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Abstract

Model-fitting methods that are exercised till date for evaluating the optimum overall pyrolysis kinetics parameters usually applied traditional
gradient base optimization techniques but associated with major drawback of attaining global optimum due to uncertainties in selection of initial
guess. To overcome such uncertainties and drawbacks, we have, applied the modern evolutionary optimization method (hybrid genetic algorithms
(HGA) technique) for 15 models to attain the globally optimum kinetics parameters using the experimental thermogravimetric analysis (TGA)
data and we did compare the experimental and simulated data to expect the possible mechanism to occur during pyrolysis. As case studies, we
used thermal decomposition of waste polyethylene terephthalate (PET), waste low-density polyethylene (LDPE) and polypropylene (PP). The
suitability of the models is also tested using the AIC, score. Nucleation and growth model with reaction order, n=2/3 is the best suited one and
it also predicted the experimental TGA data successfully. The nth order model also shows good AIC, score and well predicted the experimental

TGA data.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Polymer decomposition phenomena can be described by a
set of series or parallel chemical reactions via random scission
mechanism, chain scission mechanism, etc. thermogravimetric
analysis (TGA) is widely used technique to study such decompo-
sition of polymer. Pyrolysis kinetics of plastics is important for
the proper selection of reactor, optimization of the reactor design
and operating condition. The correctness of the kinetics expres-
sion heavily depends upon reliable evaluation of activation
energy from the decomposition behaviour under different condi-
tions of temperature and/or environment. In most of the reported
literatures, model-fitting methods are applied to evaluate pyroly-
sis kinetics parameters using single heating rates and traditional
reaction models, but the traditional model-fitting kinetics anal-
ysis using single heating rates and single-step decomposition
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model gives only a single set of kinetics triplet, which is
estimated after minimizing deviation between simulated data
and experimental data. However, International Confederation
of Thermal Analysis and Calorimetry (ICTAC) project, 2000,
ruled out the validity of thermal kinetics analysis using single
heating rate [1]. Modern model-fitting thermal kinetics analysis
methods use multi-heating rates, take care of multi step reactions
and incorporate possible partial diffusion, back reaction, branch
reaction, etc. in the model equations [2-6]. Still the selection
of appropriate model [1-11], oversimplified approximation of
temperature integral [4], and initial guess of kinetics parameters
are major drawbacks of model-fitting methods [3]. Recently,
Vyazovkin model-free kinetics technique has extensively been
applied for many complex reaction processes to obtain reliable
and consistent kinetics information about the overall process
[12-21]. Apart from this, isoconversion method presents a com-
promise between the single-step Arrhenius kinetic treatments
and the prevalent occurrence of processes whose kinetics are
multi-step or non-Arrhenius [18-19]. However, information on
activation energy is useless without a method of calculation
of kinetics curves. For description of multistage processes, the
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use of model-fitting methods is unavoidable [7]. Since poly-
mer decomposition is a complicated process, serious doubts
arise about an accurate description of decomposition kinetics
by using simplified equations expressing a rate of the process
only via mass loss [9]. Therefore, in absence of prior infor-
mation about real kinetic mechanism, the reaction model can
be chosen from a set of well-known reaction models to fit
experimental data usually done in model-fitting techniques. In a
number of cases, it is possible that the obtained kinetics triplet
describes the rate-limiting step of the decomposition process
and recommended that this approach is acceptable for chemi-
cal engineering applications [1-11]. It is worth mentioning that
a good fit of experimental results is only one criterion, but it
should not be the unique one [10]. Further analysis involving
infrared or mass spectroscopy, morphology study using SEM
or TEM during decomposition can be useful in order to obtain
more information about processes involved.

In view of these, application of genetic algorithm (GA)
or hybrid genetic algorithm (HGA) to overcome the above-
mentioned drawback of model-fitting method for the estimation
of kinetics parameters has attracted interest in chemical engi-
neering, chemistry, and other fields [22-27]. GA, based on
natural selection, repeatedly modifies a population of indi-
vidual solutions. Over successive generations, the population
“evolves” toward an optimal solution. GA is considered to have
better global optimizing properties than other heuristic opti-
mization techniques, especially, in the case of discontinuous,
non-differentiable, stochastic, and highly non-linear problems
having large search spaces with many local extrema [22-31].

