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Abstract

A model for Ostwald ripening of oil-in-water emulsion in the presence of small amount of surfactants is presented. It accounts for
the transfer of oil from small to larger drops when the interfacial resistance is rate controlling. In this case, the continuous breakdown
and reformation of the micellar structure during mass transfer through the interface, is assumed to be the rate-controlling step.
A discretized population balance equation for the change in the number concentration of drops due to Ostwald ripening is solved
using the method of characteristics. The third moment of the distribution (average volume) is found to increase linearly with time,
consistent with available experimental observations, before reaching an abrupt equilibrium. The rate of change of drop volume is
found to be strongly dependent on the solubility and is fairly insensitive to the volume fraction. The transients of the drop size
distributions indicate an initial rapid decrease in the small droplets with a corresponding increase in the larger drops followed by
a very slow change in the number distributions at longer times. The rate constants involved can be roughly correlated with the
components of several experimental measurements, and allow comparison with the data of Kabalnov (Langmuir 10 (1994) 680), but
only at small surfactant concentrations. The numerical agreement is not good but it is able to predict the anomalous direction of
change with increased surfactant concentrations. The basis of the lack of numerical agreement is discussed. � 2001 Elsevier Science
Ltd. All rights reserved.

1. Introduction

A dispersion changes with time, where the small drop-
lets disappear and the larger ones grow. This phenom-
enon, called Ostwald ripening (Ostwald, 1896, 1897), has
been observed even in solid}solid dispersions. The essen-
tial reason for such behavior is that surface tension
increases the chemical potential of a species in the disper-
sed phase over that in the dispersion medium. This is
called the Kelvin}Thompson e!ect. Consider a disper-
sion of oil droplets in water. Water is taken to be in-
soluble in oil, but oil is assumed to be sparingly soluble
in water. By equating the chemical potentials of oil in
the droplets to that of molecularly dissolved oil in water,
it is possible to show that the solubility of oil in water in
the presence of a dispersion of droplets of diameter d, is
c
�
exp(D/d), where c

�
is the solubility in the absence of

any curved interface and D"4�/(R¹c
�
), where c

�
is the

molar concentration of pure oil and � is the oil}water
interfacial tension. Hence for some amount of molecu-
larly dissolved oil in water greater than c

�
, it is possible

to "nd a drop of su$ciently small size for which the oil
concentration in water is lower than saturation, and it is
also possible to "nd a su$ciently large drop where the
same oil concentration is above saturation. Hence, the
large drop grows and the small drop disappears. The
"nal outcome is a single drop, a con"guration that o!ers
the largest possible diameter and smallest possible sur-
face area and interfacial energy. The striking feature in
Ostwald ripening is not the "nal outcome but the dynam-
ics. In the observable time, the average drop size keeps
increasing. This phase is called coarsening. In particular,
the average drop volume or the third moment of the
distribution of the diameters is seen to increase linearly
with time. Taylor (1998) and Kabalnov (1998) have re-
viewed both traditional and recent literature. They have
also discussedmany practical applications of the process.
Since the small droplets disappear by dissolving into

water, and large droplets grow by absorbing oil from
water, it appears that the solubility of oil in water is
critical to the rate process. In particular, if the water
contains surfactant micelles, the solubility of oil in the
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Fig. 1. Schematic diagram of ���
�
versus concentration of SDS from

Lessner et al. (1981b). Also shown are the ranges over which data are
available for interfacial resistance from Williams et al. (1999) and
Ostwald ripening data from Kabalnov (1994). Although the range for
Carroll's (1981) work on interfacial resistance has been included, the
surfactant used were nonionics.

micellar solution would greatly increase. The surfactants
chosen are oil insoluble. However, Kabalnov's (1994)
experiments showed practically no change in the rates of
coarsening with increasing surfactant concentrations.
According to Kabalnov, the rate of coarsening does not
improve with surfactant concentration because the sur-
factant at oil}water interface provides a resistance arising
from electrical charge, to micelles swollen with oil from
approaching the interface. A di!erent mechanism is used
here to model the interfacial resistance as explained
below.
Experiments performed to perturb an equilibrium

micellar solution indicate that the system relaxes back to
equilibrium through two "rst-order processes. The "rst is
very rapid and is not of interest here. The second time
constant �

�
which ranges from microseconds to below

one second and describes the full-blown micelliz-
ation}demicellization process. The key reactions that
describe the growth of micelles are

M
���

#M
�

�
�
�

M
�
,

where M
�
is a singly dispersed amphiphile and M

�
is

a micelle of n amphiphiles. The polydispersivity is impor-
tant and the rate constants a and b are also functions of n.
The model of Lessner, Teubner, and Kahlweit, (1981a)
shows clearly that ���

�
is directly proportional to some

average of the demicellization rate constants. Experi-
mental data (Lessner et al., 1981b) show that ���

�
de-

creases with increasing concentrations of SDS at low
SDS concentrations. At large SDS concentrations,
���
�
increases with increasing surfactant concentrations.

