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Abstract

Dense gas–particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers
and base chemicals. The scale-up of these processes is often problematic, which can be related to the intrinsic complexities of these flows
which are unfortunately not yet fully understood despite significant efforts made in both academic and industrial research laboratories.
In dense gas–particle flows both (effective) fluid–particle and (dissipative) particle–particle interactions need to be accounted for because
these phenomena, to a large extent, govern the prevailing flow phenomena, i.e. the formation and evolution of heterogeneous structures.
These structures have significant impact on the quality of the gas–solid contact and as a direct consequence thereof strongly affect the
performance of the process.
Due to the inherent complexity of dense gas-particles flows, we have adopted a multi-scale modeling approach in which both fluid–particle

and particle–particle interactions can be properly accounted for. The idea is essentially that fundamental models, taking into account the
relevant details of fluid–particle (lattice Boltzmann model (LBM)) and particle–particle (discrete particle model (DPM)) interactions, are
used to develop closure laws to feed continuum models which can be used to compute the flow structures on a much larger (industrial)
scale. Our multi-scale approach (see Fig. 1) involves the LBM, the DPM, the continuum model based on the kinetic theory of granular
flow, and the discrete bubble model. In this paper we give an overview of the multi-scale modeling strategy, accompanied by illustrative
computational results for bubble formation. In addition, areas which need substantial further attention will be highlighted.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Dense gas–particle flows are frequently encountered in
a variety of industrially important gas–solid contactors,
of which the gas-fluidized bed can be mentioned as a
very important example. Due to their favorable mass and
heat transfer characteristics, gas-fluidized beds are often
applied in the chemical, petrochemical, metallurgical, en-
vironmental and energy industries in large scale operations
involving a.o. coating, granulation, drying, and synthesis of
fuels and base chemicals (Kunii and Levenspiel, 1991). Lack
of understanding of the fundamentals of dense gas–particle
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flows, and in particular of the effects of gas–particle drag
and particle–particle interactions (Kuipers et al., 1998;
Kuipers and van Swaaij, 1998), has led to severe difficul-
ties in the scale-up of these industrially important gas–solid
contactors (van Swaaij, 1990). To arrive at a better un-
derstanding of these complicated systems in which both
gas–particle and particle–particle interactions play a domi-
nant role, computer models have become an indispensable
tool. However, the prime difficulty with modeling gas-
fluidized beds is the large separation of scales: the largest
flow structures can be of the order of meters; yet these
structures are found to be directly influenced by details
of the particle–particle collisions, which take place on the
scale of millimeters or less. Therefore, we have adopted a
multi-level modeling strategy (seeFig. 1), with the prime
goal to (i) obtain a fundamental insight of the complex
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Fig. 1. Multi-level modeling scheme.

dynamic behavior of dense gas–particle fluidized suspen-
sions; that is, to gain an understanding based on elementary
physicalprinciples such as drag, friction, dissipation etc., (ii)
from this insight, develop models withpredictivecapabili-
ties for dense gas–particle flows encountered in engineering
scale equipment. To this end, we consider gas–solid flows
at four distinctive levels of modeling.
At the most detailed level of description, the gas flow field

is modeled at scalessmaller than the size of the solid par-
ticles. The interaction of the gas phase with the solid phase
is incorporated by imposing “stick” boundary conditions at
the surface of the solid particles. This model thus allows us
to measure the effective momentum exchange between the
two phases, which can be used in the higher scale models.
In our model, the flow field between the spheres is solved
by the lattice Boltzmann model (LBM) (Succi, 2001; Ladd,
1993; Ladd and Verberg, 2001), although in principle other
methods (such as standard computational fluid dynamics)
could be used as well.
At the intermediate level of description, the flow field

is modeled at a scalelarger than the size of the parti-
cles, where a grid cell typically containsO(102)–O(103)
particles, which are furthermore assumed to be perfect
spheres (diameterd). This model consists of two parts: a
Lagrangian code for updating the positions and velocities
of the solid particles from Newton’s law, and an Eulerian
code for updating the local gas density and velocity from
the Navier–Stokes equation (Hoomans et al., 1996). The
advantage of this model is that it can account for the par-
ticle wall and particle–particle interactions in a realistic
manner, for system sizes of aboutO(106) particles, which
is sufficiently large to allow for a direct comparison with
laboratory-scale experiments. As a logical consequence of
this approach, a closure law for the effective momentum
exchange has to be specified, which can be achieved on the
basis of the aforementioned LB simulations. Note that in
chemical engineering, to date mainly empirical relations are
used for the friction coefficient� (defined by (5)), such as
the Ergun correlation (Ergun, 1952) for porosities�<0.8:

�d2

�
= 150

(1− �)2

�
+ 1.75

(1− �)
�
Re (1)

and theWen andYu equation (Wen andYu, 1966) for porosi-
ties �>0.8:

�d2

�
= 3

4 CdRe(1− �)�−2.65,

Cd =
{
24(1+ 0.15Re0.687)/Re Re<103,
0.44 Re>103,

(2)

where� is the viscosity of the gas phase,Reis the Reynolds
number, andCd the drag coefficient, for which the expres-
sion ofSchiller and Nauman (1935)is used.
At an even larger scale, a continuum description is em-

ployed for the solid phase, i.e. the solid phase is not described
by individual particles, but by a local density and velocity
field. Hence in this model, both the gas phase and the solid
phase are treated on an equal footing, and for both phases
an Eulerian code is used to describe the time evolution (see
Kuipers et al. (1992)andGidaspow (1994), amongst others).
The information obtained in the two smaller-scale models is
then included in the continuum models via the kinetic the-
ory of granular flow. The advantage of this model is that it
can predict the flow behavior of gas–solid flows at life-size
scales, and these models are therefore widely used in com-
mercial fluid flow simulators of industrial scale equipment.
Finally, at the largest scale, the (larger) bubbles that are

present in gas–solid fluidized beds are considered as dis-
crete objects, similar to the solid particles in the DPM. This
model is an adapted version of the discrete bubble model
(DBM) for gas–liquid bubble columns. We want to stress
that this model—as outlined in Section 4—has been devel-
oped quite recently, and the results should be considered as
very preliminary.
In this paper, we will give an overview of these four levels

of modeling as they are employed in our research group. Our
particular focus will be on the effect of the drag force—as
obtained from the LB simulation—on the formation of bub-
bles in the higher scale models. In the following sections we
will describe each of these models in more detail.

2. LBM

The LBM originates from the lattice-gas cellular automata
(LGCA) models (Frisch et al., 1986) for simple fluids. The
LGCA model is basically a discrete, simplified version of
the molecular dynamics model, which involves propagations
and collisions of particles on a lattice. LGCA models have
proved a simple and efficient way to simulate a simple fluid
at themicroscopic level, where it has been demonstrated both
numerically and theoretically that the resulting macroscopic
flow fields obey the Navier–Stokes equation. The LBM is
the ensemble averaged version of the LGCA model, so that
it represents a propagation and collision of the particledis-
tributions instead of theactual particles as in the LGCA
models (Succi, 2001; McNamara and Zanetti, 1988). From
a macroscopic point of view, the LBM can be regarded as a
finite difference scheme that solves the Boltzmann equation,
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the fundamental equation in kinetic theory which underlies
of the equations of hydrodynamics. In its most simple form,
the finite difference scheme reads

f (�v, �r + �v �t, t + �t)− f (�v, �r, t)
= − �t

�
(f (�v, �r, t)− f eq(�v, �r, t)) (3)

where f is the single particle distribution function, which
is equivalent to the fluid density in the six-dimensional
velocity-coordinate space, andf eq represents the equilib-
rium distribution. In Eq. (3), the position�r and velocity�v
are discrete, i.e. the possible positions are restricted to the
sites of a lattice, and thus the possible velocities are vectors
connecting nearest neighbor sites of this lattice. Note that
Eq. (3) represents a propagation, followed by a “collision”
(relaxation to the equilibrium distribution). From the single
particle distribution function, the hydrodynamic variables of
interest—the local gas density� and velocity �u—are ob-
tained by summing out over all possible velocities:

�(�r, t)=
∑

�v
f (�v, �r, t),

�(�r, t)�u(�r, t)=
∑

�v
�vf (�v, �r, t). (4)