Therefore, in the present work, we have reported pyroly-
sis kinetics of polypropylene (PP), low-density polyethylene
(LDPE) and polyethylene terephthalate (PET) for different
heating rates employing the HGA technique to get the glob-
ally optimum overall kinetics parameters (activation energy, E;
pre-exponential factor, ko; reaction model) [7-9] using direct
integration technique of temperature integral. In this approach,
GA is used to provide initial guess for the local optimization

Table 1
Experimental conditions for TGA studies

algorithm (LOA), the direct search method used in the present
work. Fifteen different physico-chemical models available from
literatures are used coupled with HGA to find out the best one
that predicts the experimental data well. In addition to that,
Akaike’s Information Criteria (AIC) [11,32] is also applied
to choose the most appropriate reaction model. The 15 reac-
tion models used are based on nucleation and growth, phase
boundary reaction, diffusion, power law and chemical reac-
tion models with different values of the order of the reaction,
n [2-9,13,15]. Thus, applying HGA (possibly first time in poly-
mer decomposition) in the present work, we tried to establish the
reaction mechanism involved during thermal decomposition of
plastic samples mentioned above and correspondingly reported
the globally optimized kinetics parameters. The present work
exploits the advantages of GA to overcome the limitation of
model-fitting methods generally used to find the kinetic param-
eters, where initial guess of kinetics parameters are the major
drawbacks.

2. Experimental [6,11,17,20,21]

The non-isothermal decompositions were carried out for
waste PET soft drink bottles, waste LDPE, and PP (polypropy-
lene homopolymer (PPHP), trade name: Koylene ADL, Grade
ASO030N) supplied by Indian Petrochemicals Corporation Lim-
ited, Vadodara, India, with melt flow index 3.0. Experiments
were carried out in a TGA instrument of Mettler TOLEDO with
model no. TGA/SDTA 851¢ under nitrogen environment for a
range of temperature 303—875 K. Nitrogen flow rate was main-
tained at 40-50 mlmin~! according to the specification of the
equipment. All samples were shredded into very small pieces
and directly fed to the TGA instrument. Thermal decomposition
experiments were conducted in dynamic condition at different
heating rates. The experiments were repeated three times at
a heating rate of 10 Kmin~!, to confirm the repeatability and
authenticity of the generated data for all cases. The deviations
observed are very little. However, the deviations are reported in

Sample Non-isothermal experiments
Initial mass (mg) Heating rate (K min~—!) Temperature range (K) Residue (%) Two!/Ta/ T/ Twoo (K)
Waste 7.76 5 303-873 2.02 551.1/621.3/734.2/805.5
LDPE 8.43 10 303-873 1.92 551.3/634.3/748.4/800.4
11.19 15 303-873 2.29 549.0/648.2/754.0/800.4
8.66 20 303-873 2.35 549.4/646.8/763.3/802.5
10.96 25 303-873 1.23 576.5/680.2/770.4/809.6
Waste 7.80 5 303-873 11.59 622.0/642.1/700.2/784.6
PET 8.12 10 303-873 13.56 623.2/653.2/710.4/785.1
9.36 15 303-873 14.84 623.1/661.4/720.6/782.7
9.52 25 303-873 14.13 623.8/671.8/734.8/786.1
PP 19.77 5 303-873 1.49 533.6/596.9/706.8/773.9
20.32 10 303-873 0.88 526.9/670.0/723.07/749.8
20.67 15 303-873 0.51 527.8/684.6/731.4/777.6
19.78 20 303-873 0.73 527.5/684.8/736.8/770.2
19.41 25 303-873 0.70 527.1/696.6/742.9/785.7
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Table 2
Characteristics of samples (LDPE, PET and PP)

Sample Melting Melting point of Heat of Heat of fusion, Degree of Crystallinity of Purity (residual amount

type point standard PE fusion 100% crystallinity crystallinity standard PE samples after TGA experiment up
(°C) samples [33] (°C) Jg™hH Jg™h (%) [33] (%) to 600 °C) (%)

Waste LDPE 128.7 LDPE: 98-120 38.37 290 23.95 LDPE: 50-70 Non-isothermal: 1-2

Waste PET 246.55 PET: 267 46.85 115 40.74 - 10-15

PP 175.69 PP: 165-171 62.38 190 32.83 82 0.67-1.4

terms of average relative deviation,

N

100
ARD (%) = WZ
i=1

exp
X, — Xav,i

)

