MoVO_x (Mo/ V = 11) and MoVPO_x (Mo/V = 11, V/P = 1) catalysts were prepared, characterized by several techniques (BET, XRD, XPS, LRS and ATG) and studied in the oxidative dehydrogenation of ethane to ethene at atmospheric pressure and at the temperature of reaction of 550 °C. Their structural properties, during reduction and re-oxidation, were examined by in situ X-ray diffraction and by X-ray photoelectron spectroscopy after pre-treatment. The sample containing phosphorus is the most active (conversion ~14%) and selective to ethylene (SC₂H₄ = 67%). The formation of $[PMo_{11}VO_{40}]^{4-}$ is assumed during preparation, and its decomposition during calcination leads to well dispersed phosphate groups and improved interactions between Mo and V species. During the catalytic reaction Mo^{VI} is stabilised by means of solid solutions of V in Mo₅O₁₄ and in MoO₃ (V_xMo_{1-x}O_{3-x/2}). A synergetic effect between these two phases could be responsible for the best performance of Mo₁₁VPO_x as compared to those of MoO_x and Mo₁₁VO_x.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The light olefins are intensively used as intermediates in a large number of industrial syntheses like polymerisation, and ways to produce them are still welcome. The most known processes consist in operating by dehydrogenation at high temperature or oxidative dehydrogenation ODH [1]. Many formula have been studied during the last two decades, which are either based on alkali, alkaline-earth or rare-earth metal oxides [2,3], or on transition metal oxides [4,5]. Vanadium and molybdenum-based catalysts have been extensively studied in this reaction [6-8]. Mo-V-Nb mixed oxides [9], doped with Pd [10-12], or Ca [13], supported vanadium oxide [14,15], bi-doped VPO catalysts [16], were reported to be more or less active and selective in to ethene or to acetic acid. High yields to ethene of ca. 75% were obtained by using MoVNbTe catalysts [17,18]. Previously, the Mo₅O₁₄-type phase was found to be related with good performance in the selective oxidation of ethane to acetic acid. Roussel et al. [12] proposed that a synergetic effect between nanocrystals of $(VMONb)_5O_{14}$ and $V_xMo_{1-x}O_{3-x/2}$ is responsible for the high catalytic performance of this multicomponent MoVNb (Pd) oxide. In a former work we had examined the catalytic and structural properties of Mo-based species supported on alumina in ODH of ethane with O_2 as oxidant [19]. Here, we report on the catalytic and structural properties of unsupported molybdenum oxide catalysts modified by vanadium and phosphorus in the ODH of ethane.

2. Experimental

2.1. Preparation and characterization of catalysts

MoO_x, MoVO_x (Mo/V = 11) and MoVPO_x (Mo/V = 11, Mo/P = 11) solids (further noted Mo, Mo₁₁V and Mo₁₁VP, respectively) were prepared by adding (NH₄)₆Mo₇O₂₄·4H₂O, (NH₄)₂HPO₄ and NH₄VO₃ salts in stoichiometric amounts in aqueous solution [19]. The solid residue was dried in air at 100 °C and calcined in a flow (0.55 cm3 s⁻¹) of dry air at 400 °C for 16 h. Particles of catalyst were sieved to diameters of 180–355 μ m. The catalysts were characterized and tested as described in this Ref. [19].

^{*} Corresponding author. Tel.: +213 21 24 79 64; fax: +213 21 24 73 11. *E-mail address:* a_barama@yahoo.fr (A. Barama).

^{0920-5861/\$ –} see front matter \circledcirc 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.cattod.2008.09.015

In all experiments, the performances were evaluated by conversion, selectivity and yields calculated as follows:

$$C_2H_6 \text{ conv.}(\%) = \frac{\text{moles of } C_2H_6 \text{ converted } \times 100}{\text{moles of } C_2H_6 \text{ in feed}}$$

sel. of product(*i*)(%) = $\frac{\text{moles of product}(i) \times 100}{\text{moles of all formed}}$

Yield product (*i*) = conv. $C_2H_6 \times sel.$ (product *i*).

2.2. Physicochemical analyses

The specific areas of calcined Mo, $Mo_{11}V$ and $Mo_{11}VP$ samples (2–6 m²/g) are low. They are not affected by the catalyst composition nor catalytic test (Table 1).