A schematic diagram in Fig. 1 illustrates di!erent regions
of ���

�
versus surfactant concentration.

Carroll (1981) measured the rates of solubilization of
oil in a micellar solution of nonionic surfactants at rela-
tively high surfactant concentrations. It was seen that the
rates, expressed as the rates of transfer of moles of oil per
unit interfacial area across the interface k

�
, did not

change with time. Di!usion cannot be responsible for
such a time dependence. Carroll also suggested that di!u-
sion-related mechanisms could not explain the order of
magnitude of the rate constant. These results implied that
demicellization followed by micellization, could be
a plausible mechanism of oil uptake governing the rate
process. Carroll (1981) observed that the rate constants
increased with surfactant concentrations. Williams,
Bhakta, and Neogi (1999) measured the mass transfer
rates of oil (nitrobenzene) from a micellar solution to
a bulk oil phase. They found that the interfacial resist-
ance was controlling. The surfactant (sodium dodecyl
sulfate, SDS) was dilute and the solubilizate (nitroben-
zene) was even more dilute. They found that on increas-
ing the concentration of a surfactant three times, the
interfacial resistance rose by about 20 times, that is,

k
�
fell. This large rise could not be explained through

conventional mechanisms. They also showed that if
micellization}demicellization was rate controlling, then
the rate constant describing interfacial resistance should
be proportional to the time constant measured in micell-
ization kinetics. Therefore, the rate constant k

�
is to the

"rst approximation proportional to ���
�
. For SDS in this

concentration range, they found that it could explain
a decrease in rate constant by a factor of 10 instead of 20
using the data of Lessner et al. (1981b) which show
a 10-fold decrease over the same change in SDS concen-
tration with increasing concentration. They also sugges-
ted that the presence of a hydrophobic solubilizate can
account for the larger interfacial resistance since the
���
�
data of Lessner et al. (1981b) have been obtained in

the absence of a solubilizate, and those of Williams et al.
(1999) in the presence of a small amount of solubilizate,
which may explain the remaining di!erences in the nu-
merical values of the rate constant and ���

�
.

However, for nonionics used by Carroll, very little is
known (Lang & Zana, 1987) and in general at high
surfactant concentrations other phases (such as lamellar
liquid crystals) can appear transiently in systems contain-
ing oil (see Friberg, Mortensen, & Neogi, 1985; Raney,
Benton, & Miller, 1985). A comparison between the
model prediction and Kabalnov's (1994) data using SDS
at low surfactant concentrations will have to be made.
A model is presented below for Ostwald ripening in the
presence of small amounts of surfactants when the inter-
facial resistance is rate controlling. Substituting the ex-
pression from Williams et al. (1999) for the #ux of oil
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from the micellar solution to the oil drops, into the
boundary condition at the moving boundary of the drop
surface, one has

c
�
dQ "2k

�
(c!c

�
e���), (1)

where k
�
is the rate constant and dQ is the rate of change of

the drop diameter. It is evident in Eq. (1) that there is
a droplet diameter d

�
for which the mass transfer is zero.

Drops larger than this size grow and those smaller than
this diminish in size. When the interfacial resistance is
controlling, the concentration c is uniform in the disper-
sion medium.
Population balance equation for Ostwald ripening

based on the proposed model is solved using discretiz-
ation. The evolution of the third moment of the distribu-
tion with time is then evaluated and compared with the
experimental data of Kabalnov (1998), Lessner et al.
(1981b) and the solution of LSW scheme as discussed in
the appendix.

2. Population balances

A monodisperse sample cannot show Ostwald ripen-
ing. Polydispersivity is important and the changes in the
distribution of diameters of the drops as a function of
time need to be tracked. The population balance equa-
tion (Hulburt & Katz, 1964) in dimensionless form is

�n

�¹

"!