Xav,i

where x?xP and x,y; are the experimental values of the
variables (temperature and normalized mass) and average val-
ues of the variables, respectively, and i is the number of
data points for each experiment. Results show that ARD%
is 0.009-0.021, 0.051-0.119, 0.005-0.019 (for temperature),
0.09-0.257,0.865-2.457, and 0.041-0.1579 (for mass) of waste
PET, waste LDPE, and PP, respectively. Further details of the
experimental procedure are described in our published litera-
tures [6,11,17,20-21]. Experimental conditions for TGA studies
are given in Table 1. Properties of the polymers used for the
present study are presented through Table 2.

3. Kinetics analysis

3.1. Multi-heating rates model-fitting method for
non-isothermal experiments [1-11]

The kinetics model equations combined with the Arrhe-
nius approach of the temperature function of reaction rate is
expressed as:

dot_k —FE !
i OexP(RT) Sl (1

where ¢ is time (given in min), 7 the temperature (given in
K), a the conversion of the reaction [ = (Wy — W)/(Wy — W),
where Wy is the initial weight of the sample, W the sam-
ple weight at any temperature 7 and W, is the final sample
weight all sample weight given in milligrams)], da/d¢ the
rate of reaction (expressed in units of min~!), and fla) is
the reaction model. The terms ky, which represents the pre-
exponential factor (expressed in units of K~!), and E, which
is the activation energy (expressed in units of kJmol~!), are
the Arrhenius parameters. R is the universal gas constant
(expressed in units of kI mol~! K=1). The reaction model may
take various forms based on nucleation and nucleus growth,
phase boundary reaction, diffusion, and chemical reaction
[2-9,13,15]. In the present investigation, we have applied 15
such well-known models for estimating the best fitted over-
all kinetics parameters (pre-exponential factor, kg; activation
energy, E) except nth order reaction model, where we have
obtained the best fitted kinetics triplet (order of chemical reac-
tion, n; pre-exponential factor, kg; activation energy, E) using

single-step and multi-heating rates for all the three types of
polymers.

At a constant heating rate under non-isothermal conditions
the explicit temperature/time [11,13], dependence in Eq. (1) is
eliminated through the trivial transformation

8L —koexp (=2 ) fi@) e
= —knexp | —

ar ~ 0P\ Ry ) T

where B =dT/dt is the heating rate (K min~!) and do/dT is rate

of reaction (K~1).
For each step Eq. (2) can be integrated as

(@) = ad‘”—("o)/Tex (‘E) a7
SO=) Fe ~\B) Jy TP\ rT

= (2’) I(E,T) =x 3)
and
T E
I(E, T):/O exp (—RT) dTr “4)

For example, the nth order and first order kinetic model equa-
tion can also be solved by substituting ky/S = exp(K), where
Ko —In(B) = K¢ and ko = exp(Ky) and transforming Eq. (3)
as follows.

Forn # 1,
a =1 - [(exp(Ro)(E, T)(n+ 1)+ 117"~V 5)
Forn =1, a=1—exp[—(exp(Ko)I(E, T)] ©6)

The temperature integral (Eq. (4)) can be evaluated by sev-
eral popular approximations and direct numerical integration as
reported in our recent publications [11,17,20-21]. We used the
technique of direct numerical integration [20-21] for the same,
where the temperature integral takes the form

I(E,T) = /T exp (—E> arE FXP(_”) - Ei(u)} %)
’ A RT) R W

where u = E/RT and Ei(u) = [~ (exp(—u)/u) du.

Details of development of Eq. (7) and numerical procedure
have been discussed in our recent publication [20].

Akaike’s Information Criteria [11,32], discussed below, is
also applied to choose the appropriate reaction model.

SsS
AIC = Nln (N) +2K (8)



B. Saha et al. / Chemical Engineering Journal 138 (2008) 20-29 23

where N is number of data points, K the number of parameters
plus one and SS is sum of square of the difference between the
calculated mass and experimental mass.

The corrected AIC for small number of data points is obtained
from

2K(K +1)
AIC, = AIC+ — 9
c t N k-1 ©))

The model with the lower AIC, score is the model more likely
to be correct [11,32].

