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Abstract

Anaerobic fermentation is an important process used for recycling solid organic waste, which leads to a signi$cant reduction of the waste
volume with the production of biogas as a positive side e5ect. For state observation and control purposes, a mathematical representation of
the process is required. However, anaerobic fermentation is far too complex to be described in full metabolic details, due to the variety of
responsible microorganisms and the unknown and time-varying waste composition. The level of complexity of the description is limited
by the amount and quality of available experimental data, which can be used for model identi$cation. In practice, the derivation of a
dynamic process model involves the following steps: (i) the selection of suitable macroscopic reaction schemes and kinetic structures,
(ii) the estimation of the unknown model parameters from experimental data by minimizing a maximum-likelihood criterion, (iii) the
estimation of the unknown measurement variances, (iv) the estimation of the covariance matrix of the parameter estimates and (v) the
validation of the obtained model.

In this study, attention is focused on these several steps, and a dynamic model of a complex anaerobic process is inferred from infrequent
measurements of global variables. The experimental data are obtained from six experiments carried out in a small-scale continuous
bioreactor under di5erent feed and (controlled) acidity conditions.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In France, the total solid waste production is estimated at
about 600×106 t=yr, potentially leading to signi$cant prob-
lems of disposal space in the near future. Sorting waste with
the aim of recycling reduces dump volume signi$cantly,
but is however limited to speci$c waste types, especially
in industry. The solid organic waste fraction, distinguished
by its producers into industrial, agricultural and urban, ad-
ditionally incorporates sources of regenerative energy. In
practice, there are two ways for recycling organic waste:
by aerobic (composting) and by anaerobic fermentation
(biomethanisation). The latter process leads to the produc-
tion of biogas, which is directly exploitable by combustion,
as a heating source or for the generation of electrical energy.
The biogas yield of this biogradation depends on the waste
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type and varies between 100 and 200 m3=t. Therefore it
represents not only a method for reducing the amount of
waste, but also an alternative for saving fossile energy
sources. In addition, the controlled production and exploita-
tion of the biogas prevents methane from entering and
damaging the ozone layer in the atmosphere. More than
60 biogas production sites are currently running all over
Europe.

The steadily increasing number of anaerobic waste treat-
ment plants necessitates high technological standards in
terms of process supervision and control. It is therefore of
high interest to $nd an appropriate description of the com-
plex bioprocess, which could be used for the estimation of
important unmeasured process states. To this end, a simple
model is derived in this paper, which is suCciently general
to describe di5erent operating conditions, but is charac-
terised by a relatively low number of model parameters.
This latter feature is particularly desirable, as it allows the
model to be easily adjusted to other production conditions,
e.g. other types of waste.
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Numerous studies of speci$c anaerobic fermentation pro-
cesses are presented in the literature, in which particular
waste types such as olive mill waste (Borja, MartGHn,
Banks, Alonso, & Chica, 1995; Fiestas Ros de Ursinos &
Borja-Padilla, 1996) or animal waste (Hansen, Angelidaki,
& Ahring, 1998; Simeonov, Momchev, & Grancharov,
1996). are considered, and a good qualitative knowledge,
e.g. the inhibition e5ect of ammonia, and the inLuence
of acidity and temperature (mesophilic and thermophilic
range) has resulted. Only few approaches exist, however,
for modelling the anaerobic fermentation process with re-
spect to state observation and control. Simeonov et al.
(1996) developed a dynamic three-stage model (hydrolysis,
acidogenisis and methanogenisis), which is identi$ed from
methane data only and which is said to be useful for control
purposes. Kiely, Tayfur, Dolan, and Tanji (1997) derived
a largely parametrized model for the anaerobic digestion
of municipal waste based on the modelling approach of
Hill and Barth (1977), which however shows identi$ability
problems, when applied to a di5erent process. A more the-
oretical approach is presented by Denac, Miguel, and Dunn
(1988), who derive the stoichiometry of a $ve-reaction
biodegradation chain for the treatment of molasses wastew-
ater. It is however hardly extendable to a more complex
waste composition.

