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bstract

Model-fitting methods that are exercised till date for evaluating the optimum overall pyrolysis kinetics parameters usually applied traditional
radient base optimization techniques but associated with major drawback of attaining global optimum due to uncertainties in selection of initial
uess. To overcome such uncertainties and drawbacks, we have, applied the modern evolutionary optimization method (hybrid genetic algorithms
HGA) technique) for 15 models to attain the globally optimum kinetics parameters using the experimental thermogravimetric analysis (TGA)
ata and we did compare the experimental and simulated data to expect the possible mechanism to occur during pyrolysis. As case studies, we
sed thermal decomposition of waste polyethylene terephthalate (PET), waste low-density polyethylene (LDPE) and polypropylene (PP). The

uitability of the models is also tested using the AICc score. Nucleation and growth model with reaction order, n = 2/3 is the best suited one and
t also predicted the experimental TGA data successfully. The nth order model also shows good AICc score and well predicted the experimental
GA data.
2007 Elsevier B.V. All rights reserved.

-den

m
e
a
o
r
h
m
a
r
o
t
a
V

eywords: Hybrid genetic algorithm; Kinetics parameters; Polypropylene; Low

. Introduction

Polymer decomposition phenomena can be described by a
et of series or parallel chemical reactions via random scission
echanism, chain scission mechanism, etc. thermogravimetric

nalysis (TGA) is widely used technique to study such decompo-
ition of polymer. Pyrolysis kinetics of plastics is important for
he proper selection of reactor, optimization of the reactor design
nd operating condition. The correctness of the kinetics expres-
ion heavily depends upon reliable evaluation of activation
nergy from the decomposition behaviour under different condi-
ions of temperature and/or environment. In most of the reported
iteratures, model-fitting methods are applied to evaluate pyroly-

is kinetics parameters using single heating rates and traditional
eaction models, but the traditional model-fitting kinetics anal-
sis using single heating rates and single-step decomposition
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sity polyethylene; Polyethylene terphthalate

odel gives only a single set of kinetics triplet, which is
stimated after minimizing deviation between simulated data
nd experimental data. However, International Confederation
f Thermal Analysis and Calorimetry (ICTAC) project, 2000,
uled out the validity of thermal kinetics analysis using single
eating rate [1]. Modern model-fitting thermal kinetics analysis
ethods use multi-heating rates, take care of multi step reactions

nd incorporate possible partial diffusion, back reaction, branch
eaction, etc. in the model equations [2–6]. Still the selection
f appropriate model [1–11], oversimplified approximation of
emperature integral [4], and initial guess of kinetics parameters
re major drawbacks of model-fitting methods [3]. Recently,
yazovkin model-free kinetics technique has extensively been

pplied for many complex reaction processes to obtain reliable
nd consistent kinetics information about the overall process
12–21]. Apart from this, isoconversion method presents a com-
romise between the single-step Arrhenius kinetic treatments

nd the prevalent occurrence of processes whose kinetics are
ulti-step or non-Arrhenius [18–19]. However, information on

ctivation energy is useless without a method of calculation
f kinetics curves. For description of multistage processes, the
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se of model-fitting methods is unavoidable [7]. Since poly-
er decomposition is a complicated process, serious doubts

rise about an accurate description of decomposition kinetics
y using simplified equations expressing a rate of the process
nly via mass loss [9]. Therefore, in absence of prior infor-
ation about real kinetic mechanism, the reaction model can

e chosen from a set of well-known reaction models to fit
xperimental data usually done in model-fitting techniques. In a
umber of cases, it is possible that the obtained kinetics triplet
escribes the rate-limiting step of the decomposition process
nd recommended that this approach is acceptable for chemi-
al engineering applications [1–11]. It is worth mentioning that
good fit of experimental results is only one criterion, but it

hould not be the unique one [10]. Further analysis involving
nfrared or mass spectroscopy, morphology study using SEM
r TEM during decomposition can be useful in order to obtain
ore information about processes involved.
In view of these, application of genetic algorithm (GA)

r hybrid genetic algorithm (HGA) to overcome the above-
entioned drawback of model-fitting method for the estimation

f kinetics parameters has attracted interest in chemical engi-
eering, chemistry, and other fields [22–27]. GA, based on
atural selection, repeatedly modifies a population of indi-
idual solutions. Over successive generations, the population
evolves” toward an optimal solution. GA is considered to have
etter global optimizing properties than other heuristic opti-
ization techniques, especially, in the case of discontinuous,

on-differentiable, stochastic, and highly non-linear problems
aving large search spaces with many local extrema [22–31].