3.2. Multi-parameter optimization

The objective function most frequently used in case of mul-
tiple heating rates of TGA curves to calculate optimum values
of A(E, Ky, n) for total J data points and total L heating rates by
minimization of square of deviation between experimental mass
[Mgxp(T)] and calculated mass [Mc,(T)] is given by Eq. (10).

2
L J

A(E, Ko, n) = Z Z[MExp,l,j — Mcal4] (10)

=1 | j=1

where j and / denote the data point and heating rate, respectively.
The values of M, (T) calculated for each single value of o
are as follows:

Mcai,j = Mgxp,1,0 — a1, j(MExp,1,0 — MExp,i,00) (1D

where MEgxp 0 is the initial is point and MExp /0 is the final
point of /th heating rate. However, in the present work, all mod-
els except nth order reaction model involved two parameters
optimization since in those models E, Ky values are optimized
for different fixed values of n.

The calculated optimum values are completely dependent
on the model used and can greatly differ for different mod-
els for all traditional model-fitting kinetics analysis techniques
[7-11]. Moreover, this multi-parameter optimization strongly
depends on the initial guess values of the parameters [2,3,11]
leading to possibility of achieving false minima, thus, resulting
in unreliable values of the parameters. Therefore, in the present
work, hybrid genetic algorithm, discussed later, in MATLAB
using ‘fminsearch’ as hybrid local search method in GA tool-
box, is used for the objective function [Eq. (10)] minimization.
Here, GA is used to provide initial guess values of the kinetics
triplet (activation energy, pre-exponential factor and reaction
order) for the local optimization algorithm, the direct search
method.

3.3. The structure of a hybrid genetic algorithm [22-31]

GA employs a probabilistic approach and has better global
optimizing properties but shows poor convergence to optimality.
Whereas, HGA using a typical basic GA with elitist strategy to
reach near gradient or/direct-based search method shows faster
convergence to global optima. Therefore, often GA is hybridized
using a LOA to improve its performance as a global optimization
technique while overcoming the limitations of poor conver-

gence and weak exploitation capabilities. The various kinds of
hybridizations using LOA can be classified into three types.

3.3.1. Pre-hybridization [30]

Here the initial population of GA is generated using an LOA
reducing the solution space for GA and improving the efficiency.
Such an approach seems to be well suited to the specific problem
they addressed and does not seem to be suitable for general
optimization.

3.3.2. Organic-hybridization [30]

In this case, an LOA is used as one of the operators of GA for
improving each member of the population in each generation.
Though the organic-hybridization is computationally more effi-
cient than a GA, it offers little assurance of global minima and
also lacks proper convergence criteria.

3.3.3. Post-hybridization [30]

In this case, GA is used to provide an initial design for LOA.
This kind of hybridization seems to be the best way of combining
the best characteristics of the two approaches as no compromise
is made on the global and local optimizing characteristics.

3.4. Structure of HGA used for the present work [31]

In the present work, we have used post-hybridization method,
i.e. GA coupled with LOA. We have used the default initial
population size (20), the default creation function ‘Uniform’ to
create a random initial population with a uniform distribution,
the stochastic options from the GA toolbox that chooses par-
ents for the next generation, Gaussian function for mutation,
scattered function for the next generation, forward migration
option for the movement of individuals between subpopula-
tions, default value of migration fraction (0.2) for migration of
individuals between subpopulation, value of interval as 20, i.e.
migration between subpopulations takes place every 20 genera-
tions, multidimensional unconstrained non-linear minimization
function ‘fminsearch’ as the hybrid function that uses the final
point from the genetic algorithm as its initial point, and specified
only the number of generation as stopping criteria.

The optimized kinetics triplet obtained by the above-
configured HGA showed pretty good prediction of the
experimental TGA decomposition data. However, further
improvement on the HGA configuration can be made through
optimization of configuration through several runs, for present
cases we have consider 20 runs for each model and we have taken
most appropriate values of triplets/doublets from those runs.