It can be shown that the flow fields obtained from the LBM
are—to order�t2—equivalent to those obtained from the
Navier–Stokes equation, where the viscosity is set by the
relaxation time�. One of the advantages of the LBM over
other finite difference models for fluid flow, is that boundary
conditions can be modeled in a very simple way. This makes
the method particularly suited to simulate large moving par-
ticles suspended in the fluid phase. An obvious choice of the
boundary condition is where the gas next to the solid parti-
cle moves with the local velocity of the surface of the solid
particle, i.e. the so-called “stick” boundary condition. For a
spherical particle suspended in an infinite three-dimensional
system, moving with velocity�v, this condition will give rise
to a frictional force on the particle�F = 3��d �v, at least in
the limit of low-particle Reynolds numbersRe = �d�v/�,
whered is the hydrodynamic diameter of the particle, and
� is the shear viscosity. A particular efficient and simple
way to enforce stick boundary conditions for static parti-
cles in the LBM is to let the distributions “bounce back” at
the boundary nodes (Ladd, 1993; Ladd and Verberg, 2001);
these nodes are defined as the points halfway two lattice
sites which are closest to the actual surface of the particle
(seeFig. 2, left graph, solid squares). For non-static par-
ticles, the rules involve some simple modifications of the
bounce back rule, depending on the local boundary velocity.
For details we refer toLadd (1993)andLadd and Verberg
(2001). In Fig. 2 (right graph), we show the LBM simu-
lation result for the velocity of a single free falling sphere
in an (effectively) unbounded fluid. As can be seen from
Fig. 2, the boundary rules result in a terminal velocity ac-
cording to the Stokes–Einstein friction force. Note that the
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Fig. 2. Left graph: example of a boundary node map for a disc in a
two-dimensional hexagonal lattice. Right graph: velocity of a single sphere
in a three-dimensional LB gas. The black line is the data from LBM,
which has the proper functional formv(t)= v∞(1−exp(−gt/v∞)). The
grey line is theoretical terminal velocity, which is slightly higher thanv∞.

actual plateau value of the velocity is slightly smaller than
the theoretical prediction. This can be attributed to the fact
that the diameter of the particle is not well-defined, due to
the irregular shape of boundary-node surface of the sphere.
In fact, the free falling sphere experiment (or a similar ex-
periment with periodic boundary conditions) is used for cal-
ibration purposes, that is, the effective hydrodynamic diam-
eter d of a sphere is obtained from its terminal velocity,
where it isassumed that the Stokes–Einstein relation holds.
It has been shown (Ladd, 1993) that this gas–solid model
also produces accurate results for systems with more than
one particle; for instance, the hydrodynamic force that two
approaching spheres exert on each other is in perfect agree-
ment with the analytical solution (Ladd, 1993). Note that the
drag forceFd can also be directly measured in the simula-
tion, from the change in gas momentum due to the boundary
rules. To obtain the drag force in random arrays of particles
at some given porosity, it is therefore more convenient to
keep the spheres fixed to their positions, and let the gas flow
past the spheres with constant velocityuo, according to the
desiredRenumber(Re=��duo/�). The average drag force
〈Fd〉 on a sphere then follows from the average change in
gas momentum, from which the friction coefficient� can be
obtained:

� = 1− �
Vp

〈Fd〉
uo
, Vp = 1

6 �d3. (5)

By using this method, we found for low Reynolds num-
ber excellent agreement with data obtained by multipole
expansion methods (van der Hoef et al., 2004). By con-
trast, it was found that the widely used empirical correla-
tions (1) and (2) significantly underestimate the drag force,
at least for low Reynolds numbers. In this paper, we want
to present some preliminary results from the LBM for fi-
nite Reynolds numbers. InFig. 3 we show our simulation
data in a(�d2/�)(�/(1 − �)Re) vs. Re/(1 − �) graph. It
was shown byErgun (1952)that in such a representation,
all experimental data falls onto a single curve (solid line in
Fig. 3). We find that our LBM data deviates substantially
from Ergun Eq. (1): for lowRenumbers the Ergun equation



5160 M.A. van der Hoef et al. / Chemical Engineering Science 59 (2004) 5157–5165

10
1

10
0

10
1

10
2

10
3

10
4

Re / (1ε)

10
0

10
1

10
2

10
3

(β
d2 /µ

) 
* 

ε/
(1

 ε
)R

e

Ergun
Wen & Yu (ε = 0.9)
Wen & Yu (ε = 0.8)
LBM (ε = 0.50.7)
LBM (ε = 0.8)
LBM (ε = 0.9)