Therefore, in the present work, we have reported pyroly-
is kinetics of polypropylene (PP), low-density polyethylene
LDPE) and polyethylene terephthalate (PET) for different
eating rates employing the HGA technique to get the glob-

lly optimum overall kinetics parameters (activation energy, E;
re-exponential factor, k0; reaction model) [7–9] using direct
ntegration technique of temperature integral. In this approach,
A is used to provide initial guess for the local optimization

h
a
a
o

able 1
xperimental conditions for TGA studies

ample Non-isothermal experiments

Initial mass (mg) Heating rate (K min−1) Tem

aste
DPE

7.76 5 303–
8.43 10 303–

11.19 15 303–
8.66 20 303–

10.96 25 303–

aste
ET

7.80 5 303–
8.12 10 303–
9.36 15 303–
9.52 25 303–

P 19.77 5 303–
20.32 10 303–
20.67 15 303–
19.78 20 303–
19.41 25 303–
ng Journal 138 (2008) 20–29 21

lgorithm (LOA), the direct search method used in the present
ork. Fifteen different physico-chemical models available from

iteratures are used coupled with HGA to find out the best one
hat predicts the experimental data well. In addition to that,
kaike’s Information Criteria (AIC) [11,32] is also applied

o choose the most appropriate reaction model. The 15 reac-
ion models used are based on nucleation and growth, phase
oundary reaction, diffusion, power law and chemical reac-
ion models with different values of the order of the reaction,
[2–9,13,15]. Thus, applying HGA (possibly first time in poly-
er decomposition) in the present work, we tried to establish the

eaction mechanism involved during thermal decomposition of
lastic samples mentioned above and correspondingly reported
he globally optimized kinetics parameters. The present work
xploits the advantages of GA to overcome the limitation of
odel-fitting methods generally used to find the kinetic param-

ters, where initial guess of kinetics parameters are the major
rawbacks.

. Experimental [6,11,17,20,21]

The non-isothermal decompositions were carried out for
aste PET soft drink bottles, waste LDPE, and PP (polypropy-

ene homopolymer (PPHP), trade name: Koylene ADL, Grade
S030N) supplied by Indian Petrochemicals Corporation Lim-

ted, Vadodara, India, with melt flow index 3.0. Experiments
ere carried out in a TGA instrument of Mettler TOLEDO with
odel no. TGA/SDTA 851e under nitrogen environment for a

ange of temperature 303–875 K. Nitrogen flow rate was main-
ained at 40–50 ml min−1 according to the specification of the
quipment. All samples were shredded into very small pieces
nd directly fed to the TGA instrument. Thermal decomposition
xperiments were conducted in dynamic condition at different

eating rates. The experiments were repeated three times at
heating rate of 10 K min−1, to confirm the repeatability and

uthenticity of the generated data for all cases. The deviations
bserved are very little. However, the deviations are reported in

perature range (K) Residue (%) Tw0/Td/Tm/Tw∞ (K)

873 2.02 551.1/621.3/734.2/805.5
873 1.92 551.3/634.3/748.4/800.4
873 2.29 549.0/648.2/754.0/800.4
873 2.35 549.4/646.8/763.3/802.5
873 1.23 576.5/680.2/770.4/809.6

873 11.59 622.0/642.1/700.2/784.6
873 13.56 623.2/653.2/710.4/785.1
873 14.84 623.1/661.4/720.6/782.7
873 14.13 623.8/671.8/734.8/786.1

873 1.49 533.6/596.9/706.8/773.9
873 0.88 526.9/670.0/723.07/749.8
873 0.51 527.8/684.6/731.4/777.6
873 0.73 527.5/684.8/736.8/770.2
873 0.70 527.1/696.6/742.9/785.7
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Table 2
Characteristics of samples (LDPE, PET and PP)

Sample
type

Melting
point
(◦C)

Melting point of
standard PE
samples [33] (◦C)

Heat of
fusion
(J g−1)

Heat of fusion,
100% crystallinity
(J g−1)

Degree of
crystallinity
(%)

Crystallinity of
standard PE samples
[33] (%)

Purity (residual amount
after TGA experiment up
to 600 ◦C) (%)
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aste LDPE 128.7 LDPE: 98–120 38.37 290
aste PET 246.55 PET: 267 46.85 115