Thus, no general modelling approach exists for the
complex anaerobic fermentation process due to the large
number of unknowns. Hence, the best strategy seems to
derive an—as simple as possible—model structure incorpo-
rating the available a priori knowledge and taking speci$c
modelling objectives (process optimisation, state estimation,
control) into account. For instance, Bernard, Hadj-Sadok,
and Dochain (2000) recently developed a software sensor
based on a simple mass-balance model underlining the im-
portance of advanced monitoring techniques in this $eld of
bioprocess engineering.

This philosophy is followed in the present study, and
particularly an attempt is made to answer the following
question: “is it possible to develop a dynamic model of the
anaerobic fermentation process from infrequent measure-
ments of global variables?” To this end, pilot-scale experi-
ments are carried out to cover di5erent operating conditions
(various temperatures, pH, and aqueous dilutions), and some
standard analyses are made to obtain measurement data, e.g.
chemical oxygen demand, material in suspension, total dry
extract etc. These standard data are used to set up a simple
model of the bioprocess and to estimate the unknown model
parameters as well as the unknown measurement variances.
By means of Fisher’s information matrix, a lower bound of
the covariance matrix of the estimated model parameters is
calculated in order to evaluate the quality of the obtained
model.

The paper is organized as follows: The bioprocess is in-
troduced in Section 2, and the experimental conditions are
detailed in Section 3. In Section 4, the mathematical model
structure is derived and formulated de$ning the system in-

puts and outputs as well as the structural parameters. The
identi$cation procedure is presented in Section 5, and the
results are validated and discussed. Section 6 focuses on a
statistical analysis in terms of con$dence in the obtained
model and correlation between parameters. Concluding re-
marks as well as perspectives for the practical application
are given in Section 7.

2. Process description

Anaerobic fermentation is a complex process, in which
many reactions take place. Due to the time-varying waste
composition, experiments are seldom reproducible, and a
detailed physical description of the process is usually in-
tractable. Rather, it is in most cases more appropriate to
investigate the process in a macroscopic way. To this end,
the waste composition is classi$ed according to

• organic vs. inorganic,
• particulate vs. dissolved,
• long- vs. short-chained molecules.

In the methanisation process, the organic waste degrades
biologically to produce volatile fatty acids and biogas, a
mixture of methane and carbon dioxide. Di5erent types of
bacteria, which sequentially break down the organic parts of
the waste in several steps, are responsible for the biodegra-
dation:

• In a $rst step, the particulate organic components char-
acterized by long-chained molecules of carbohydrates,
lipids and proteins, are solubilized by hydrolysis. This
initial degradation step is performed by bacteria called
hydrolytic biomass. The existence of this distinct type of
bacteria is however doubted in the literature (Borzacconi,
LTopez, & Anido, 1997; Angelidaki, Ellegaard, & Ahring,
1999) where it is considered that hydrolysis is catal-
ysed by enzymes commonly excreted by various
bacteria.

• The second step in the biodegradation process is be-
lieved to be bio-catalyzed by the acidogenic bacteria. The
medium-chained product molecules of hydrolysis are con-
verted into volatile fatty acids consisting of short carbon
chains (C2–C5).

• The (mainly acetic) volatile fatty acids represent sub-
strates for the third step performed by the methanogenic
bacteria, which convert them into the biogas components
methane and carbon dioxide.

3. Experiments

A series of experiments with di5erent waste types were
carried in eight small-scaled reactors running in parallel
under di5erent experimental conditions. The bioreactors of
volume V = 11 were run in (quasi-) continuous mode with
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Table 1
Experimental conditions of the series of six experiments

Exp. no. 1 2 3 4 5 6

pH (dimensionless) 5.5 6.0 6.5 7.0 6.0 6.5
T (◦C) 35 35 35 35 35 35
tend (d) 44 44 44 44 38 65
Samples (dimensionless) 13 13 13 13 12 18

Table 2
Some measured feed concentrations of organic fraction of urban household refuse