Fig. 3. Normalized drag force at arbitrary Reynolds numbers and gas frac-
tions. The symbols represent the simulation data, the lines the empirical
correlations.

underestimates the drag force, whereas for highRenumbers
that Ergun equation overestimates the drag force. Simula-
tions on binary systems (van der Hoef et al., 2004) showed
that a possible cause of the discrepancy at lower Reynolds
number could be that the experimental systems were not
strictly monodisperse. Note also that the Ergun equation was
derived for packed beds, and is not expected to be valid
for high gas fractions. Our simulation data turns out to be
in reasonable agreement with the expression byHill et al.
(2001a,b)which was fitted to LB simulation data of systems
comparable to those that we have studied. On the basis of
our data from the LB simulations, we suggest the following
modification to the Ergun equation:

�d2

�
= [180+ C0] (1− �)2

�
+ [1.75+ C1] (1− �)

�
Re (6)

with

C0 = 18�3(1+ 1.5
√
1− �)

(1− �)
.

Our data indicates thatC1 can be well fitted to a polyno-
mial in 1− �; at present, our best fit isC1=−1.3+1.9(1−
�) − 1.6(1− �)2, which we will use in the following sec-
tions. However, as mentioned before, these are preliminary
results, and the coefficients might change slightly on the
basis of more extensive data. Note that by taking the limit
� = 1, Re → ∞, we find that Eq. (6) corresponds to a
drag coefficientCd(∞) = 0.6, which is much closer to the
Schiller and Nauman (1935)value (0.44), than both Hill
et al. (1.09) and Ergun (2.3). An elaborate disscussion of the
simulation procedure and validation of the data, as well as
a detailed comparison with various other expressions from
literature, will be published elsewhere (van der Hoef et al.,
2004; Beetstra et al., 2004).

3. Discrete particle model (DPM)

The DPM is one level higher in the multi-scale hierarchy.
The most important difference with the LBM is that now
the size of the particles issmaller than the grid size which
is used the solve the equations of motion of the gas phase.
This means that for the interaction with the gas phase, the
particles are simply point sources and sinks of momentum,
where the finite volume of the particles only comes in via
an average gas fraction in the drag force relations. A second
(technical) difference with the LBM is that the evolution of
the gas phase now follows from a finite difference scheme
of the Navier–Stokes equation, rather than the Boltzmann
equation.A complete description of the method can be found
in Hoomans et al. (1996), however, we will briefly discuss
some of the basic elements here. The DPM consists of two
parts: a Lagrangian part for updating the positions and ve-
locities of the solid particles, and an Eulerian part for up-
dating the local gas density and velocity. In the Lagrangian
part, the equation of motion of each particlei (velocity �vi ,
massmi , volumeVi) is given by Newton’s law

mi
d�vi
dt

=mi �g + Vi�
(1− �)

(�u− �vi)
−Vi∇p + �Fppi + �Fpwi , (7)

where the RHS represents the total force acting on the par-
ticle. This includes external forces (the gravitational force
mi �g), interaction forces with the gas phase (drag force
∼ �(�u − �vi) and pressure forceVi∇p), and finally the
particle–particle forces�Fppi and particle–wall forces�Fpwi ,
which represents the collisions, and possible long-range
attractions between the particles, and particles and walls,
respectively.
There are—in principle—two ways to calculate the tra-

jectories of the solid particles from Newton’s law. In a time-
driven numerical simulation, the new position�ri(t+dt) and
velocity �vi(t + dt) are calculated from the values at timet,
via a standard integration scheme for ODEs. Such type of
simulation is in principle suitable for any type of interaction
force between the particles. In an event-driven simulation,
the interactions between the particles are considered instan-
taneous (“collisions”), and the systems evolve directly (“free
flight”) from nearest collision event to next-nearest collision
event, etc. This method is efficient for low-density systems,
however it is not suitable for dense-packed system, or sys-
tems with long-range forces.
In the Eulerian part of the code, the evolution of the gas

phase is determined by the volume-average Navier–Stokes
equations

�
�t
(��)+ ∇ · ���u= 0, (8)