The Mo, Mo₁₁V and Mo₁₁VP catalysts were analyzed by XRD before and after the catalytic reaction at 550 °C. All patterns of calcined samples showed the lines characteristic of orthorhombic α -MoO₃. In Mo₁₁VP and Mo₁₁V the lines of vanadium oxides and/ or of phosphorus oxides or of phases of the V–P–O system were absent in all calcined samples (Fig. 1). After catalytic reaction α -MoO₃ is again observed in all samples. However in the case of Mo₁₁VP catalyst, the lines characteristic of V_xMo_{1-x}O₂ ($x \le 0.33$) solid solution ($2\theta \sim 37.8$ and 54.3° besides lines assigned to MoO₂ and to the solid solution) are observed (Fig. 2).

The Raman spectra of fresh and used Mo, Mo₁₁V and Mo₁₁VP samples were recorded at room temperature (Figs. 3 and 4). Before reaction (Fig. 3), the spectrum is the same whichever the examined particles (except the relative intensity of lines which may be different) which means, in first approximation, that samples show the same phases but with different relative populations. All solids exhibit Raman lines at 995, 818, 667, 380, 288, 248 and 205 cm⁻¹ which are characteristic of α -MoO₃ [20]. Lines occurring at 995, 705, 531, 486, 408 and 308 cm⁻¹ in Mo₁₁V and Mo₁₁VP are assigned to bulk V_2O_5 [21]. As this oxide was not detected by XRD, its particles are smaller than 4 nm (limit detection of the XRD technique). After catalytic reaction (Fig. 4), V₂O₅ lines have disappeared from Mo₁₁V and Mo₁₁VP spectrum, and two additional lines appeared at 1007 and 945 cm^{-1} in the case of Mo₁₁VP. The line at 1007 cm^{-1} is assigned to terminal Mo = 0 in dehydrated Mo oxide [22]. According to Mestl [23,24] the line at 945 cm^{-1} is attributed to vibrations of Mo-O-V linkages. In their study of Mo-V-Nb-Pd-O catalysts, Roussel et al. showed that such vibrations could account for V-doped Mo₅O₁₄ and hexagonal or orthorhombic molybdenum oxides containing minor amounts of vanadium (e.g. $Mo_{1-x}V_xO_{3-x/2}$, x < 0, 2 [12]. Thus, it may be concluded that during the catalytic reaction, Mo and V interacted thereby forming mixed Mo–O–V phases like $Mo_{1-x}V_xO_{3-x/2}$.

The binding energies (BE) of Mo3d5/2, V2p3/2 and P2p photopeaks for catalysts calcined at 400 °C are reported in Table 2. The binding energy of Mo is 233.0 eV (Mo⁶⁺ in MoO₃) and the symmetry and small FWHM of the Mo signal do not allow to say that Mo⁴⁺ or Mo⁵⁺ are present in samples. On the contrary part of vanadium V⁵⁺ is reduced as V⁴⁺. The relative amounts of V⁵⁺ and V⁴⁺ obtained after photopeak decomposition are reported in Table 2. The values of M/ Mo (M = V, P) ratios were calculated for Mo₁₁V and Mo₁₁VP catalysts (Table 3). The theoretical formula, starting from the initial stoichiometry and considering that the oxidation state of vanadium may be (+V) or (+IV) is respectively Mo₁₁⁶⁺V₁⁵⁺O_{35.5} – Mo₁₁⁶⁺V₁⁴⁺O₃₅

Variation of the s	pecific surface	area of Mo-contain	ing catalysts.
--------------------	-----------------	--------------------	----------------

Catalyst	MoOx	Mo ₁₁ V	Mo ₁₁ VP
Fresh catalyst	2	5	6
Used catalyst	1	2	3

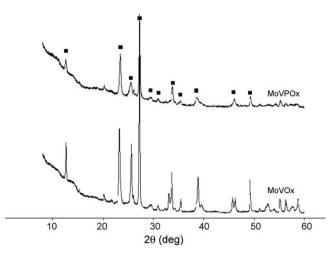
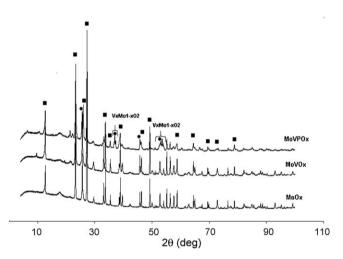



Fig. 1. XRD pattern of Mo₁₁V and Mo₁₁VP calcined at 400 °C; ■: MoO₃.