P 175.69 PP: 165–171 62.38 190

erms of average relative deviation,

RD (%) = 100

N

N∑
i=1

∣∣∣∣∣
x

exp
i − xav,i

xav,i

∣∣∣∣∣ ,

here x
exp
i and xav,i are the experimental values of the

ariables (temperature and normalized mass) and average val-
es of the variables, respectively, and i is the number of
ata points for each experiment. Results show that ARD%
s 0.009–0.021, 0.051–0.119, 0.005–0.019 (for temperature),
.09–0.257, 0.865–2.457, and 0.041–0.1579 (for mass) of waste
ET, waste LDPE, and PP, respectively. Further details of the
xperimental procedure are described in our published litera-
ures [6,11,17,20–21]. Experimental conditions for TGA studies
re given in Table 1. Properties of the polymers used for the
resent study are presented through Table 2.

. Kinetics analysis

.1. Multi-heating rates model-fitting method for
on-isothermal experiments [1–11]

The kinetics model equations combined with the Arrhe-
ius approach of the temperature function of reaction rate is
xpressed as:

dα

dt
= k0 exp

(−E

RT

)
f (α) (1)

here t is time (given in min), T the temperature (given in
), α the conversion of the reaction [α = (W0 − W)/(W0 − W∞),
here W0 is the initial weight of the sample, W the sam-
le weight at any temperature T and W∞ is the final sample
eight all sample weight given in milligrams)], d�/dt the

ate of reaction (expressed in units of min−1), and f(α) is
he reaction model. The terms k0, which represents the pre-
xponential factor (expressed in units of K−1), and E, which
s the activation energy (expressed in units of kJ mol−1), are
he Arrhenius parameters. R is the universal gas constant
expressed in units of kJ mol−1 K−1). The reaction model may
ake various forms based on nucleation and nucleus growth,
hase boundary reaction, diffusion, and chemical reaction
2–9,13,15]. In the present investigation, we have applied 15
uch well-known models for estimating the best fitted over-

ll kinetics parameters (pre-exponential factor, k0; activation
nergy, E) except nth order reaction model, where we have
btained the best fitted kinetics triplet (order of chemical reac-
ion, n; pre-exponential factor, k0; activation energy, E) using

a

A

23.95 LDPE: 50–70 Non-isothermal: 1–2
40.74 – 10–15
32.83 82 0.67–1.4

ingle-step and multi-heating rates for all the three types of
olymers.

At a constant heating rate under non-isothermal conditions
he explicit temperature/time [11,13], dependence in Eq. (1) is
liminated through the trivial transformation

dα

dT
= k0 exp

(−E

RT

)
f (α) (2)

here β = dT/dt is the heating rate (K min−1) and dα/dT is rate
f reaction (K−1).

For each step Eq. (2) can be integrated as

(α) =
∫ α

0

dα

f (α)
=

(
k0

β

) ∫ T

0
exp

(−E

RT

)
dT

=
(

k0

β

)
I(E, T ) = x (3)

nd

(E, T ) =
∫ T

0
exp

(
− E

RT

)
dT (4)

or example, the nth order and first order kinetic model equa-
ion can also be solved by substituting k0/β = exp(K̃0), where

0 − ln(β) = K̃0 and k0 = exp(K0) and transforming Eq. (3)
s follows.

For n �= 1,

α = 1 − [(exp(K̃0))I(E, T )(n + 1) + 1]1/(n−1) (5)

or n = 1, α = 1 − exp[−(exp(K̃0))I(E, T )] (6)

he temperature integral (Eq. (4)) can be evaluated by sev-
ral popular approximations and direct numerical integration as
eported in our recent publications [11,17,20–21]. We used the
echnique of direct numerical integration [20–21] for the same,
here the temperature integral takes the form

(E, T ) =
∫ T

0
exp

(
− E

RT

)
dT

E

R

[
exp(−u)

(u)
− Ei(u)

]
(7)

here u = E/RT and Ei(u) = ∫ ∞
u

(exp(−u)/u) du.
Details of development of Eq. (7) and numerical procedure

ave been discussed in our recent publication [20].
Akaike’s Information Criteria [11,32], discussed below, is
lso applied to choose the appropriate reaction model.

IC = N ln

(
SS

N

)
+ 2K (8)
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here N is number of data points, K the number of parameters
lus one and SS is sum of square of the difference between the
alculated mass and experimental mass.