4. Results and discussion
4.1. Pyrolysis kinetics analysis

Pyrolysis of the PP and LDPE samples were carried out at
five different heating rates (5, 10, 15, 20, and 25 Kmin’l) and
of PET sample was carried out at four different heating rates (5,
10, 15, and 25 K min~!). The temperature at which o =0 (Ty0),
the temperature at which decomposition starts and o ~ 0.1 (Ty),
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Fig. 1. Variation of conversion («) with temperature during non-isothermal
pyrolysis of waste LDPE sample at multiple heating rates.
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Fig. 2. Variation of conversion («) with temperature during non-isothermal
pyrolysis of waste PET sample at multiple heating rates.

the temperature at which the maximum weight loss rate occurs
(Tm), and the temperature at the end of the pyrolysis step (Twoo)
are reported in Table 1 for each case of experiments. Figs. 1-3
represent « versus 7T curves for pyrolysis of LDPE, PET and PP,
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Fig. 3. Variation of conversion («) with temperature during non-isothermal
pyrolysis of PP sample at multiple heating rates.
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Fig. 4. Variation of rate of decomposition (da/d7T) with average temperature
during non-isothermal pyrolysis of waste LDPE sample at multiple heating rates.

respectively, at several heating rates. It is observed from the fig-
ures that the curves show constant pattern behaviour at different
heating rates. A quick thermal decomposition is observed in the
range of Ty to Tyeo (Figs. 1-3) and the highest decomposition
rate is observed at ~Ty, (Figs. 4-06), as reported in Table 1. After
this quick increase, the solid continues to decompose smoothly
and slowly until the end of the experiment. Higher heating
rate finishes the decomposition phenomenon faster. The ther-
mal decomposition behaviour of all of samples is almost similar,
except for a difference in Tp,. The constant pattern behaviour is
attributed to the fact of similar reaction mechanism, which is the
basis of multi-heating rate approach for kinetics analysis [7-21].
Figs. 4-6 represent the da/dT versus T (derivative thermogravi-
metric) curves for pyrolysis of waste LDPE, waste PET, and PP,
respectively, at several heating rates. We can clearly notice the
single peak in all the curves. This is because we had approx-
imated it as a single-step reaction taking place and found out
the single-step overall kinetics triplet (£, Ky and n) for pyroly-
sis of all three plastics by GA coupled with LOA, fminsearch
(HGA) applying all 15 models as mentioned in Table 3 using
multi-heating rates. It is worth mentioning here that the single
peaks that are observed in Figs. 4-6 do not necessarily indicate
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Fig. 5. Variation of rate of decomposition (do/dT) with average temperature
during non-isothermal pyrolysis of waste PET sample at multiple heating rates.
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Fig. 6. Variation of rate of decomposition (de/dT) with average temperature
during non-isothermal pyrolysis of PP sample at multiple heating rates.

a single-step reaction that is occurring during pyrolysis. The ini-
tial guesses are taken from the GA. The kinetics triplet data and
the standard deviations, obtained from HGA based on 15 best
data points for all the models and all types of plastics used are
reported through Tables 3-5.

4.2. Prediction of experimental TGA data

As already discussed, AIC. scores help to identify the bet-
ter reaction model for pyrolysis study. Lower the AIC. scores
for a reaction model, more correct is the model representing
the system [11,32]. Therefore, the kinetics triplets (Tables 3-5)
obtained by HGA method employed in the present study are used
in simulation to calculate the ACI, scores for all the 15 models
considered. The AIC, scores for all the models and the integral
form of all kinetics models are presented in Table 6. Itis observed
from Table 6, for all the three plastics used, that the AIC.
score is minimum for nucleation and growth model with n =2/3.
The nth order and first order models also show encouraging
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Fig. 7. Comparison between simulated (using HGA predicted kinetics triplet)
and experimental mass loss during non-isothermal pyrolysis of LDPE at five
different heating rates for nucleation and growth (n =2/3) model (experimental
data and simulated data).
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Fig. 8. Comparison between simulated (using HGA predicted kinetics triplet)
and experimental mass loss during non-isothermal pyrolysis of PET at four
different heating rates for nucleation and growth (n=2/3) model (experimental
data and simulated data).

Table 3

Average values of kinetic parameters for waste LDPE

Kinetic models Order E (KJmol™1) S.D.in E (kI mol™1) Ko S.D.