Fig. 2. XRD pattern of $Mo_{11}VP$, $Mo_{11}V$ and Mo after reaction at 550 °C; \blacksquare : MoO_3 , \bullet : $V_xMo_{1-x}O_2$.

for $Mo_{11}V$, and $Mo_{11}^{6+}V_1^{5+}P_1^{5+}O_{38} - Mo_{11}^{6+}V_1^{4+}P_1^{5+}O_{37.5}$ for $Mo_{11}VP$. In $Mo_{11}V$, the surface (≈ 100 nm depth analysis) amount of V is far lower than expected whereas it is normal in $Mo_{11}VP$. On the contrary P/Mo is higher (0.39 vs. 0.09), meaning that phosphorus is essentially localized on the $Mo_{11}VP$ surface and not in the bulk. The difference between the Mo/V ratios observed for $Mo_{11}V$ and $Mo_{11}VP$ reveals the influence of phosphorus on the surface composition. Indeed, the P addition to $Mo_{11}V$ solid results in an increase of surface vanadium (V/Mo = 0.09 for $Mo_{11}VP$ vs. 0.04 for

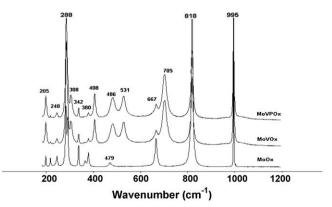


Fig. 3. Raman spectra of MoO_x, Mo₁₁V and Mo₁₁VP catalysts calcined at 400 °C.

Table 2 XPS results: binding energies of Mo-containing catalysts calcined at 400 °C

BE (eV)	Mo ⁶⁺	V ⁵⁺	V ⁴⁺	P ⁵⁺	O 1s
Мо	233.0	-	-	-	531.0
Mo ₁₁ V	232.9	517.4	516.4	-	531.0
Mo ₁₁ VP	233.0	517.4	516.4	134.3	531.0

Mo₁₁V), and contributes to stabilise a part of Mo in the bulk, which, otherwise, tends to diffuse towards the surface as generally observed in most Mo-based catalysts [12,25]. Possibly also, P has a slight effect on the oxidation state of V since V⁵⁺/V_{tot} increases from 0.87 in Mo₁₁V to 0.93 in Mo₁₁VP.

The structural properties of the solids during reduction by $H_2/$ N₂ and re-oxidation by air were studied by HT-XRD in the temperature range 25–550 °C (Figs. 5–8).

Two main types of diffraction pattern are observed during reduction depending on the composition of catalyst. By heating $Mo_{11}V$ in H_2/N_2 , MoO_2 characterised by lines at 2θ = 26.0, 37.0, 41.5, 53-54°, is formed above 500 °C, while no line of reduced vanadium oxide is observed (Fig. 5). In Mo₁₁VP, in addition to (V- MoO_2 lines (Fig. 6), new lines characteristic of Mo_5O_{14} -type structure appear at 550 °C. The presence of this phase is ascertained by the most intense diffraction at $d(\text{\AA})/2\theta^{\circ} = 3.99/$ 22.2 and 3.56/24.94 (JCPDS 31-1437). According to Dieterle et al. [26], the Mo₅O₁₄-type oxide crystallizes after thermal activation in a narrow temperature range between 530 and 550°. Monoclinic MoO_2 and orthorhombic V-doped MoO_3 ($Mo_{1-x}V_xO_{3-x/2}$) were additionally observed [12]. It suggests that the intermediate higher abundance of MoO₂-type oxide is related to the formation process of the crystalline Mo₅O₁₄-type material. Kihlborg reported that Mo₅O₁₄ can be generated by tempering the respective amounts of MoO₂ and MoO₃ during synthesis [27]. At 550 °C the lines assigned to MoO₃ almost disappeared.