The corrected AIC for small number of data points is obtained
rom

ICc = AIC + 2K(K + 1)

N − K − 1
(9)

he model with the lower AICc score is the model more likely
o be correct [11,32].

.2. Multi-parameter optimization

The objective function most frequently used in case of mul-
iple heating rates of TGA curves to calculate optimum values
f �(E, K0, n) for total J data points and total L heating rates by
inimization of square of deviation between experimental mass

MExp(T)] and calculated mass [MCal(T)] is given by Eq. (10).

(E, K0, n) =
L∑

l=1

⎡
⎣ J∑

j=1

[MExp,l,j − MCal,l,j]

⎤
⎦

2

(10)

here j and l denote the data point and heating rate, respectively.
The values of Mcal(T) calculated for each single value of αl,j

re as follows:

Cal,l,j = MExp,l,0 − αl,j(MExp,l,0 − MExp,l,∞) (11)

here MExp,l,0 is the initial is point and MExp,l,∞ is the final
oint of lth heating rate. However, in the present work, all mod-
ls except nth order reaction model involved two parameters
ptimization since in those models E, K0 values are optimized
or different fixed values of n.

The calculated optimum values are completely dependent
n the model used and can greatly differ for different mod-
ls for all traditional model-fitting kinetics analysis techniques
7–11]. Moreover, this multi-parameter optimization strongly
epends on the initial guess values of the parameters [2,3,11]
eading to possibility of achieving false minima, thus, resulting
n unreliable values of the parameters. Therefore, in the present
ork, hybrid genetic algorithm, discussed later, in MATLAB
sing ‘fminsearch’ as hybrid local search method in GA tool-
ox, is used for the objective function [Eq. (10)] minimization.
ere, GA is used to provide initial guess values of the kinetics

riplet (activation energy, pre-exponential factor and reaction
rder) for the local optimization algorithm, the direct search
ethod.

.3. The structure of a hybrid genetic algorithm [22–31]

GA employs a probabilistic approach and has better global
ptimizing properties but shows poor convergence to optimality.
hereas, HGA using a typical basic GA with elitist strategy to
each near gradient or/direct-based search method shows faster
onvergence to global optima. Therefore, often GA is hybridized
sing a LOA to improve its performance as a global optimization
echnique while overcoming the limitations of poor conver-

fi
o
1
t

ng Journal 138 (2008) 20–29 23

ence and weak exploitation capabilities. The various kinds of
ybridizations using LOA can be classified into three types.

.3.1. Pre-hybridization [30]
Here the initial population of GA is generated using an LOA

educing the solution space for GA and improving the efficiency.
uch an approach seems to be well suited to the specific problem

hey addressed and does not seem to be suitable for general
ptimization.

.3.2. Organic-hybridization [30]
In this case, an LOA is used as one of the operators of GA for

mproving each member of the population in each generation.
hough the organic-hybridization is computationally more effi-
ient than a GA, it offers little assurance of global minima and
lso lacks proper convergence criteria.

.3.3. Post-hybridization [30]
In this case, GA is used to provide an initial design for LOA.

his kind of hybridization seems to be the best way of combining
he best characteristics of the two approaches as no compromise
s made on the global and local optimizing characteristics.

.4. Structure of HGA used for the present work [31]

In the present work, we have used post-hybridization method,
.e. GA coupled with LOA. We have used the default initial
opulation size (20), the default creation function ‘Uniform’ to
reate a random initial population with a uniform distribution,
he stochastic options from the GA toolbox that chooses par-
nts for the next generation, Gaussian function for mutation,
cattered function for the next generation, forward migration
ption for the movement of individuals between subpopula-
ions, default value of migration fraction (0.2) for migration of
ndividuals between subpopulation, value of interval as 20, i.e.

igration between subpopulations takes place every 20 genera-
ions, multidimensional unconstrained non-linear minimization
unction ‘fminsearch’ as the hybrid function that uses the final
oint from the genetic algorithm as its initial point, and specified
nly the number of generation as stopping criteria.

The optimized kinetics triplet obtained by the above-
onfigured HGA showed pretty good prediction of the
xperimental TGA decomposition data. However, further
mprovement on the HGA configuration can be made through
ptimization of configuration through several runs, for present
ases we have consider 20 runs for each model and we have taken
ost appropriate values of triplets/doublets from those runs.