�
�t
(���u)+ ∇ · ���u�u= −�∇p − ∇ · �� − �S + ���g, (9)
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where� is the usual stress tensor, which includes the coef-
ficient of shear viscosity. Note that there is a full two-way
coupling with the Lagrangian part, i.e., the reaction from
drag and pressure forces on the solid particles is included
in the momentum equation for the gas phase via a source
term �S

�S = 1

V

∫ ∑
i

Vi�
1− �

(�u− �vi)�(�r − �ri)dV. (10)

Eqs. (8) and (9) are solved with a semi-implicit method for
pressure-linked equations (SIMPLE-algorithm), with a time
step that is in general an order of magnitude larger than the
time step used to update the particle positions and velocities.
The strength of the DPM is that it allows to study the

effect of the particle–particle interactions on the fluidiza-
tion behavior. In the most detailed model of description, the
interparticle contact forces includes normal and tangential
repulsive forces (modeled by linear springs), and dissipa-
tive forces (modeled by “dash pots”), and tangential friction
forces (Walton, 1993).A DPM simulation study byHoomans
et al. (1996)showed that the heterogeneous flow structures
in dense gas-fluidized beds are partly due to the collisional
energy dissipation. More recently,Li and Kuipers (2003)
demonstrated that such flow structures are also strongly in-
fluenced by the degree of non-linearity of the particle drag
with respect to the gas fraction�. In this paper, we want to
use the DPM to demonstrate the effect of the various drag
force correlations on the bubble formation in gas-fluidized
beds, and compare the results with our experimental obser-
vations. In the DPM simulations, we consider a system of
15 cm×45 cm×1.5 cm (w×h×d), where the bed height at
minimum fluidization conditions is equal to 22 cm. The par-
ticles have a diameter of 2.5mm, a density of 2526 kg/m3,
and a coefficient of restitution equal to 0.97. For the inter-
particle momentum exchange, we used (i) the “traditional”
Ergun/Wen andYu combination, i.e. Eq. (1) for�<0.8, and
Eq. (2) for �>0.8; (ii) the drag force relations derived by
Hill et al. (2001a,b); and (iii) the drag force relation (6)
which was derived from our LB simulations. For compari-
son, we also performed the real experiment, on a pseudo-2D
fluidized bed(15 cm× 100 cm× 1.5 cm (w × h× d)), ini-
tially kept at incipient fluidization conditions using a porous
plate for homogeneous background fluidization and a cen-
tral jet for bubble injection. Spherical glass beads of 2.5mm
diameter were used of different color, which were initially
ordered in two separate layers to visualize the extent of mix-
ing induced by the bubble. Pictures of the bed where the
bubble was injected were taken with a high-speed (262Hz)
digital camera.
In Fig. 4we show snapshots of the bubble, both from ex-

periments (a), and from simulations (b, c, and d). We find
that both the drag relations from Hill et al., and (6) predict
a smaller bubble size, and a more pronounced “raining” of
particles through the roof of the bubble, compared to the
Ergun/Wen and Yu drag relations. As a result the interface

Fig. 4. Snapshots of the bubble in a mono-disperse fluidized bed 0.3 s
after injection. (a) Experiment; (b) DPM simulation with Ergun/Wen and
Yu; (c) DPM simulation with the drag relation fromHill et al. (2001a,b);
(d) DPM simulation with the drag relation (6).

between the bubble and the emulsion phase is much more
diffuse. The conclusion on the basis of the visual inspection
of the bubble is that the drag relations derived from the LB
simulations yield a better agreement with the experimental
observations than the Ergun/Wen andYu drag relations. In a
more detailed analysis (Bokkers et al., 2004a), it was found
that also the experimental particle velocity profiles were
in reasonable agreement with the velocity profiles obtained
from DPM simulations using the drag relations of Hill et al.