After the reoxidation step, the main phase identified in Mo₁₁V above 400 °C is α -MoO₃. At this temperature, the lines of MoO₂ have completely disappeared (Fig. 7). The reoxidation of Mo₁₁VP at different temperatures (Fig. 8) leads to the disproportionation of the metastable Mo₅O₁₄-type phase into the thermodynamically stable phases MoO₂ and MoO₃ or $V_x Mo_{1-x}O_{3-x/2}$. This result is in agreement with Knobl et al. findings [28] who showed that the thermal treatment of doped- Mo_5O_{14} in inert atmosphere results in the formation of MoO_2 , while treatment in air leads to MoO₃.

The atomic ratios and the stoichiometry, obtained from the comparison of Mo3d, V2p, O 1s and P2p photopeaks in XPS are presented for calcined, reduced and reoxidised catalysts (Table 4).

During reduction of Mo₁₁V and Mo₁₁VP catalysts treated at 450 °C with diluted C₂H₆, both molybdenum and vanadium are mostly reduced to Mo⁵⁺ and V⁴⁺. The effect of the reduction step on the dispersion of Mo, V and P species is significant as shown by strong increases of V/Mo and P/Mo ratios. It means that, after reduction, Mo is slightly less present in the surface layers, or conversely that V and P are more present on the surface. In addition, the $V^{5+}/(V^{5+} + V^{4+})$ ratio decreases from 0.93 to 0.86 after

Table 3

XPS results: atomic ratios and stoichiometry of Mo-containing catalysts calcined at 400 °C.

Catalyst	Mo/V	Mo/P	V^{5+}/V_{tot}	Surface stoichiometry
Mo ₁₁ V ^a	24.4	-	0.87	$\begin{array}{c} Mo_{11} \ V^{5+}{}_{0.39} V^{4+}{}_{0.06} O_{31.03} \\ Mo_{11} \ V^{5+}{}_{0.93} V^{4+}{}_{0.07} P_{4.31} \ O_{40.14} \end{array}$
Mo ₁₁ VP ^b	11.0	2.55	0.93	

^a Bulk stoichiometry: between $Mo_{11}^{6+}V_1^{5+}O_{35,5}$ and $Mo_{11}^{6+}V_1^{4+}O_{35.}^{5-}$ ^b Bulk stoichiometry: between $Mo_{11}^{6+}V_1^{5+}P_1^{5+}O_{38}$ and $Mo_{11}^{6+}V_1^{4+}P_1^{5+}O_{37.5}^{5-}$

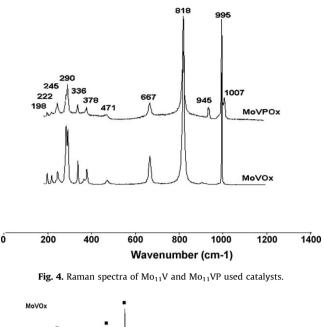
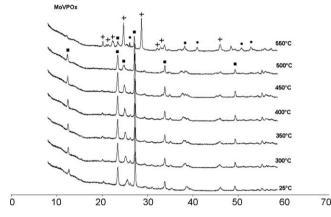


Fig. 5. XRD patterns of in situ reduction of Mo₁₁V in H₂/N₂ at various temperatures (■: MoO₃, ●: MoO₂).

calcination to 0.73-0.42 after reduction. The presence of P would decrease the reducibility of vanadium but increase the reducibility of molybdenum. Therefore, these results suggest that phosphorus is responsible for the migration of V towards surface and for partial inhibition of its reduction.

The reoxidation of reduced Mo₁₁V and Mo₁₁VP catalysts by O₂/ N_2 led to the complete reoxidation of Mo^{5+} to Mo^{6+} and V^{4+} into V^{5+} and to the migration of more P onto the Mo₁₁VP surface.

2.3. Catalytic properties


The catalytic activity of MoO_x , $Mo_{11}V$ and $Mo_{11}VP$ were examined in conditions of temperature, contact time and C₂H₆/ O₂ such that oxygen was not fully converted. The contribution of gas-phase initiated reactions was tested by conducting experiments using an empty-volume reactor. Ethane conversion was null, confirming that gas-phase reactions are negligible under our experimental conditions.