Nucleation n=1/4 148.14 5.16E—06 23.01 3.75E—15

and n=1/3 151.44201 2.77E—06 23.53623 7.40E—15

rowth n=1/2 166.67 0 26.02636 7.42E—-15

& n=2/3 189.06 2.94E—14 29.70 0

Phase n=1 (plate) 69.17697 0 8.56174 0

bound- n=2 (cylinder) 88.0816 0 11.46703 3.61E—15

ary n=3 (sphere) 106.76425 1.59E—14 14.38751 0

reac-

Riffusion n=1 (plate) 161.35968 0 22.8995 7.35E—15
n=1/4 7.06097 0 —3.00337 0

Power n=1/3 12.37652 0 —1.84356 0

law n=1/2 24.86678 3.71E—15 0.6511 1.16E—16
n=3/2 115.36091 441E—14 16.20774 2.58E—06

Chemical n=1, lst order 246.2922 2.93609E—06 39.045 4.8349E—07

reac- n=2, 2nd order 337.9255 5.83201E—14 54.5665 7.29001E—15

tion n=n, nth order* 242.425 0.1680986 38.385 0.02892788

4 n=0.949, S.D.=0.002917.
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Table 4
Average values of kinetic parameters for waste PET
Kinetic models Order E (kJmol~1) S.D.in E (kJmol™!) Ko S.D. in Ko
n=1/4 134.8427 0 21.7678 7.29E—15
Nucleation and erowth n=1/3 137.9391 2.92E—-14 22.2816 1.0935E—14
g n=1/2 152.231 5.83E—14 24.728 3.65E—15
n=2/3 173.3451 3.08E—05 28.3564 0
n=1 (plate) 51.49 9.96E—07 5.79 1.74E—07
Phase boundary reaction n=2 (cylinder) 71.05 1.06E—06 9.01 1.82E—-07
n =3 (sphere) 87.50 1.32E—-06 11.70 2.20E—07
Diffusion n=1 (plate) 119.777 2.95E—-14 16.7591 3.69E—15
n=1/4 4.7957 1.82E—15 —3.4669 4.56E—16
P 1 n=1/3 9 1.78E—18 —0.0025 4.46E—19
ower law n=1/2 85.53 1.32E—06 11.70 2.26E—07
n=3/2 18.6717 2.24E—-05 —0.3978 1.139E—16
n=1, st order 227.0584 5.83201E—14 37.5614 1.458E—14
Chemical reaction n=2, 2nd order 309.8936 5.83201E—14 52.3226 1.458E—14
n=n, nth order® 225 0.029018 37.2 0.004936

2 n=0.969, S.D.=0.004693.

scores. But, according to the AIC, criteria, the nucleation and
growth model with n=2/3 is likely to be the best of all the 15
models for the all the polymers (LDPE, PET and PP) used in the
present study. Thus, the pyrolysis kinetics equation was simu-
lated using globally optimized kinetics triplet for all the three
reaction models (nucleation and growth model with n=2/3, first
order and nth order reaction model) to predict the experimental
TGA data. Figs. 7-9 show prediction of the experimental TGA
data by nucleation and growth model with n=2/3 for differ-
ent heating rates. It is observed from the figures that nucleation
and growth (n=2/3) model successfully predicted the experi-
mental TGA data particularly for LDPE and PET samples. In
case of PP samples, it is observed that there is a significant devia-
tion between experimental and predicted (nucleation and growth
model (n=2/3)) data. From the agreement of nucleation and
growth model (n=2/3), particularly for waste LDPE and waste

PET samples, it is worth mentioning that an initial stage of poly-
mer degradation is often accompanied by melting (or softening).
At this stage, the thermal degradation can be controlled by the
process of formation of a gas phase inside the polymer and by
nucleation and nucleus growth in a heterogeneous medium [9].

Since, nth order and first order models also show encourag-
ing AIC. scores, we compare the predictions of nth order and
first order models with experimental data and nucleation and
growth model predictions and report through Fig. 10. It is a
sample plot for waste LDPE. Similar behaviour are observed
for waste PET and PP samples also and therefore not presented
in the present study. Figure shows that though nucleation and
growth model with n=2/3 is marginally better than nth order
and first order models, they also closely predict the experimen-
tal TGA data. This fact is also supported by the AIC. scores
as discussed above. Therefore, suitability of both the nucleation