4. Two-fluid model (TFM)

The maximum number of particles that can be simulated
with the DPM, as described in the previous section, is typ-
ically less than a million, whereas the number of particles
that are present in an industrial size fluidized bed can be
two to threeorders of magnitude higher. Since both the
CPU time and the required memory scales linear with the
number of particles, it is obvious that DPM simulations of
industrial size fluidized beds are beyond the capability of
commercially available computer facilities within the fore-
seeable future. Therefore, a different type of model is used
for simulations at larger scales, where the concept of a solid
phase consisting of individual, distinguishable particles is
abandoned. This so-called TFM describes both the gas phase
and the solid phase as fully inter-penetrating continua, us-
ing a set of generalized Navier–Stokes equations (Kuipers
et al., 1992; Gidaspow, 1994). That is, the time evolution of
the gas phase is still governed by (8) and (9); for the solid
phase, the discrete particle part (7) is now replaced by a set
of continuous equations of the same form as (8) and (9):

�
�t
(�s�s)+ ∇ · �s�s �v = 0, (11)

�
�t
(�s�s �v)+ ∇ · �s�s �v�v
= − �s∇p − ∇ps − ∇ · �s�s + �S + �s�s �g (12)
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with �s , �v and �s = 1 − � the local density, velocity, and
volume fraction of the solid phase, respectively. In this de-
scription, the source term�S is slightly different from (10),
namely

�S = �(�u− �v). (13)

Obviously, the numerical scheme for updating the solid
phase is now completely analogous to (and synchronous
with) that of the gas phase. Since the concept of particles
has disappeared completely in such a modeling, the effect
of particle–particle interactions can only be included indi-
rectly, via an effective solids pressure and effective solids
viscosity. A description which allows for a slightly more
detailed description of particle–particle interactions follows
from the kinetic theory of granular flow (KTGF); such the-
ory expresses the diagonal and off-diagonal elements of the
solids stress tensor (i.e. the solids pressure and solids shear
rate) as a function of the granular temperature, defined as

� = 1
3〈 �Cp · �Cp〉, (14)

where �Cp represents the particle fluctuation velocity. The
time evolution of the granular temperature itself is given by

3

2

[
�
�t
(�s�s�)+ ∇ · (�s�s��v)

]

= − (psI + �s�s):∇�v − ∇ · (�s �qs)− 3�� − 	 (15)

with �qs the kinetic energy flux, and	 the dissipation of
kinetic energy due to inelastic particle collisions. In Eqs.
(11)–(15), there are still a number of unknown quantities
(pressure, stress tensor, energy flux), which must be ex-
pressed in terms of the basic hydrodynamic variables (den-
sity, velocity, temperature), in order to get a closed set of
equations. The derivation of such constitutive equations fol-
lows from the KTGF, and can be found in the books by
Chapman and Cowling (1970)andGidaspow (1994), and the
papers byJenkins and Savage (1983), Ding and Gidaspow
(1990). In this work, the constitutive equations developed
by Nieuwland et al. (1996)have been used for the particle
phase rheology.
It will be interesting to show how this model will predict

the bubble formation, compared to the more detailed DPM
simulations. As in those simulations, we focus on the bubble
size of a single bubble, injected in a mono-disperse fluidized
bed at 0.2 s after injection. The dimensions and character-
istics of the bed is similar as described in Section 3, only
the bed is slightly higher (60 cm compared to 45 cm in the
DPM simulations). InFig. 5, we compare the results from
the TFM simulations with the DPM simulation results from
Section 3, and the experimental findings. Note that the solid
phase is not represented by discrete particles (“dots”) as in
Fig. 4, but via a grey scale, indicating the local level of�s .
As can be seen fromFig. 5, both the drag model from Hill,
Koch and Ladd, and from this work (6), predicts a smaller
bubble size and again a more pronounced “raining” of the

particles through the roof of the bubble compared to the drag
model by Ergun/Wen and Yu for both the DPM (compare
snapshots (b) and (c)) and the TFM (compare (d) and (e))
results (Bokkers et al., 2004a). The bubble size is mainly
determined by the drag exerted on the particles by the gas
phase, whereas the mixing of the particles is dominated by
particle–particle interactions, especially in the dense regions
where sustained multi-particle contacts prevail (friction). A
detailed study (Bokkers et al., 2004b) of the bed after a sin-
gle bubble has passed showed that the TFM largely overpre-
dicts the extent of solids mixing, i.e. the upward transporta-
tion of the bottom layer of particles. With the Ergun/Wen
and Yu drag closures both the DPM and the TFM predict a
slightly higher particle mixing due to the small overpredic-
tion of the bubble size.