. Results and discussion

.1. Pyrolysis kinetics analysis

Pyrolysis of the PP and LDPE samples were carried out at

ve different heating rates (5, 10, 15, 20, and 25 K min−1) and
f PET sample was carried out at four different heating rates (5,
0, 15, and 25 K min−1). The temperature at which α = 0 (Tw0),
he temperature at which decomposition starts and α ≈ 0.1 (Td),
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Fig. 1. Variation of conversion (α) with temperature during non-isothermal
pyrolysis of waste LDPE sample at multiple heating rates.
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t
sis of all three plastics by GA coupled with LOA, fminsearch
ig. 2. Variation of conversion (α) with temperature during non-isothermal
yrolysis of waste PET sample at multiple heating rates.

he temperature at which the maximum weight loss rate occurs

Tm), and the temperature at the end of the pyrolysis step (Tw∞)
re reported in Table 1 for each case of experiments. Figs. 1–3
epresent α versus T curves for pyrolysis of LDPE, PET and PP,

ig. 3. Variation of conversion (α) with temperature during non-isothermal
yrolysis of PP sample at multiple heating rates.

(
m
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F
d

ig. 4. Variation of rate of decomposition (dα/dT) with average temperature
uring non-isothermal pyrolysis of waste LDPE sample at multiple heating rates.

espectively, at several heating rates. It is observed from the fig-
res that the curves show constant pattern behaviour at different
eating rates. A quick thermal decomposition is observed in the
ange of Td to Tw∞ (Figs. 1–3) and the highest decomposition
ate is observed at ∼Tm (Figs. 4–6), as reported in Table 1. After
his quick increase, the solid continues to decompose smoothly
nd slowly until the end of the experiment. Higher heating
ate finishes the decomposition phenomenon faster. The ther-
al decomposition behaviour of all of samples is almost similar,

xcept for a difference in Tm. The constant pattern behaviour is
ttributed to the fact of similar reaction mechanism, which is the
asis of multi-heating rate approach for kinetics analysis [7-21].
igs. 4–6 represent the dα/dT versus T (derivative thermogravi-
etric) curves for pyrolysis of waste LDPE, waste PET, and PP,

espectively, at several heating rates. We can clearly notice the
ingle peak in all the curves. This is because we had approx-
mated it as a single-step reaction taking place and found out
he single-step overall kinetics triplet (E, K0 and n) for pyroly-
HGA) applying all 15 models as mentioned in Table 3 using
ulti-heating rates. It is worth mentioning here that the single

eaks that are observed in Figs. 4–6 do not necessarily indicate

ig. 5. Variation of rate of decomposition (dα/dT) with average temperature
uring non-isothermal pyrolysis of waste PET sample at multiple heating rates.
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Fig. 7. Comparison between simulated (using HGA predicted kinetics triplet)
and experimental mass loss during non-isothermal pyrolysis of LDPE at five
different heating rates for nucleation and growth (n = 2/3) model (experimental
data and simulated data).
ig. 6. Variation of rate of decomposition (dα/dT) with average temperature
uring non-isothermal pyrolysis of PP sample at multiple heating rates.

single-step reaction that is occurring during pyrolysis. The ini-
ial guesses are taken from the GA. The kinetics triplet data and
he standard deviations, obtained from HGA based on 15 best
ata points for all the models and all types of plastics used are
eported through Tables 3–5.

.2. Prediction of experimental TGA data

As already discussed, AICc scores help to identify the bet-
er reaction model for pyrolysis study. Lower the AICc scores
or a reaction model, more correct is the model representing
he system [11,32]. Therefore, the kinetics triplets (Tables 3–5)
btained by HGA method employed in the present study are used
n simulation to calculate the ACIc scores for all the 15 models
onsidered. The AICc scores for all the models and the integral

orm of all kinetics models are presented in Table 6. It is observed
rom Table 6, for all the three plastics used, that the AICc
core is minimum for nucleation and growth model with n = 2/3.
he nth order and first order models also show encouraging

able 3
verage values of kinetic parameters for waste LDPE

inetic models Order E (kJ mol−1) S.D. in E (kJ mol−1) K0 S.D.