Exp. no. 1 2 3 4 5 6a 6b

Chemical oxygen demand (g/l) 20.0 20.0 20.0 20.0 20.0 50.0 112.0
Total organic carbon (g/l) 1.7 1.7 1.7 1.7 1.7 4.3 9.5
Material in suspension (g/l) 21.3 21.3 21.3 21.3 21.3 53.3 119.3
Total dry extract (g/l) 23.1 23.1 23.1 23.1 23.1 57.8 129.5

a daily replacement rate of 10 percent of reactor content by
new waste suspension, i.e. D = 0:1 l=d, applied discontin-
uously once per day. In this contribution, only the results
obtained for the organic fraction of household refuse be-
longing to the urban waste are considered. Six experiments
of 38–65 days duration were evaluated by taking samples
twice a week. The reactors were inoculated with sludge
from another anaerobic digestion process treating waste
from wine production. All experiments were carried out at
non-limiting concentrations of nitrogen (NTK ¿ 0:5 g=l)
and phosphorus (Pt ¿ 0:3 g=l) sources. The samples were
analysed according to a protocol yielding important biolog-
ical variables, e.g. chemical oxygen demand (COD), total
organic carbon (TOC) and some volumic mass concen-
trations. The experimental conditions are summarized in
Table 1.

For mathematical modelling purposes, the experiments
were carried out with di5erent operating conditions, i.e. the
pH was varied from one experiment to another, but was reg-
ulated during each run by addition of a bicorbonate solu-
tion. The temperature was maintained at 35◦C by a warm
water jacket. In addition, the experiments cover three feed
conditions di5ering in their dilution Table 2.

4. Modelling

The experimental data cannot give a detailed insight into
the biological process, since the measurements lump to-
gether several components and give therefore only a global
view. Especially the segregation of biomass is delicate be-
cause there is no accessible quantitative measure for the
di5erent compartments. For this reason, the modelling ap-
proach is essentially macroscopic.

The derivation of the model structure is introduced in the
sequel.

4.1. Measurements

Samples of the feed as well as of the reactor content
were analysed resulting in seven biochemically important
numbers.

In a $rst step of the analysis, one fraction is centrifugated
to eliminate the solid content before further analysis; the
other fraction is analysed with its components in suspension.

Both fractions are dryed at 105◦C to eliminate the solvent
and then burned at 500◦C. The COD for oxidation of the dry
material is determined, resulting in a biological key measure
of the organic content in the sample.

Organic material usually $ts the general formula
C�HO�N�. During its combustion, the carbon, hydrogen
and nitrogen atoms are converted into their highest stage of
oxidation through the following chemical reaction:

C�HO�N� +
(
� +


4
− �

2
+ �

)
O2

→ �CO2 +

2

H2O + �NO2: (1)

In the ideal case of complete oxidation, the COD is calcu-
lated in terms of the corresponding mass (c) by

�−1 =
c

COD
=

�MC + MH + �MO + �MN

(2� + 
2 − � + 2�)MO

in
g

gCOD
: (2)

� has typical values between 1 to 3 gCOD=g.
The TOC content is another representative measure of

the organic material. It is determined for the centrifugated
fraction and represents the mass of all carbon atoms present
in the sample. The conversion between the TOC number
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and mass is calculated analogously to the COD by

�−1 =
c

TOC
=

�MC + MH + �MO + �MN

�MC
: (3)

Typical values for � are between 0:4 and 0:8 gTOC=g.
The remaining measurements have the following physical

meanings:

• The material in suspension (MiS) is the mass di5erence
of the centrifugated fraction before and after centrifuga-
tion.

• The total dry extract (TDE) is the mass of the dried
non-centrifugated fraction.

• The organic dry extract (ODE) represent the mass dif-
ference between the residuals of the non-centrifugated
fraction after drying and burning, respectively.

• The overall volatile fatty acid (VFA) concentration—
including acetic (C2) to valeric acid (C5)—is determined
by gas chromatography.

Consequently, the measurement vector y consists of seven
elements:

yT = [CODs CODt MiS TDE ODE TOC VFA]: (4)

Biogas, and more speci$cally the produced amounts of
methane and carbon dioxide, were not measured due to
the lack of reliable quantitative methods. The main objec-
tive of this study is to focus attention on the reduction of
the amount of solid organic waste through the anaerobic
fermentation process. Furthermore, this study is motivated
by the attempt of a simple modelling approach from stan-
dard measurements, even without the data of the produced
biogas.

4.2. States

The proposed model contains states, which are assumed
to characterize the dynamic behaviour of the real system ap-
propriately well. Due to the lack of measurements of single
concentrations, the dynamics are represented by the concen-
trations of the following components classi$ed according to
their physico-chemical properties in the state vector:

x =




Xa

Xm

XS

XI

SS

SI

SVFA




: : : acidogenic biomass;

: : :methanogenic biomass;

: : : solid hydrolysable substrate;

: : : inert solid material;

: : : easily biodegradable substrate;

: : : inert dissolved material;

: : : volatile fatty acids

(5)

containing nx = 7 elements, where X denotes the concentra-
tion of particles in suspension and S the concentration of a
dissolved component (each in g/l).