5. Discrete bubble model (DBM)

Although the two-fluid model can simulate fluidized beds
at a life-size scales, the largest scale industrial fluidized bed
reactors (diameter 5m, height 16m) are still beyond its ca-
pabilities. However, it is possible to introduce yet another
upscaling by considering the bubbles, as observed in the
DPM and TFM models of gas-fluidized beds, as discrete en-
tities. This is the so-called DBM, which has been succesfully
applied in the field of gas–liquid bubble columns (Delnoij
et al., 1997). However, the idea to apply this model to
describe the large scale solids circulation that prevail in
gas–solid reactors is new. In this paper, we want to show
some first results of the DBM applied to gas–solid sys-
tems, which involves some slight modifications of the equiv-
alent model for gas–liquid systems. To this end, the emul-
sion phase is modeled as a continuum—like the liquid in
a gas–liquid bubble column—and the larger bubbles are
treated as discrete bubbles. Note that granular systems have
no surface tension, so in that respect there is a pronounced
difference with the bubbles present in gas–liquid bubble
columns. For instance, the gas will be free to flow through
a bubble in the gas–solid systems, which is not the case
for gas–liquid systems. As far as the numerical part is con-
cerned, the DBM strongly resembles the DPM as outlined
in Section 3, since it is also of the Euler–Lagrange type
with the emulsion phase described by the volume-average
Navier–Stokes equations

�
�t
(��)+ ∇ · ���u= 0, (16)

�
�t
(���u)+ ∇ · ���u�u= −�∇p − ∇ · �� − �S + ���g (17)

whereas the discrete bubbles are tracked individually ac-
cording to Newton’s second law of motion

mb
d�vb
dt

= �Ftot, (18)
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Fig. 5. Snapshots of the bubble in a mono-disperse fluidized bed at 0.2 s after injection: comparison between TFM with DPM and experiments;
(a) experiment; (b) DPM with Ergun/Wen and Yu; (c) DPM with Hill, Koch and Ladd; (d) DPM with relation (6); (e) TFM with Ergun/Wen and Yu;
(f) TFM with Hill, Koch and Ladd; (g) TFM with (6).

Fig. 6. Snapshots of the bubble hold-up in the DBM without coalescence, and the time average vector plot of the emulsion phase after 100 s of simulation;
(a)+ (b) u0 = 0.1m/s, db = 0.04m; (c)+ (d) u0 = 0.3m/s, db = 0.04m.

whereFtot is the sum of different forces acting on a single
bubble

�Ftot = �Fg + �Fd + �Fp + �FL + �FVM. (19)

As in the DPM, the total force on the bubble has contribu-
tions from gravity (�Fg), pressure gradients (�Fp) and drag
from the interaction with emulsion phase (�Fd ). For the drag
force on a single bubble (diameterdb), the correlations for
the drag force on a single sphere are used, only with a modi-
fied drag coefficientCd , such that it yields the Davies–Taylor
relationvbr = 0.711

√
gdb for the rise velocity of a single

bubble. Note that in (19), there are two forces present which
are not found in the DPM, namely the lift force�FL and the
virtual mass force�FVM . The lift force is neglected in this
application, whereas the virtual mass force coefficient is set
to 0.5. An advantage of this approach to model large scale

fluidized bed reactors is that the behavior of bubbles in flu-
idized beds can be readily incorporated in the force balance
of the bubbles. In this respect, one can think of the rise ve-
locity, and the tendency of rising bubbles to be drawn to-
wards the center of the bed, from the mutual interaction of
bubbles and from wall effects (Kobayashi et al., 2000). Co-
alescence, which is an highly prevalent phenomenon in flu-
idized beds, can also be easily included in the DBM, since
all the bubbles are tracked individually.
With the DBM, two preliminary calculations have been

performed for industrial scale gas-phase polymerization re-
actors, in which we want to demonstrate the effect of the su-
perficial gas velocities, set to 0.1 and 0.3m/s. The geometry
of the fluidized bed was 1.0×3.0×1.0m (w×h×d). The
emulsion phase has a density of 400 kg/m3 and the appar-
ent viscosity was set to 1.0Pa s. The density of the bubble
phase was 25 kg/m3. The bubbles were injected via 49 noz-
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zles positioned equally distributed in a square in the middle
of the column. InFigs. 6a and c snapshots are shown of the
bubbles that rise in the fluidized bed with a superficial gas
velocity of 0.1 and 0.3m/s, respectively. It is clearly shown
that the bubble hold-up is much larger with a superficial
gas velocity of 0.3m/s. However, the number of bubbles in
this case might be too large, since coalescence has not been
taken into account in these simulations. InFigs. 6b and d,
time-averaged plots are shown of the emulsion velocity after
100 s of simulation. The large convection patterns, upflow
in the middle, and downflow along the wall, and the effect
of the superficial gas velocity, is clearly demonstrated. Fu-
ture work will be focused on the implementation of closure
equations in the force balance, like empirical relations for
bubble rise velocities and the interaction between bubbles.
The model can be augmented with energy balances to study
temperature profiles in combination with the large circula-
tion patterns.