The molybdenum-based catalysts are active in the dehydrogenation of ethane to ethylene at 550 °C and $C_2H_6/O_2 = 1$ (Table 5). The ethane and oxygen conversions increase regularly along the Mo < MoV < MoVP series. Interestingly, the selectivity to ethylene increases at the expense of the selectivity to carbon oxides. The hydrocarbon cracking represented by formation of methane

Table 4

Atomic ratios and stoichiometry of alumina-supported Mo, MoV and MoVP catalysts obtained by in situ XPS analysis after: (a), calcination at 600 °C; (b) reduction by ethane at 450 °C; (c), reoxidation by air at 450 °C.

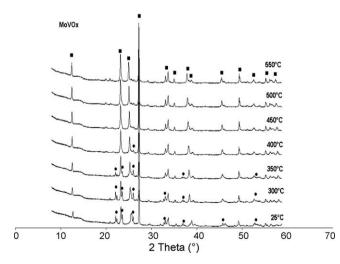
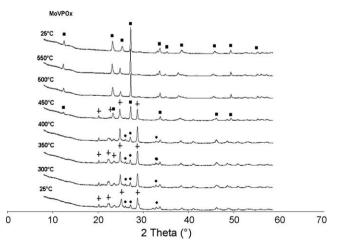

Catalyst	V/Mo	V/P	P/Mo	V^{5+}/V_{tot}	V ⁴⁺ /Mo	Surface stoichiometry
Mo ₁₁ VP						
a	0.09	0.23	0.39	0.93	0.006	$Mo_{11}V_{0.93}^{5+}V_{0.07}^{4+}P_{4.31}O_{.40.14}$
b	0.15	0.28	0.52	0.73	0.04	$Mo^{6+}_{8.93} Mo^{5+}_{2.07} V^{5+}_{1.23} V^{4+}_{0.44} P_{5.82} O_{44.02}$
с	0.10	0.17	0.63	1		Mo ₁₁ V ⁵⁺ 1.18 P _{6.98} O _{44.6}
Rappt theo	0.09	1.00	0.09			
Mo ₁₁ V						
a	0.040	-	-	0.86	0.005	$Mo_{11}V_{0.39}^{5+}V_{0.06}^{4+}O_{31.03}$
b	0.057	-	-	0.42	0.03	$Mo_{10.1}^{6+}Mo_{0.87}^{5+}V_{0.27}^{5+}V_{0.36}^{4+}O_{32.55}^{5+}$
с	0.06	-	-	1		$Mo_{11}V^{5+}_{0.66}O_{30.6}$
Rappt theo	0.09	-	-			

Fig. 6. XRD patterns of in situ reduction of $Mo_{11}VP$ in H_2/N_2 atmosphere at various temperatures (\blacksquare : MoO₃, \bullet : MoO₂, +: Mo₅O₁₄).


remains very low on all catalysts. The addition of vanadium to Mo (Mo/V = 11) clearly improves both ethane conversion and selectivity to ethene, the yield of ethene increasing from 0.43 to 4.6 mol%. This improvement is even more significant in the presence of phosphorus added to Mo₁₁V. The 8.8 mol% yield of ethene places Mo₁₁VP among the best catalysts for ODH of ethane in literature.

The enhancement of the catalytic properties of $Mo_{11}V$ upon addition of P could be related to the formation of a special active crystalline phase. Phosphorus is directly or indirectly responsible

Fig. 7. XRD patterns of in situ reoxidation of $Mo_{11}V$ in O_2/N_2 atmosphere at various temperatures (\blacksquare : MoO₃, \bullet : MoO₂).