ucleation
nd
rowth

n = 1/4 148.14 5.16E−06 23.01 3.75E−15
n = 1/3 151.44201 2.77E−06 23.53623 7.40E−15
n = 1/2 166.67 0 26.02636 7.42E−15
n = 2/3 189.06 2.94E−14 29.70 0

hase
ound-
ry
eac-
ion

n = 1 (plate) 69.17697 0 8.56174 0
n = 2 (cylinder) 88.0816 0 11.46703 3.61E−15
n = 3 (sphere) 106.76425 1.59E−14 14.38751 0

iffusion n = 1 (plate) 161.35968 0 22.8995 7.35E−15

ower
aw

n = 1/4 7.06097 0 −3.00337 0
n = 1/3 12.37652 0 −1.84356 0
n = 1/2 24.86678 3.71E−15 0.6511 1.16E−16
n = 3/2 115.36091 4.41E−14 16.20774 2.58E−06

hemical
eac-
ion

n = 1, 1st order 246.2922
n = 2, 2nd order 337.9255
n = n, nth ordera 242.425

a n = 0.949, S.D. = 0.002917.

Fig. 8. Comparison between simulated (using HGA predicted kinetics triplet)
and experimental mass loss during non-isothermal pyrolysis of PET at four
different heating rates for nucleation and growth (n = 2/3) model (experimental
data and simulated data).
2.93609E−06 39.045 4.8349E−07
5.83201E−14 54.5665 7.29001E−15
0.1680986 38.385 0.02892788
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Table 4
Average values of kinetic parameters for waste PET

Kinetic models Order E (kJ mol−1) S.D. in E (kJ mol−1) K0 S.D. in K0

Nucleation and growth

n = 1/4 134.8427 0 21.7678 7.29E−15
n = 1/3 137.9391 2.92E−14 22.2816 1.0935E−14
n = 1/2 152.231 5.83E−14 24.728 3.65E−15
n = 2/3 173.3451 3.08E−05 28.3564 0

Phase boundary reaction
n = 1 (plate) 51.49 9.96E−07 5.79 1.74E−07
n = 2 (cylinder) 71.05 1.06E−06 9.01 1.82E−07
n = 3 (sphere) 87.50 1.32E−06 11.70 2.20E−07

Diffusion n = 1 (plate) 119.777 2.95E−14 16.7591 3.69E−15

Power law

n = 1/4 4.7957 1.82E−15 −3.4669 4.56E−16
n = 1/3 9 1.78E−18 −0.0025 4.46E−19
n = 1/2 85.53 1.32E−06 11.70 2.26E−07
n = 3/2 18.6717 2.24E−05 −0.3978 1.139E−16

C
n = 1, 1st order 227.0584 5.83201E−14 37.5614 1.458E−14
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hemical reaction n = 2, 2nd order 309.8
n = n, nth ordera 225

a n = 0.969, S.D. = 0.004693.

cores. But, according to the AICc criteria, the nucleation and
rowth model with n = 2/3 is likely to be the best of all the 15
odels for the all the polymers (LDPE, PET and PP) used in the

resent study. Thus, the pyrolysis kinetics equation was simu-
ated using globally optimized kinetics triplet for all the three
eaction models (nucleation and growth model with n = 2/3, first
rder and nth order reaction model) to predict the experimental
GA data. Figs. 7–9 show prediction of the experimental TGA
ata by nucleation and growth model with n = 2/3 for differ-
nt heating rates. It is observed from the figures that nucleation
nd growth (n = 2/3) model successfully predicted the experi-
ental TGA data particularly for LDPE and PET samples. In

ase of PP samples, it is observed that there is a significant devia-

ion between experimental and predicted (nucleation and growth

odel (n = 2/3)) data. From the agreement of nucleation and
rowth model (n = 2/3), particularly for waste LDPE and waste

a
t
a

able 5
verage values of kinetic parameters for waste PP

inetic models Order E (kJ mol−

ucleation and growth

n = 1/4 122.031
n = 1/3 123.0691
n = 1/2 131.9114
n = 2/3 146.6868

hase boundary reaction
n = 1 (plate) 61.48
n = 2 (cylinder) 85.3717
n = 3 (sphere) 104.5035

iffusion n = 1 (plate) 146.1213

ower law

n = 1/4 132.9115
n = 1/3 127.2946
n = 1/2 20.8227
n = 3/2 104.3377

hemical reaction
n = 1, 1st order 186.6747
n = 2, 2nd order 247.31
n = n, nth ordera 181.4567

a n = 0.9039, S.D. = 0.004667.
5.83201E−14 52.3226 1.458E−14
0.029018 37.2 0.004936

ET samples, it is worth mentioning that an initial stage of poly-
er degradation is often accompanied by melting (or softening).
t this stage, the thermal degradation can be controlled by the
rocess of formation of a gas phase inside the polymer and by
ucleation and nucleus growth in a heterogeneous medium [9].