Table 5
Average values of kinetic parameters for waste PP
Kinetic models Order E (kImol™!) S.D. in E (kJ mol™!) Koy S.D. in K
n=1/4 122.031 0 19.4421 3.66E—14
Nucleation and erowth n=1/3 123.0691 0 19.6025 3.65E—15
g n=1/2 1319114 0 21.1064 3.65E—15
n=2/3 146.6868 2916E—14 23.6383 7.29E—15
n=1 (plate) 61.48 7.29E—15 7.6349 9.11E—16
Phase boundary reaction n=2 (cylinder) 85.3717 2.92E—14 11.6102 1.82E—15
n=3 (sphere) 104.5035 0 14.7527 0
Diffusion n=1 (plate) 146.1213 0 21.3854 0
n=1/4 1329115 260.7238 17.35658 42.14982
p 1 n=1/3 127.2946 240.1613 16.8 38.82339
owerlaw n=1/2 20.8227 0 0.0468 2.14E—17
n=3/2 104.3377 1.46E—14 15.0636 3.65E—15
n=1, 1st order 186.6747 5.831E—14 30.48 3.65E—15
Chemical reaction n=2, 2nd order 247.31 2.92E—14 41.4 1.46E—14
n=n, nth order® 181.4567 0.061891 29.53 0.012581

4 n=0.9039, S.D.=0.004667.
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Table 6

The equation for calculation of kinetics parameters and AIC, results of LDPE, PET and PP samples

Kinetic Kinetic functions, integral of Order Model no. AIC, values AIC, values AIC, values
models kinetics function and calculation LDPE PET PP
of o where, x = (koi/ BI(E;,T;;))
fla)y=(1/n)(1 —a)(—In(1 — «)) n=1/4 1 —195.903 —101.895 1006.2
L gla)=n(l — )= 1n n=1/3 2 —321.217 —165.638 542.29
Nucleation and growth a=1—exp(—x'm) n=172 3 —620.52 —312.951 —433.58
n=2/3 4 —850.068 —421.609 —1150.03
flo) =n(1 —a)n = Din n=1 (plate) 5 348.5874 201.9599 2777.814
Phase boundary reaction gl@)=[1—(1 - n=2 (cylinder) 6 198.5402 122.8186 1906.95
a=1—(1—-x)" n=23 (sphere) 7 84.85229 68.24294 1227.18
flay=1/a n=1 (plate) 8 141.4932 112.4871 1785.18
Diffusion g@=a’2
a=(2x0)"
fley=1/n)a! = n=1/4 9 - - -
P 1 gl@)=a"(0<n<2) n=1/3 10 - - -
ower law =l n=1/2 11 524.0944 - —830.97
n=3/2 12 216.5771 144.3685 —830.97
fla)y=(1—a) n=1, Ist order 13 —541.103 —294.404 —675.54
gl@)=—In(1 —a)
Chemical . a=1—exp(—x)
emical reaction fly=(1—ay'
gla)=[1/1-a)*~ ' = 1)/(n—1 n=2, 2nd order 14 —299.036 —194.547 381.7632
a=1—[1+(@—1x/1=m n=n, nth order 15 —557.949 —294.955 —830.97

and growth model and chemical reaction models for all the three
samples indicates that both the mechanism (nucleation, growth
and diffusion and chemical reaction) significantly controls the
decomposition phenomena. Therefore, as opined by Marcilla et
al. [10], a good fit of experimental results is not only the cri-
terion to decide upon the decomposition mechanism. Further
studies including infrared or mass spectroscopy, morphology
study using SEM or TEM during such decomposition is very
much needed to conclude upon the actual reaction mechanism
that controls the decomposition behaviour of polymer samples.
It may be further added here that the proposed models may not
fully describe particularly the decomposition phenomena of PP
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Fig. 9. Comparison between simulated (using HGA predicted kinetics triplet)
and experimental mass loss during non-isothermal pyrolysis of PP at five differ-
ent heating rates for nucleation and growth (n=2/3) model (experimental data
and simulated data).

samples. Though we have taken up single-step kinetics from the
single peak of derivative thermogravimetric curves, it may be
possible that more steps are involved in the reaction, which may
possibly be taken care of by a new and different model. There-
fore, further studies in this direction may help to estimate the
more accurate kinetics expression for thermal decomposition of
PP.