for modifications of the reactivity of both Mo₁₁VP precursor and catalyst (i) during decomposition of the precursor, the stability of h-(V-Mo)O₃ oxide is improved, (ii) $Mo_{1-x}V_xO_2$ is observed by XRD in post-reaction samples, (iii) the reducibility of V⁵⁺ and Mo⁶⁺ are modified, and the relative surface amount of V is higher than for $Mo_{11}V$ (XPS), and finally (iv) (V-Mo)₅O₁₄ phase is formed during in situ XRD reduction. However, phosphorus as a phosphate group cannot enter these lattices without collapse of the respective structures. The only possibility would be the formation of VOPO₄ or related VPO (MoPO) phases, not detected by any method of analysis, but that could be present as microdomains. The chosen initial Mo11VP stoichiometry was expected to result in the formation of the $[PMo_{11}VO_{40}]^{4-}$ polyanion, and although the mixture was too basic to allow for the crystallisation of the ammonium salt, we assume that at the nanoscale such heteropolyanions could be present. Contrary to the case of Mo and Mo₁₁V where the interaction of Mo and V is not favoured, the dispersion of vanadium and phosphorus among molybdenum species during the decomposition of [PMo11VO40] results in an intimate mixture favouring the formation of mixed Mo-V phases and the stabilisation of Mo⁶⁺ species. Moreover, the precursors were deliberately calcined at a temperature (400 °C) lower than the reaction temperature (here 550 °C). The result is that, while facing the reacting mixture ethane/oxygen, the calcined solids undergo complement transformations (equilibration) as shown by the formation of (Mo,V)₅O₁₄. According to Banares et al. [29], such interactions are evident in used catalysts since lattice oxygen

Fig. 8. XRD patterns of in situ reoxidation of $Mo_{11}VP$ in O_2/N_2 atmosphere at various temperatures (\blacksquare : MoO_3 , \bullet : MoO_2 , +: Mo_5O_{14}).

Table 5	
Catalytic data obtained during the oxidation of C2H6. Operating conditions: $T = 550 \degree C$, $C_2H_6/O_2 = 1$, $\tau = 0.9s$.	

Catalyst	C ₂ H ₆ conv. (%)	O ₂ conv. (%)	Selectivity % (yield %)		
			C ₂ H ₄	CH ₄	CO + CO ₂
MoO _x	4.6	34.8	9.5 (0.44)	1.3	89.2
Mo ₁₁ V	8.7	49.8	52.9 (4.60)	3.6	43.5
Mo ₁₁ VP	14.3	57.6	67.7 (8.80)	1.8	30.5

mobility during the catalytic redox cycle promotes the interaction between, here, Mo and V species. Phosphate groups could also limit the size of excess MoO₃ domains, thereby stabilising them and hindering the volatility of MoO₃ (as Mo⁶⁺ hydrates).

From the catalytic point of view, the strong acidity of phosphate groups and of the higher amounts of vanadium present on the surface (XPS) of Mo₁₁VP should influence the catalytic surface. Apart from a possible "site isolation" effect exerted on vanadium (molybdenum) sites, phosphate groups are suitable for adsorption of water which is formed besides ethene vanadium sites are more active than Mo sites because of their reducibility, and interact in a better way with ethane. The result is an increase of activity. It is worthwhile to recall that a similar behaviour has been observed with MoVNbO_x system for ethane oxidation to acetic acid and ethene [11,12]. In that system, the enhancement of catalytic activity and selectivity has been related also to the presence more numerous vanadium sites, and the stabilisation of Mo⁶⁺ by the formation of (V-Nb-Mo)₅O₁₄type microdomains. In a similar way, a synergetic effect between these structurally related oxides could be responsible for the high activity of Mo11VPO_x when compared to MoO_x and $Mo11VO_x$ catalysts.

3. Conclusion

This work was devoted to the study of Mo-based catalysts differing by the nature of additive for the oxidative dehydrogenation of ethane to ethylene. Whereas MoO_x is poorly active at relatively low temperatures, its catalytic activity is enhanced when vanadium $(Mo_{11}V)$ and even more when phosphorus $(Mo_{11}VP)$ are added. This enhancement could be due to a different structure of the studied catalysts made up of MoO₃ particles and θ -Mo₅O₁₄type oxide doped with a minor amount of vanadium. This surface structure would be better prepared when a [PMo₁₁V] heteropoly anion is formed during synthesis because its decomposition favours further intimate interactions between Mo and V species. Equilibration on stream of the calcined catalysts also promotes such interactions. Therefore, we suggest that synergistic effects between these structurally related oxides could be responsible for the enhanced catalytic performance of Mo₁₁VP.