�
�x
(x� n), (2)

where ¹"2k
�
t/D, x"d/D, n"nHD/N where nH is the

dimensional population density per unit volume andN is
the initial number of droplets per unit volume. In addi-
tion, from Eq. (1)

x� "�!�
�
e��	, (3)

where �"c/c
�
and �

�
"c

�
/c

�
. Eq. (2) can be rewritten

as

�f

�¹

"!x�
�f

�x
, (4)

where the cumulative distribution f"��
	
n dx� or

n"!�f/�x. Eq. (3) is the well-known Burger's equation.
The following simplifying assumptions have been made
in writing the above population balance equations: ionic
surfactants adsorb on the drop surfaces and the charged
drops repel each other. The rate of coalescence is reduced
or even eliminated over very large time scales. Conse-
quently, it is assumed that there is no drop coalescence.
In general, all surfactants make the interface inextensible
and the thinning of the "lm intervening between two
drops and leading to coalescence more di$cult. The
possibility of nucleation has also been ignored. It has
been assumed that the change in the bulk surfactant
concentration because of Ostwald ripening is negligible.

A material balance for oil in a closed system is

d�
d¹

"!3��
�

�

x� x�ndx, (5)

where �"F(�/6)D�. Obviously � is a measure of the
initial volume fraction of the dispersed phase. According
to Eq. (5) the rate of change of oil in the aqueous phase is
the negative of the rate of change of oil in the dispersed
phase. The object now is to solve Eqs. (3)}(5) subject to
n"!�f/�x and the initial distribution of f and the
initial value of �. Eventually, it is necessary to obtain the
third moment of the drop-size distribution as a function
of ¹.
Approximate solutions where the mass transfer is con-

trolled by di!usion in the dispersion medium were "rst
given by Lifshitz and Slezov (1959, 1961) and by Wagner
(1961). Kahlweit (1975) has provided a uni"ed treatment
of what is now known as the LSW solution. It predicts
that the third moment increases linearly with time in
keeping with much of the experimental data including
those by Kabalnov (1994) under consideration here. In
the appendix, we have followed the procedure given by
Kahlweit (1975) to determine what the rate law is during
the coarsening process when interfacial resistance con-
trols the mass transfer. The result is unsatisfactory in the
form of the second moment increasing linearly with time,
which is not in keeping with the data for such systems.
Next an attempt was made to solve the problem using

the method of moments (Hulburt & Katz, 1964). It is not
possible to formulate the problem unless the term e��	 in
Eq. (3) is approximated by 1#1/x and even then a prob-
lem results that an appropriate closure cannot be found.
A third method discretizes f in x. That is, f is replaced

with f
�
and �f/�x with its forward di!erence (f

�
�
!f

�
)/�

where � is the step size in x. This gives rise to a set of
coupled ordinary di!erential equations for f

�
in time.

Stable solutions can be obtained using upwind di!erenc-
ing (Chang & Cooper, 1970), which also introduces an
`arti"cial viscositya and has not been used here.
Themethod that was successful integrates Eq. (4) along

the characteristic. One has

df"
�f

�x
dx#

�f

�¹

d¹

on using the chain rule. At constant f, it reduces to

dx

d¹
"!

�f/�¹

�f/�x
.

On using Eq. (4)

dx

d¹
"x� (6)

results. Consider the initial distribution f"g(x). It is
discretized to �g

�
,x

�
	 and for a "xed g

�
, x

�
is updated

by integrating Eq. (6). Along with Eq. (5), one solves
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Fig. 2. Dimensionless third moments plotted against dimensionless time ¹. The common feature is the initial distribution. The two which equilibrate
rapidly are for �

�
"0.2 and the slower ones are for 0.1. For a particular �

�
the one with �"10�� equilibrates "rst and one with �"10�	

equilibrates last.