Even though they are not a5ected by biodegradation, the
inert solid XI and dissolved components SI are considered in
this representation, as they are present in the measurement
signals.

The gaseous products methane and carbon dioxide are
not considered, since their measurements are not available.
It is assumed that their production is linearly related to the
methanogenic step.

Previous studies (GGerin, 2000) have shown that the
consideration of three types of biomass with the global
measurement data described in Section 4.1 leads to strong
practical identi$ability problems. These problems can be
(at least partly) alleviated by lumping together the biomass
responsible for hydrolysis and acidogenesis (Borzacconi et
al., 1997; Angelidaki et al., 1999).

Note that there is no direct way to calculate the state
directly from these global measurements.

4.3. Reaction scheme

According to the sequential biodegradation, there are
three main reactions in series, in which two types of biomass
are involved. It is assumed that the acidogenic and the
methanogenic steps are growth-associated:

XS
’hXa→ SS ; (6)

(
1
Ya

)
SS

’aXa→ Xa +
(

1
Ya

− 1
)
SVFA; (7)

(
1
Ym

)
SVFA

’mXm→ Xm +
1

YCH4

CH4 +
1

YCO2

CO2: (8)

The speci$c reaction rates are formulated using Monod’s
classical law (Monod, 1942):

’h = ’h;max (pH ; T; : : :)
XS

XS + KXS

; (9)

’a = ’a;max (pH ; T; : : :)
SS

SS + KSS
; (10)

’m = ’m;max (pH ; T; : : :)
SVFA

SVFA + KSVFA

(11)

characterized by the rate-limitation of at least one substrate.
In analogy to enzymatic reactions, the following expres-

sion for the pH dependence of the methanogenesis is derived
(Borzacconi et al., 1997; Lay, Li, Noike, Endo, & Ishimoto,
1997; Bailey & Ollis, 1996):

’m;max =
(ke0)m

1 + 10−pH+pK1 + 10pH−pK2
; (12)

where e0 denotes the catalyzing key enzyme activity and
pK = −lg K . The optimum pH , i.e. the condition for the
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maximum growth rate with respect to the pH is given by

pH;opt =
1
2

(pK1 + pK2 ): (13)

In addition, biomass dies or becomes inactive with an
assumed-constant speci$c death rate kd. Since the cells
mainly consist of solid organic material, dead biomass is
fully recycled as nutrient in the hydrolysis:

Xa
kd;aXa→ XS; (14)

Xm
kd;mXm→ XS: (15)

4.4. Model equations

The model equations can be written in the general form

ẋ(t) = Kr(x(t)) + D[xin − x(t)]; x(t = 0) = x0; (16)

y(t) = Cx(t); (17)

where K is the stoichiometric matrix

K =




0 1 0 −1 0

0 0 1 0 −1

−1 0 0 1 1

0 0 0 0 0

1 − 1
Ya

0 0 0

0 0 0 0 0

0 1
Ya

− 1 − 1
Ym

0 0




(18)

and r is the reaction rate vector

r =




’hXa

’aXa

’mXm

kd;aXa

kd;mXm



: (19)

xin is the concentration vector of the incoming waste, x0

is the vector of initial concentrations in the reactor, and D
is the dilution rate. The constant measurement matrix C is
written as

C =




0 0 0 0 �SS 0 �SVFA

�XX �XX �XS 0 0 0 0

1 1 1 1 0 0 0

1 1 1 1 1 1 1

1 1 1 0 1 0 1

0 0 0 0 �SS 0 �SVFA

0 0 0 0 0 0 1



: (20)

Xa Xm

XS

SS

SVFA

CH4

CO2

acidogenic
biomass

methanogenic
biomass

qh

qa qm (pH)

kd,a
kd,m

Fig. 1. Considered reaction scheme.

The global macroscopic reaction scheme is depicted in
Fig. 1.