References

- [1] K. Nakagawa, C. Kajita, K. Okumura, M. Na-okilkenaga, T. Nishitani-Gamo, T. Ando, T. Kobayashi, Suzuki, I. Catal, 203 (2001) 87-93.
- W. Ueda, S.W. Lin, I. Tohmoto, Catal. Lett. 44 (1997) 241.
- S. Wang, K. Murata, T. Hayakawa, S. Hamakawa, K. Suzuki, Stud. Surf. Sci. Catal. [3] 130 (2000) 1829.
- Y. Schuurman, V. Ducarme, T. Chen, W. Li, C. Mirodatos, G.A. Martin, Appl. Catal. A [4] 163 (1997) 227.
- [5] F. Cavani, N. Ballarini, A. Cericola, Catal. Today 127 (1-4) (2007) 113.
- K. Wada, H. Yamada, Y. Watanabe, T. Mitsudo, J. Chem. Soc., Faraday Trans. 94 [6] (1998) 1771.
- F.C. Meunier, A. Yasmeen, J.R.H. Ross, Catal. Today 37 (1997) 33.
- P. Ciambelli, P. Galli, L. Lisi, M.A. Massucci, P. Patrono, R. Pirone, G. Ruoppolo, G. [8] Russo, Appl. Catal. A 203 (2000) 133.
- K. Ruth, R. Burch, R. Kieffer, J. Catal. 175 (1998) 27.
- [10] D. Linke, D. Wolf, M. Baerns, O. Timpe, R. Schlögl, S. Zeyß, U. Dingerdissen, J. Catal. 205 (2002) 16. ibid., 32.
- [11] M. Bouchard, M. Roussel, E. Bordes-Richard, K. Karim, S. Al-Sayari, Catal. Today 99 (2005)77.
- [12] M. Roussel, M. Bouchard, K. Karim, S. Al-Sayari, E. Bordes-Richard, Appl. Catal. A: Gen. 308 (2006) 62-74.
- F.G. Young, E.M. Thorsteinson, US Patent No. 4250346 (1981). [13]
- [14] B. Sulikowski, A. Kubacka, E. Wloch, Z. Schay, V. Cortés Corberan, R.X. Valenzuela, Stud. Surf. Sci. Catal. 130 (2000) 1889.
- [15] D.I. Enache, E. Bordes-Richard, A. Ensuque, F. Bozon-Verduraz, Appl. Catal. A: Gen. 278 (2004) 93. ibid., 103.
- [16] J.M. Lopez Nieto, V.A. Zazhigalov, B. Solsona, I.V. Bacherikova, Stud. Surf. Sci. Catal. 130 (2000) 1853.
- T. Katou, D. Vitry, W. Ueda, Catal. Today 91/92 (2004) 237. [17] J.M. López-Nieto, P. Botella, P. Concepció, A. Dejoz, M.I. Vásquez, J. Catal. 209 [18]
- (2005) 445[19]
- N. Haddad, E. Bordes-Richard, L. Hilaire, A. Barama, Catal. Today 126 (2007) 563.
- [20] C. Stinner, R. Prins, Th. Weber, J. Catal. 191 (2000) 438. D.A. Morris, C. Kaidong, A.T. Bell, E. Iglesia, J. Catal. 208 (2002) 139. [21]
- [22]
- R. Iwamato, J. Grimblot, Adv. Catal., vol. 44.
- G. Mestl, J. Raman Spectrosc. 33 (2002) 333. [23]
- G. Mestl, T.K.K. Srinivasen, Catal. Rev. Sci. Eng. 40 (1998) 451.
- Y.L. Leung, B.J. Flinn, P.C. Wong, K.A.R. Mitchell, K.J. Smith, Appl. Surf. Sci. 125 (1998) 293-299.
- [26] M. Dieterle, G. Mestl, J. Juchida, H. Hibst, R. Schlögl, J. Mol. Catal. A: Chem. 174 (2001) 169.
- L. Kihlborg, Arkiv Kemi 21 (1963) 427. [27]
- S. Knobl, G.A. Zenkovets, G.N. Kryukova, O. Ovsitser, D. Niemeyer, R. Schlögl, G. [28] Mestl, J. Catal. 215 (2003) 177.
- [29] M.A. Banares, S.J. Khatib, Catal. Today 96 (2004) 251.