M ordinary di!erential equations whereM represents the
total number of points �i	. Eventually, 1/x was replaced
with 10�x/(10�x�#1) which becomes 10� x for very
small values of x, and 1/x for large values of x. These two
regimes are separated approximately at the maximum
located at x"0.03. That is, the function 1/x is replaced
by similar function which is well behaved in the immedi-
ate vicinity of x"0. Another problem appears due to the
discretization. Over time, values of some x

�
increase and

some decrease. The ones that reach zero and move to
negative values, actually represent drops that have disap-
peared and should not be counted anymore. This is
implemented in the algorithm.

d

d¹
f (0,¹)"x� n (0,¹), (7)

where the zero in the parentheses denotes x"0. Note
that the dimensionless total number of drops f (0,¹)
decreases with time since x� at x"0 is negative. Due to
discretization, the drops move out of the domain in
discrete packets. Now Eq. (5) requires one to calculate an
integral from x"0. However, due to the movement of
points out of the domain in packets, the smallest positive
x
�
is some distance away from x"0, and the value of the

integral jumps when it disappears and the algorithm
moves to x

�
�
as the current smallest positive value. To

prevent these jumps, a linear interpolation has been done

to locate the value of f at x"0. Thomaidis, Zygourakis,
and Wheeler (1988) note in their comprehensive treat-
ment of nearly hyperbolic equations by integrating along
the characteristics, that points do get convected out of
the domain but o!er no systematic method for handling
this problem. Their stability criterion shows that the
present case is unconditionally stable.
The initial cumulative distribution is represented with

the Fermi function

g"

1

1#e�
	�	� �
. (8)

The function falls from 1 to 0 around x"x
�
. The steep-

ness of the fall increases with 
. The value of the mean is
a little higher than x

�
and becomes x

�
as 
 increases, and


 can be decreased to increase the polydispersivity.

3. Results and discussion

The value ofM was equal to 41, that is, 41 points in x,
giving rise to 41 characteristic equations from Eq. (6),
plus the conservation equation, Eq. (5), leading to 42
di!erential equations. The two parameters describing the
initial distribution in Eq. (8) were taken to be x

�
"10.0

and 
"1.0, that is, the distribution is quite steep. The
solubility �

�
was taken to be 0.1 or 0.2 and the initial
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Fig. 3. Dimensionless concentration � is shown against time. The initial
value of � is �

�
. On this plot the responses for the two values of �,10��

and 10�	, are indistinguishable.

amount of concentration � was also set to �
�
to cut

down the size of initial transients. The realistic range of
values for the last parameter � was found to lie between
10�� and 10�	. Such a number, which is quite apart in
magnitude from the rest, makes the equations very sti!,
and Gear's subroutine in double-precision DIVAPGwas
used from the IMSL package. The time period chosen
was 0.1.
Fig. 2 shows the third moments as functions of time.

Initially, the third moment decreases rapidly at very
small times, which is followed by a linear increase at
larger times. The response also exhibits abrupt equilibra-
tion at larger times. Since one is accustomed to relating
the linear relation between the third moment and time to
the di!usional resistance as the controlling resistance, the
present result that the linearity is preserved in this case is
surprising. Possibly, the linear dependence on the con-
centration di!erence, which is common to the two rates,
plays the key role. Very small waves can be seen in the
plots in Fig. 2, which arise due to discrete packets reach-
ing x"0 as explained earlier. It is seen that � has a small
impact on the solution, but �

�
has a strong e!ect. In-

creasing �
�
by a factor of two decreases the equilibration

time by a factor of two. Investigation into the details of
the distribution f showed that packets of drops reached
x"0 only very slowly and stayed in the immediate
vicinity. Thus, the present interpolation scheme can be
expected to succeed.
Fig. 3 shows how the supersaturation (as measured by

the increase over �
�
) increases with time and then drops

slowly to an equilibrium value. Changes in the value of
�
�
does not change the shape of the curve signi"cantly

and a change in � has even less e!ect. In Fig. 4a are
shown the cumulative distribution functions at short
times. The initial distribution is quite steep. Coarsening,
that is, the increase in diameters of the larger drops can
be easily seen. Also visible is a quick fall in values of f
at x"0 with time. These values are the dimensionless

number of drops and equal to 1 at ¹"0. The distribu-
tions at large times are given in Fig. 4b. The two at the
largest times occur after equilibration shown in Fig. 2. It
is seen that in this phase there is not much change in the
number of drops but some coarsening is still taking place.
Not shown is the comparison between 
"1.0 and 0.5. In
the latter case the distribution is broader, leading to
a larger initial value for the third moment, but it increases
at the same rate as the 
"1.0 case.
From Fig. 2, one has to the "rst approximation that

the equilibration time ¹
�
is proportional to 1/�

�
, or in

terms of dimensional variables t
�
is proportional to

Dc
�
/2k

�
c
�
. Alternatively for the zeroth-order rate pro-

cess considered here, the rate is proportional to
2k

�
c
�
/Dc

�
. This is also found to be the case for the rate of

change of the second moment with time for LSWmethod
shown in the appendix. As shown in Fig. 1 schematically,
only some of Kabalnov's (1998) experiments fall in the
low-concentration range, two to be precise: one at 10
mM and the other at 33 mM of SDS. The ratio between
these two rates is about 2.0. From the present theory,
these rates should be proportional to k