4.5. Model parameters

The parameter vector contains 44 elements:

pT = [x∗T
in xT

0;1−4 x
T
0;5 x

T
0;6 · · ·

· · · Ya Ym ’h;max ’a;max ’m;max kd;a kd;m · · ·
· · · KXS KSS KSVFA pK;1 pK;2 · · ·
· · · �XX �XS �SS �SVFA �SS �SVFA ] (21)

and is generally classi$ed into three parts:

• the feed (x∗T
in = [XS;f XI;f SS;f SI;f SVFA;f]) and initial

states (x0) as experimental parameters—26 unknowns,
• the model parameters including stoichiometric (Y ), ki-

netic (’max; (ke0)m; kd) and saturation constants (K; pK)
as structural model parameters—12 unknowns,

• the conversion factors for COD (�) and for TOC (�) as
measurement parameters—6 unknowns.

The yield coeCcients of the biogas components CH4

and CO2 cannot be determined in this model identi$ca-
tion due to the absence of measurement of the gaseous
products.

Note that the initial conditions of the experiments 1–4
(x0;1−4) are the same, whereas the initial concentrations for
experiments 5 and 6 are di5erent (x0;1−4 �= x0;5 �= x0;6).
Furthermore, the aqueous dilution factor of the feed waste is
known for each experiment. It is therefore suCcient to esti-
mate the elements of only one reference feed concentration
vector xin.

5. Identi cation

The unknown model parameters are now estimated from
the experimental data.
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5.1. Cost function

In order to $nd the best $t of a model to given experimen-
tal data, an appropriate criterion for the optimal solution of
the model parameter vector must be selected.

A general criterion for noisy data is the maximum-
likelihood criterion

p̂ = arg max
p

{P[yi|p]}: (22)

This criterion maximizes the likelihood of the measurement
data set yi with respect to the parameter vector p. It is derived
from the Bayesian estimator assuming no a priori knowledge
on the parameters, i.e. a uniform probability distribution for
the parameter vector.

The well-known weighted-least-squares criterion of the
Gauss–Markov estimator is derived from the maximum-
likelihood cost function under the following assumptions
(Walter & Pronzato, 1997):

• the inputs and states are noise-free;
• the measurement error is uncorrelated, white, i.e. uncorre-

lated from one sampling instant to another, and normally
distributed, i.e. with a zero mean value and a Gaussian
distribution;

• the measurement error is known at each sampling instant
and independent of the states.

The Gauss–Markov criterion is then written:

p̂ = arg min
p
{jwls} (23)

with the cost function de$ned as

jwls =
nt∑
i=1

[yi − ym(x(ti; p); ti ; p)]T

×!−1
i [yi − ym(x(ti; p); ti ; p)]: (24)

This criterion requires the diagonal measurements (co-)
variance matrix !i, which is however often not known a
priori. In this case, the elements )j(ti) also have to be in-
cluded in the vector of unknown parameters, dramatically
increasing the problem dimensionality.

To alleviate this problem, consider the following
parametrized form of the diagonal measurement covariance
matrix representing a relative measurement error:

!i = diag{!relym(ti)}; (25)

which is now a linear function of the ideal output ym =
Cx. The proportionality matrix !rel is time-invariant and
contains the unknown elements )2

rel; j in its main diagonal.
An analytical expression can be derived from the optimality
condition for !rel, and included in the cost function such that
the parameter dimension is reduced to its original size and
the cost function implicitly includes the unknown variances
(Goodwin & Payne, 1977). This leads to the following form

of the maximum-likelihood optimality criterion:

jml(p) =
ny∑
j=1

{
nt; j ln{)̂rel; j(p)} + 2

nt; j∑
i=1

ln{ym;j(tji; p)}
}

(26)

with the estimated relative variances

)̂rel; j(p) =
1
nt; j

nt; j∑
i=1

(
yji − ym;j(tji; p)

ym;j(tji; p)

)2

: (27)

In contrast to the (weighted-)least-squares cost function
of the Gauss–Markov estimator, no dedicated algorithms,
like e.g. the Levenberg–Marquardt method, can be used to
$nd the optimum of this non-linear problem, but a general
minimum-seeking algorithm has to be applied. A short
introduction is given in the next section.

5.2. Optimization method

There exists a large variety of structurally di5erent meth-
ods to solve optimisation problems. None of them can gen-
erally be said to be the best a priori since, depending on the
problem structure, some methods might be more advanta-
geous than others.