6. Summary and outlook

In this paper, we have presented an overview of the multi-
scale methods that we use to study gas–solid-fluidized beds.
The key idea is that the methods at the smaller, more de-
tailed scale can provide qualitative and quantitative informa-
tion which can be used in the higher scale models. A typical
example of such qualitative information is the insight (from
the DPM simulations) that inelastic collisions and nonlinear
drag can lead to heterogeneous flow structures. Even more
important, however, is thequantitativeinformation that the
smaller scale models can provide. A typical example of this
is the drag force relation obtained from the LBM simula-
tions, which finds its direct use in both the DPM and TFM
simulations. We should note here that although the new drag
force relations seems to give results at the DPM/TFM level
which compare better with the experimental findings, these
relations are still far from optimal. In particular, it should be
borne in mind that these drag force relations are derived for
static, unbounded, homogeneous arrays of mono-disperse
spheres. Yet, at the DPM/TFM level these relations are ap-
plied to systems which are—even locally—inhomogeneous
and non-static; furthermore, rather ad-hoc modifications are
used to allow for polydispersity. In future work, we want
to focus on developing drag force relations for systems
which deviate from the ideal conditions, where the parame-
ters which would quantify such deviation may be trivial to
define (polydispersity: width of the size distribution; mov-
ing particles: granular temperature) or not so trivial (inho-
mogeneities). Our LB results for the drag force in binary
systems (van der Hoef et al., 2004) revealed significant de-
viations with the ad-hoc modifications of the monodisperse
drag force relations, in which it is assumed that the drag
force scales linearly with the particle diameter.
At present, mainly qualitative information from the DPM

simulations is obtained, such as the aforementioned het-

erogeneous flow structures, which is caused by dissipative
forces. Another example is the functional form of the ve-
locity distribution. It was found that dissipative interaction
forces cause an anisotropy in the distribution, although the
functional form remains close to Gaussian for all three di-
rections (Goldschmidt et al., 2002). It would be interesting
to include the effect of anisotropy at the level of the TFM,
for instance along the lines of the kinetic theory developed
by Jenkins and Richman (1988)for shearing granular flows.
Although the continuum models have been studied exten-

sively in the literature (e.g.Kuipers et al., 1992; Gidaspow,
1994), these models still lack the capability of describing
quantitatively particle mixing and segregation rates in multi-
disperse fluidized beds. An important improvement in the
modeling of life-size fluidized beds could be made if direct
quantitative information from the discrete particle simula-
tions could find its way in the continuum models. In partic-
ular, it would be of great interest to find improved expres-
sions for the solid pressure and the solid viscosity, as they
are used in the TFM, however, it is a non-trivial task to ex-
tract direct data on the solid viscosity and pressure in a DPM
simulation. A very simple, indirect method for obtaining the
viscosity is to monitor the decay of the velocity of a large
spherical intruder in the fluidized bed. The viscosity of the
bed follows then directly from the Stokes–Einstein formula
for the drag force. Very preliminary results—obtained from
data of a high velocity impact—were in reasonable agree-
ment with the experimental values for the viscosity. More
elaborate simulations of these systems are currently under-
way. Finally, the DBM applied to gas–solid systems seems
to be a promising new approach for describing the large-
scale motion in life-size chemical reactors. Essential for this
model to be successful is that reliable information with re-
gard to rise velocities and mutual interaction of the bubbles
is incorporated, which can be obtained from the lower scale
simulations. In particular, the TFM and DPM simulations
will be used to guide the formulation of additional rules to
describe the coalescence of bubbles properly, which is at
present not incorporated in the model. This will be the sub-
ject of future research.
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