Table 7 summarizes the optimum model and the optimum
kinetics parameters for all the polymers used in the present study
along with the literature published data on the kinetics parame-
ters of thermal degradation of waste LDPE, waste PET, and PP
using different techniques. From the table, it is observed that
most of the reported studies are based on first order model. We

100 poeeeeew LA R A8 S S B
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40 —e—Nucletion and growth 213
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30 4 ®  Experimental data, 1=10K/min

—-a - Reaction Model, n=1

20
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Fig. 10. Comparison of (mass loss vs. temperature) curves of different mod-
els having very less AIC, scores with experimental values for LDPE and at
10 K/min.
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Table 7

Present work and literature reported kinetics parameters (N, atmosphere)

Polymer E (KYmol~1) In(ko) n Method Reference

Waste 322.3 54.76 1.724 nth-order model [6]

PET 162.15 26.37 1 ASTM E698 [6]
256.4 36.88 1.05 nth-order model [34]
271.6 41.98 1.09 nth-order model [35]
269.35 44.94 1 SDMT-multiple heating rate [11]
242 - 1 First-order model [36]
180-210 - - Isoconversion model-free method [17]
173.3451 28.3564 2/3 Nucleation and growth Present work

Virgin 238.7 18.00 1.15 nth-order model [37]

PET 259.34 43.077 1 SDMT-multiple heating rate [11]
220+ 10 30.297 1 First-order model [38]

PP 244 +8 35.7+£1.3 1 First-order model [39]
237+7 32.1+£1.3 1 Random-chain dissociation model [39]
216 30.909 1 First-order model [40]
214.5 28.198 1 Random-chain dissociation model [40]
(138.1£3.8)* (26.7099)* 1 Method of Ozawa, Flynn and Wall [41]
43.9 24.8664 0.90 nth-order model [42]
150-250 - - Isoconversion method [19]
146.69 23.64 2/3 Nucleation and growth Present work

LDPE 221 31.0944 1 First-order model [39]
234.5 30.518 1 Random-chain dissociation model [39]
2414+10 34.6+1.7 1 First-order model [40]
244+ 12 322+2.1 1 Random-chain dissociation model [40]
(214.2, 238.9, 200)* (24.58, 32.71, 25.476)° Three-reaction model (Flexible Simplex [43]

Optimization Method)

272 - 0.14 Freeman and Carroll’s Method [44]
49.3 27.81334 0.63 nth-order model [42]
150-240(200)° —(26.039)¢ - Isoconversion method [19]
192-263 - - Integral method [45]
201.5 —28.1257 £ 0.0185 0.55 Isoconversional method by Flynn [46]
189.05815 29.69583 2/3 Nucleation and growth Present work

4 At 10% weight-loss and values of E increase with the extent of degradation.

b Three step mechanism is assumed.
¢ Almost constant for alpha >0.2(130-200).

have, through the present work, shown that first order and nth
order models well describe the thermal decomposition behaviour
of the samples used. At the same time, we have also established
here that the nucleation and growth model with n =2/3 is better
suited for describing the thermal degradation kinetics of all the
plastic samples used in the present study.

5. Conclusion

Pyrolysis studies of PP, waste LDPE, and waste PET are
conducted at different heating rates to evaluate the kinetics
parameters. The constant pattern behaviour of the TG curves
for all three polymers at different heating rates possibly suggests
existence of similar reaction mechanism. We have approximated
the whole process of pyrolysis as single step and accordingly
found out the globally optimum overall kinetics parameters
employing hybrid genetic algorithm and using 15 different
decomposition models reported in the literatures. The suitabil-
ity of the models is tested using the AIC. score. Results show
that nucleation and growth model with reaction order, n=2/3
is the best suited one and it also predicted the experimental
TGA data successfully. However, nth order model also shows

good AIC, score and well predicted the experimental TGA data.
Thus, though apparently it seems that nucleation and growth
model controls the decomposition of plastic samples used in the
present study, further investigation in detail including infrared
or mass spectroscopy, morphology study using SEM or TEM
during such decomposition is very much essential to conclude
upon the actual reaction mechanism that controls decomposition
of polymers considered. This is particularly so for PP samples
where the present reaction models also have shown significant
deviation from the experimental TGA data and it may be pos-
sible that more steps are involved in the reaction, which may
possibly be taken care of by a new and different model.
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