In this study, the optimisation problem is non-linear and
non-convex. Such problems generally do not have a guar-
anteed single optimum. It is therefore desired to obtain the
global among all the other local optima, which refers to
the class of global optimisation problems, currently subject
of major interest in mathematical science. A well-known
and widely-used Lexible method to $nd a global optimal
solution is the Simulated Annealing strategy (Kirkpatrick,
Gelatt, & Vecchi, 1983). The reduction of the search radius
along the optimisation progress results in a $nal solution
with a high probability to be the global optimum. Global
search methods, however, su5er from a relatively large tun-
ing parametrisation (and high computational load) and are
usually less performant in locating a minimum in terms of
rate of convergence, since the parameter domain is scanned
more extensively and less eCciently towards decreasing cost
function values.

The gradient-based methods (Nocedal & Wright, 1999),
like the (modi?ed) Newton algorithm, are classically re-
stricted to local minimum seeking, since they follow the
slope to arrive at the optimum point. They make use of
the gradient at the intermediate solution after each iteration.
Therefore, only the local vicinity is evaluated, often apply-
ing the assumption of convexity of the problem, which is
not the case here. The gradient is in most cases computed
numerically, either by $nite di5erences or by numerical in-
tegration of the sensitivities, since the analytical solution
does not exist.

On the other hand, the direct-search methods (Powell,
1998) are not based on the gradient, but evaluate a speci$c
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number of parameter sets in the parameter space, which are
widely and arbitrarily distributed initially. The optimisation
strategy consists in reducing the size of the spanned hyper-
plane by dropping the parameter vector with the highest cost
in favour of a new one, determined by projection. A famous
example of this class of methods is the Nelder–Mead sim-
plex method (Nelder & Mead, 1965), which is the basis of
several variants proposed in the literature. Powell proposed
with CObyLA (Powell, 1998) and UObyQA (Powell, 2000)
two gradient-free direct search methods of $rst and second
order, respectively.

Powell’s “Unconstrained Optimization by Quadratic Ap-
proximation” algorithm (UObyQA) suits well to the present
optimisation problem, since the large initial hyperplane cov-
ers nearly the complete parameter range of interest and the
found optimum after reduction is therefore probable, al-
though not guaranteed to be global. A multi-start strategy,
featuring several optimisation runs from di5erent initial pa-
rameter estimates, allows the global character of the obtained
extrema to be further investigated.

The solution obtained by UObyQA is $nally cross-
checked with Ingber’s global optimisation method “Adap-
tive Simulated Annealing” (ASA) (Ingber, 1996).

5.3. Parameter constraints

The parameter range of interest is set by two constraints:

• The parameters in the considered model all have a physi-
cal interpretation and are therefore constrained by zero as
a lower bound. Negative values are meaningless and can
have an undesirable e5ects on the model outputs (nega-
tive concentrations, instabilities, : : :). For the same phys-
ical reasons, there is generally an upper bound, which is
often set intuitively.

• Another way for setting an upper bound is the vanishing
sensitivity, i.e. from a certain range of magnitude on, the
impact of the parameters on the system output becomes
negligibly small.

To impose bound constraints, either the parameter transfor-
mation

p = plim ± ep
∗

(28)

for a single bound plim or

p = 0:5 (phigh + plow + (phigh − plow) tanhp∗) (29)

for an interval [plow phigh] bound constraint can be used.
This leads to an even more nonlinear optimization prob-
lem but prevents the algorithm from exceeding the admit-
ted range for the original parameter p while optimizing the
transformed parameter p∗. This is anyway harmless, since
p∗(p) is injective. The main advantage of these transfor-
mations is that they allow an unconstrained optimisation
method to be used. These latter algorithms are often simpler
and more eCcient than constrained methods.