Since, nth order and first order models also show encourag-
ng AICc scores, we compare the predictions of nth order and
rst order models with experimental data and nucleation and
rowth model predictions and report through Fig. 10. It is a
ample plot for waste LDPE. Similar behaviour are observed
or waste PET and PP samples also and therefore not presented
n the present study. Figure shows that though nucleation and
rowth model with n = 2/3 is marginally better than nth order

nd first order models, they also closely predict the experimen-
al TGA data. This fact is also supported by the AICc scores
s discussed above. Therefore, suitability of both the nucleation

1) S.D. in E (kJ mol−1) K0 S.D. in K0

0 19.4421 3.66E−14
0 19.6025 3.65E−15
0 21.1064 3.65E−15
2.916E−14 23.6383 7.29E−15

7.29E−15 7.6349 9.11E−16
2.92E−14 11.6102 1.82E−15
0 14.7527 0

0 21.3854 0

260.7238 17.35658 42.14982
240.1613 16.8 38.82339
0 0.0468 2.14E−17
1.46E−14 15.0636 3.65E−15

5.831E−14 30.48 3.65E−15
2.92E−14 41.4 1.46E−14
0.061891 29.53 0.012581
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Table 6
The equation for calculation of kinetics parameters and AICc results of LDPE, PET and PP samples

Kinetic
models

Kinetic functions, integral of
kinetics function and calculation
of α where, x = (k0i/βl)I(Ei,Ti,l))

Order Model no. AICc values
LDPE

AICc values
PET

AICc values
PP

Nucleation and growth

f(α) = (1/n)(1 − α)(−ln(1 − α)) n = 1/4 1 −195.903 −101.895 1006.2
g(α) = n(1 − α)(n − 1)/n n = 1/3 2 −321.217 −165.638 542.29
α = 1 − exp(–x1/n) n = 1/2 3 −620.52 −312.951 −433.58

n = 2/3 4 −850.068 −421.609 −1150.03

Phase boundary reaction
f(α) = n(1 − α)(n − 1)/n n = 1 (plate) 5 348.5874 201.9599 2777.814
g(α) = [1 − (1 − α)1/n] n = 2 (cylinder) 6 198.5402 122.8186 1906.95
α = 1 − (1 − x)n n = 3 (sphere) 7 84.85229 68.24294 1227.18

Diffusion
f(α) = 1/α n = 1 (plate) 8 141.4932 112.4871 1785.18
g(α) = α2/2
α = (2x)1/2

Power law

f(α) = (1/n)α1 − n n = 1/4 9 – – –
g(α) = αn(0 < n < 2) n = 1/3 10 – – –
α = x1/n n = 1/2 11 524.0944 – −830.97

n = 3/2 12 216.5771 144.3685 −830.97

Chemical reaction

f(α) = (1 − α) n = 1, 1st order 13 −541.103 −294.404 −675.54
g(α) = −ln(1 − α)
α = 1 − exp(−x)
f(α) = (1 − α)n

= 2, 2
= n, n
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g(α) = [1/(1 – α)n − 1 − 1]/(n − 1 n
α = 1 − [1 + (n − 1)x]1/(1 − n) n

nd growth model and chemical reaction models for all the three
amples indicates that both the mechanism (nucleation, growth
nd diffusion and chemical reaction) significantly controls the
ecomposition phenomena. Therefore, as opined by Marcilla et
l. [10], a good fit of experimental results is not only the cri-
erion to decide upon the decomposition mechanism. Further
tudies including infrared or mass spectroscopy, morphology
tudy using SEM or TEM during such decomposition is very
uch needed to conclude upon the actual reaction mechanism
hat controls the decomposition behaviour of polymer samples.
t may be further added here that the proposed models may not
ully describe particularly the decomposition phenomena of PP

ig. 9. Comparison between simulated (using HGA predicted kinetics triplet)
nd experimental mass loss during non-isothermal pyrolysis of PP at five differ-
nt heating rates for nucleation and growth (n = 2/3) model (experimental data
nd simulated data).

a
t
u
m

F
e
1

nd order 14 −299.036 −194.547 381.7632
th order 15 −557.949 −294.955 −830.97

amples. Though we have taken up single-step kinetics from the
ingle peak of derivative thermogravimetric curves, it may be
ossible that more steps are involved in the reaction, which may
ossibly be taken care of by a new and different model. There-
ore, further studies in this direction may help to estimate the
ore accurate kinetics expression for thermal decomposition of
P.