�
c
�
, where it can

be assumed that k
�
is proportional to ���

�
and that c

�
is

proportional to the amount of surfactant present. Using
the value of ���

�
reported by Lessner et al. (1981b) to

estimate k
�
, the ratio of the two rates works out to be

33.3! Even though this value does not agree with the
experiments, the model is able to predict the correct
trend, i.e. the rates should decrease with surfactant con-
centration and not increase. It also shows that the data of
Kabalnov (1994) at low surfactant concentrations are
indeed controlled by interfacial resistance.
There are many sources that introduce the inaccur-

acies seen above. The system of Lessner et al. (1981b)
contain no solubilizate, that of Williams et al. (1999),
where the expression for the interfacial resistance has
been developed contain very small amount of
a solubilizate and the system of Kabalnov (1998) contain
signi"cant-to-large amount of solubilizate. Solubilizates
perturb equilibrium as well as nonequilibrium properties
(Lang & Zana, 1987; Friberg et al., 1985; Raney et al.,
1985). In spite of these problems, all other features at low
surfactant concentrations can be predicted well. This is of
importance as some of these run counter to intuition.
The curious observation to make of the research in this

area is that very little e!ort appears to have been made in
solving the population balance problem beyond the
LSW scheme. The governing equations are di$cult to
solve, but a lot of progress has been made in numerical
solutions, which appear to have been obtained here for
the "rst time. A wealth of details has now emerged on the
coarsening process. No shocks appear to form. We also
attempted to solve the problem where the di!usion in the
dispersion medium is rate controlling. As the Sherwood
number is 2 in such system, the mass transfer coe$cient is
inversely proportional to the drop diameter. At large
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Fig. 4. a. The distributions f have been plotted as a function of x, at ¹"0,2500 and 5000. The values of parameters are �
�

"0.1, �"10�	, x
�
"10

and 
"1.0. b. The distributions f have been plotted as a function of x, at ¹"12,500,15,000,17,500 and 20,000. The values of parameters are
�
�

"0.1, �"10�	, x
�
"10 and 
"1.0. In Fig. 2, it is seen that at the last two times equilibration has been reached.
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values of x, therefore, mass transfer becomes very small.
The numerical solutions show that the coarsening in very
slow. In fact at ¹"20,000 in Fig. 2, where all systems
have reached equilibrium, the di!usion limited systems
has just overcome the initial transients. Consequently, we
need to rescale the problem and rewrite the computer
codes to solve this case, which is a large amount of work
that has not been undertaken. But if the response is very
slow, it suggests that Kabalnov's (1994) data at large
surfactant concentrations may indeed be limited by di!u-
sion (with electrostatic repulsion) as suggested by him.

Appendix

The LSW method as generalized by Kahlweit (1975) is
used to characterize the coarsening process. Eq. (3) is
expanded to read

x� "��!�
�
/x, (A.1)

where ��"�!�
�
is the supersaturation and a critical

diameter is de"ned as

x
�
"�

�
/��. (A.2)

When x"x
�
, x� "0.

Now, the basic premise of LSW theory is that during
steady coarsening

�"

x

x
�

&1. (A.3)

Di!erentiating Eq. (A.3) with ¹,

d

d¹�
x

x
�
�"

��
x
�
�
(�!1)

�
!

x�
�
�

�� �&0, (A.4)

where Eq. (A.1) has been used. The expression within
square brackets when set to zero yields two roots for

�"�
�
[q$�q�!4q] where q"x�

�
/��. Kahlweit (1975)

argues that the maximum in � (as indicated in Eq. (A.4))
should be picked for that value which produces the
highest value, which occurs when the two roots are equal,
or q"4. One has

x�
�
"4��"

4�
�

x
�

(A.5)

or

dx�
�

d¹
"8�

�

and substituting Eq. (A.1)

dx�

d¹
"8�

�
.

Averaging this equation, one has the LSW equivalent
that

dx�

d¹
"8�

�
. (A.6)

Using dimensional time

dx�

dt
"

16k
�
c
�

Dc
�

. (A.7)
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