Table 3
Parameter set resulting from identi$cation: feed and initial states

xT
in = [10:21 9:72 1:64 0:14 0:02] g/l

xT
01 = [1:024 0:909 0:61 0:32 0:16 3:23 0:00] g/l

xT
02 = [0:612 0:084 21:87 8:07 0:42 20:13 1:23] g/l

xT
03 = [15:446 0:002 0:74 0:19 0:05 1:63 0:18] g/l

Table 4
Parameter set resulting from identi$cation: model parameters and their
standard deviations

Parameter (Unit) Value Standard deviation

Ya (g/g) 0:0736 0:0072
Ym (g/g) 0:214 0:0086
’h;max (1/d) 3:30 0:70
’a;max (1/d) 1:41 0:29
(ke0)m (1/d) 5:73 0:46
kd;a (1/d) 5:56 × 10−3 1:59 × 10−3

kd;m (1/d) 0:918 0:107
KXS (g/l) 45:5 11:5
KSS (g/l) 9:97 0:97
KSVFA (g/l) 4:454 0:47
pH;opt (dimensionless) 7:95 0:15
ZpK (dimensionless) 1:99 0:14
�SS (gCOD/g) 2:97 0:56
�XS (gCOD/g) 1:34 0:09
�SVFA (gCOD/g) 1:00 0:15
�XX (gCOD/g) 1:03 0:25
�SS (mgTOC/g) 800 159
�SVFA (mgTOC/g) 504 56

)y; rel (dimensionless) 0:296

Table 5
Measured waste concentrations (in g/l) in comparison with predicted
values

Variable Name Measured Predicted

CODs Chemical oxygen demand (dissolved) 4.17 4.90
CODt Chemical oxygen demand (total) 20.0 18.62
MiS Material in suspension 21.31 19.92
TDE Total dry extract 23.13 21.73
ODE Organic dry extract 14.68 11.87
TOC Total organic carbon (dissolved) 1.7 1.33
VFA Volatile fatty acids 0.02 0.02

5.4. Numerical values

The solution of the parameter estimation is given in the
Tables 3 and 4. The parameter values are obtained by min-
imisation of the cost function (26) with respect to the com-
plete parameter vector including the experimental and the
structural parameters.

Table 5 compares the measured with the predicted feed
concentrations for the experiments 1–4.
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5.5. Interpretation

The parameter values estimated by the optimization pro-
cess lead to the following interpretations of the mathemati-
cal model:

• The yields of produced biomass referred to consumed
substrate for both types of biomass are relatively low.
Around ten to twenty mass percent of the substrates are
converted into biomass.

• The high values for KXS , KSS and KSS indicate quasi-$rst-
order kinetics of the hydrolysis, the acidogenisis and
methanogenic step with respect to their limiting substrate,
since the estimated respective substrate concentrations
are always below these values. This is con$rmed by
unrealistically high maximum reaction rates (all above
2 1=d). The respective quasi-linear reaction constants
are calculated then as the ratio of the maximum reaction
rate ’max and the saturation constant K and represent the
slope of the Monod law at zero concentration.

k =
’max

K
: (30)

The resulting constants are kh=0:072 l=gd, ka=0:14 l=gd
and km;max = 1:29 l=gd, respectively.

• The e5ective maximum growth rate of the pH -dependent
methanisation step is ’m;max (pH = pH;opt = 7:95) =
5:61 1=d. For pH =7 the maximum growth rate decreases
to 5:2 1=d and for pH = 6 to 3:0 1=d.

Note that the parameter estimation in this case is deli-
cate due to the important estimation load of the initial and
feed conditions, which are not directly computable from the
measurements, compared to the case of a directly measured
state. The estimation of the initial states and the input condi-
tions remains the critical task of the identi$cation problem.

5.6. Model validation

A visual veri$cation of the results is achieved by predic-
tion of the model output using the parameter values com-
puted in the identi$cation step. As an example, the model
prediction of the states and the measurements for experi-
ment 4 is given in Figs. 2 and 3, respectively. The graphs
show good agreement of the model with the experimental
data, which are also shown for comparison together with
their estimated 95% error bounds. In addition, the estimated
feed concentration is displayed.

5.7. Discussion

According to Figs. 2 and 3, the model visually gives an ap-
propriate representation of the anaerobic fermentation pro-
cess.