Table 7 summarizes the optimum model and the optimum
inetics parameters for all the polymers used in the present study
long with the literature published data on the kinetics parame-

ers of thermal degradation of waste LDPE, waste PET, and PP
sing different techniques. From the table, it is observed that
ost of the reported studies are based on first order model. We

ig. 10. Comparison of (mass loss vs. temperature) curves of different mod-
ls having very less AICc scores with experimental values for LDPE and at
0 K/min.
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Table 7
Present work and literature reported kinetics parameters (N2 atmosphere)

Polymer E (kJ mol−1) ln(k0) n Method Reference

Waste
PET

322.3 54.76 1.724 nth-order model [6]
162.15 26.37 1 ASTM E698 [6]
256.4 36.88 1.05 nth-order model [34]
271.6 41.98 1.09 nth-order model [35]
269.35 44.94 1 SDMT-multiple heating rate [11]
242 – 1 First-order model [36]
180–210 – – Isoconversion model-free method [17]
173.3451 28.3564 2/3 Nucleation and growth Present work

Virgin
PET

238.7 18.00 1.15 nth-order model [37]
259.34 43.077 1 SDMT-multiple heating rate [11]
220 ± 10 30.297 1 First-order model [38]

PP 244 ± 8 35.7 ±1.3 1 First-order model [39]
237 ± 7 32.1 ±1.3 1 Random-chain dissociation model [39]
216 30.909 1 First-order model [40]
214.5 28.198 1 Random-chain dissociation model [40]
(138.1 ± 3.8)a (26.7099)a 1 Method of Ozawa, Flynn and Wall [41]
43.9 24.8664 0.90 nth-order model [42]
150–250 – – Isoconversion method [19]
146.69 23.64 2/3 Nucleation and growth Present work

LDPE 221 31.0944 1 First-order model [39]
234.5 30.518 1 Random-chain dissociation model [39]
241 ± 10 34.6 ± 1.7 1 First-order model [40]
244 ± 12 32.2 ± 2.1 1 Random-chain dissociation model [40]
(214.2, 238.9, 200)a (24.58, 32.71, 25.476)b – Three-reaction model (Flexible Simplex

Optimization Method)
[43]

272 – 0.14 Freeman and Carroll’s Method [44]
49.3 27.81334 0.63 nth-order model [42]
150–240(200)c –(26.039)c – Isoconversion method [19]
192–263 – – Integral method [45]
201.5 −28.1257 ± 0.0185 0.55 Isoconversional method by Flynn [46]
189.05815 29.69583 2/3 Nucleation and growth Present work
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a At 10% weight-loss and values of E increase with the extent of degradation
b Three step mechanism is assumed.
c Almost constant for alpha >0.2(130–200).

ave, through the present work, shown that first order and nth
rder models well describe the thermal decomposition behaviour
f the samples used. At the same time, we have also established
ere that the nucleation and growth model with n = 2/3 is better
uited for describing the thermal degradation kinetics of all the
lastic samples used in the present study.

. Conclusion

Pyrolysis studies of PP, waste LDPE, and waste PET are
onducted at different heating rates to evaluate the kinetics
arameters. The constant pattern behaviour of the TG curves
or all three polymers at different heating rates possibly suggests
xistence of similar reaction mechanism. We have approximated
he whole process of pyrolysis as single step and accordingly
ound out the globally optimum overall kinetics parameters
mploying hybrid genetic algorithm and using 15 different
ecomposition models reported in the literatures. The suitabil-

ty of the models is tested using the AICc score. Results show
hat nucleation and growth model with reaction order, n = 2/3
s the best suited one and it also predicted the experimental
GA data successfully. However, nth order model also shows
ood AICc score and well predicted the experimental TGA data.
hus, though apparently it seems that nucleation and growth
odel controls the decomposition of plastic samples used in the

resent study, further investigation in detail including infrared
r mass spectroscopy, morphology study using SEM or TEM
uring such decomposition is very much essential to conclude
pon the actual reaction mechanism that controls decomposition
f polymers considered. This is particularly so for PP samples
here the present reaction models also have shown significant
eviation from the experimental TGA data and it may be pos-
ible that more steps are involved in the reaction, which may
ossibly be taken care of by a new and different model.
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