From the evolution of the predicted concentration of
the methanogenic biomass in Fig. 4, it is clearly visible
that the pH has some inLuence on the biomass growth in
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Fig. 2. Experiment 4 (pH =7; S0; in =20 gCOD=l): predicted states (solid)
and feed concentrations (dashed).
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with estimated 95% error bounds, predicted output (solid) and feed con-
centrations (dashed).
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Fig. 4. Model prediction of methanogenic biomass concentration in ex-
periments 1–4 (S0; in = 20 gCOD=l).

experiments 1–4. In the experiments 3 and 4, the biomass
is not washed out of the reactor, as it is the case in exper-
iments 1 and 2 due to the reduced reaction rate. Since the
optimum pH;opt = 7:95 the consumption of the VFA and
therefore the growth of biomass is greater in experiment 4
(pH = 7) compared to experiment 1 (pH = 5:5).

Fig. 3 shows another phenomenon occurring in most
measurement plots: the Luctuation of the experimental
data, which illustrates the magnitude of the measurement
noise. This phenomenon is also quanti$ed by the estimated
relative standard measurement deviation, which is around
30%. Obviously, the measurement values are correlated,
probably due to inaccuracies in the dilution of the samples
for analysis or due to non-ideal mixing conditions of the
reactor.

6. Statistical analysis

After the complete model identi$cation, the con$dence in
the resulting set of parameters has to be analysed.

6.1. Measurement covariance

As the measurement errors are not known a priori, their
estimation is implicitly included in the optimisation crite-
rion. The estimated variances are calculated according to Eq.
(27) and represent the elements in the diagonal covariance
matrix !.

6.2. Con?dence and correlation

Fisher’s information matrix

F(p̂) = E
y|p̂

{[
@{ln P(y|p)}

@p

] [
@{ln P(y|p)}

@p

]T
}

(31)

contains the sensitivities (@=@p){ln P} of the log-likelihood
function with respect to the estimated parameters at all sam-
pling instants.

If the assumptions underlying the Gauss–Markov criterion
are ful$lled, Fisher’s information matrix is written in the
simple form:

F(p̂) =
nt∑
i=1

[
@y(t; p)
@pT

∣∣∣∣
ti ;p̂

]T

!−1
i

[
@y(t; p)
@pT

∣∣∣∣
ti ;p̂

]
: (32)

The con$dence in the solution in terms of the parameter
covariance matrix can be estimated by the CramGer–Rao in-
equality

P¿F(p̂)−1; (33)

which becomes an equality only in the ideal case of an
in$nite number of data points (continuous measurement). It
gives anyway an idea about the con$dence intervals of the
parameters.

The standard deviations )p of the parameters in
Table 4 allow a satisfactory con$dence in the determined
set of parameters.

The correlation between parameters, i.e. the interplay be-
tween two parameters pi and pj in terms of their inLuence
on the system behaviour, is quanti$ed by the correlation ma-
trix

{P∗}ij =
{P}ij√{P}ii{P}jj

(34)

ful$lling

− 1¡ {P∗}ij6 1: (35)

Elements {P∗}ij with an absolute value close to one in-
dicate a strong correlation between the parameters pi

and pj.
Applied to the identi$cation results, the following param-

eters are correlated according to this criterion:

• the pair {’h;max; KXS} for the kinetics of the hydrolytic
step is strongly correlated at a degree of 0.79;

• the tripel {(ke0)m; KSVFA ; kd;m} describing the methano-
genic biomass shows correlations of degrees between 0.19
and 0.72;

• there is also a strong correlation between the two pH

parameters at a level of 0.74;
• the parameters Ya, ’a;max, KSS and kd;a inLuencing the

acidogenic biomass show only weak correlations with a
maximum degree of 0.43.

7. Conclusions

The purpose of this paper is to discuss, through a real-case
study, a procedure for model structure selection (and simpli-
$cation) based on the examination of several macroscopic
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reaction pathways (and in particular the number of biomass
types that have to be distinguished) together with the avail-
able rare, noisy and global measurements. A simple model
is developed for an aerobic waste treatment process, consid-
ering only two types of biomass, which is shown to be the
maximum number of distinguishable micro-organisms from
the available measurement data. At least the identi$ability
can be guaranteed in this case, even though the model is re-
stricted to a very macroscopic view of the biodegradation
process. Estimates for the parameters are calculated by min-
imising a maximum-likelihood criterion, which results in
prediction curves in good agreement with the measurement
data, even though the uncertainty on the estimated parame-
ters remains at a relatively high level. However, compared
to the quality of the measurements, the developed model to-
gether with the determined set of parameters seems to be an
appropriate basis for further use in state observers, which is
the intended application of the model.
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