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Abstract

In order to identify parameters of a chemical reaction, such as rate constants, reaction orders, activation energies, or reaction enthalpies,
a new evaluation algorithm that allows a simultaneous evaluation of online measured infrared and calorimetric data will be investigated.
The evaluation of the infrared data neither requires calibration nor the knowledge of pure component spectra. Overlapping absorption
bands are allowed. The weighting of the calorimetric and infrared objective functions performs completely automatic using a sensitivity
analysis. The performance of this combined evaluation principle was investigated by analyzing the consecutive epoxidation of 2,5-di-
tert-butyl-1,4-benzoquinone with tert-butyl hydrogen peroxide. Different reaction models as well as physical constraints were postulated
in order to reveal the flexibility and the capability of the approach. The results obtained underline the importance of such a combined
evaluation of both analytical signals instead of separate evaluations.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A standard analytical tool for the purpose of kinetic and
thermodynamic reaction analysis is reaction calorimetry
(Karlsen and Villadsen, 1987; Landau, 1996; Regenass,
1997; Zogg, 2003; Zogg et al., 2004b). As the heat release
or uptake during a chemical reaction is proportional to
the reaction rate, calorimetry can be compared to a dif-
ferential kinetic analysis method (Levenspiel, 1998). To
improve the information content of a single measurement,
calorimetric devices are therefore often combined with an
additional integral analytical sensor (proportional to the
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component concentrations) such as an IR-ATR-probe (Lan-
dau et al., 1995; LeBlond et al., 1998; am Ende et al., 1999;
Ubrich et al., 1999; Nomen et al., 2001; Zogg et al., 2003; Ma
et al., 2003). Both techniques do not require any sampling
and are thus straightforward to apply. As the infrared spectra
generally depend on the temperature, isothermal conditions
are preferable. Otherwise, spectral shifts caused by temper-
ature changes disturb the analysis and must be accounted
for (Furusjö and Danielsson, 2000; Furusjö et al., 2003).

For the identification of the desired thermodynamic and
kinetic reaction parameters of a specified empirical reaction
model, mathematical evaluation methods are required. A
detailed overview on these techniques is presented byZogg
(2003)focusing on the evaluation of isothermally measured
reaction data. The evaluation of the calorimetric and in-
frared data is conventionally carried out separately (LeBlond
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et al., 1998; Ubrich et al., 1999; Nomen et al., 2001; Zogg
et al., 2003; Ma et al., 2003). However, the reaction param-
eters identified by separate evaluations of the calorimetric
and infrared data can differ significantly (mostly the rea-
sons are measurement errors, unequal information content,
or unmodeled processes with different influence on the two
analytical signals). Therefore, it is desirable to evaluate both
data sets simultaneously in order to estimate all thermody-
namic and kinetic reaction parameters in a single step, rep-
resenting an overall optimal solution.

The crucial step in such a combined evaluation is to
find an appropriate weighting of the two different ana-
lytical signals in order to equalize their influence on the
estimated reaction parameters. A similar problem is encoun-
tered if calorimetric and concentration data are evaluated
simultaneously (Machado et al., 1996; Fillion et al., 2002;
BatchCAD,; ChemCad,; BatchReactor,). No systematic
weighting procedure was reported to date. We developed an
automatic and systematic scaling procedure that does not
require any user interaction and is therefore attractive for
practical applications. This new procedure was applied to
isothermal measurements (17, 24, 30 and 36◦C) of the con-
secutive epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone
with tert-butyl-hydroperoxide. Three evaluations using dif-
ferent physical constraints, reaction models, and initial
concentrations of the hydroperoxide were carried out. The
evaluations do neither require any calibration of the infrared
data nor any knowledge of the pure component spectra. The
results show that it is essential to carry out a combined eval-
uation of both analytical signals using sensitivity analysis
instead of separate evaluations.

2. Theory

In this study, the newly developedCombined Evalua-
tion Algorithm, which will be explained below, was ap-
plied to the consecutive epoxidation of 2,5-di-tert-butyl-1,4-
benzoquinone with tert-butyl-hydroperoxide. The scheme of
this reaction is given in Fig.1. This reaction was chosen as
three independent kinetic studies are available (Hairfield et
al., 1985; Mayes et al., 1992; Bijlsma et al., 1998). In order
to allow a later comparison of the estimated rate constants to
literature references, the concentrations of the educts were
chosen similar to those ofMayes et al. (1992). In analogy
to the studies ofHairfield et al. (1985); Mayes et al. (1992);
Bijlsma et al. (1998), it was assumed that the concentration
of tert-butyl hydroperoxide (in excess compared to the ben-
zoquinone) remains constant during the reaction. The reac-
tion model equations can thus be written as follows:

dnEduct

dt
= − r1(t, k1)Vr(t)

dnHydroperoxide

dt

= {−r1(t, k1) − r2(t, k2)}Vr(t)

dnMono Epoxide

dt
= {r1(t, k1) − r2(t, k2)}Vr(t)

dnDi Epoxide

dt
= r2(t, k2) Vr(t)

dntButanol

dt
= {r1(t, k1) + r2(t, k2)}Vr(t)

dnSolvent

dt
= 0

dnMethanol

dt
= vdoscdos, Methanol

dnTriton B

dt
= vdoscdos, Triton B

dVr

dt
= vdos

r1(t, k1) = k1
nEduct(t)

Vr(t)

nTriton B(t)

Vr(t)
cHydroperoxide,0

r2(t, k2)

= k2
nMono Epoxide(t)

Vr(t)

nTriton B(t)

Vr(t)
cHydroperoxide,0 (1)

wherenj is the number of moles of componentj (mol), Vr

is the volume of the reaction mixture (l),ri is the ith reac-
tion rate (mol/l/s),ki the ith rate constant(l2/mol2/s), vdos
is the dosing rate(s−1), cdos, Methanol is the concentration
of methanol in the feed,cdos, Triton B is the concentration
of the catalyst (Triton B). The concentration of the catalyst
is included inr1 andr2, however, it varies only during the
short addition phase (24 s) and remains constant during the
rest of the experiment. In order to allow comparison to other
literature data, the initial concentration of the hydroperox-
ide cHydroperoxide,0 is excluded from the rate constants (see
below). As several isothermal experiments at different tem-
peratures are evaluated at the same time, the rate constants
k1 andk2(=ki)(l2/mol2/s) are calculated based on the fol-
lowing Arrhenius approximation:

ki(Tr) = ki(Tref) exp

{
−EA,i

R

(
1

Tr

− 1

Tref

)}
(2)

whereEA,i are the activation energies (J/mol),R is the ideal
gas constant (J/mol/K),Tref is the reference temperature (K),
andTr is the reaction temperature (K). Instead of the rate
constantsk1 andk2, two activation energiesEA,1 andEA,2
as well as the two rate constantsk1(Tref) andk2(Tref) at the
reference temperature have to be identified. Furthermore,
two reaction enthalpies�rH1 and �rH2 (J/mol) as well
as the pure component spectra (different spectra for each
temperature) of the eight components are assumed to be
unknown.

The Combined Evaluation Algorithm (Fig. 2) is divided
into an outer nonlinear least-squares optimization to identify
the reaction model parameters (k1, k2, EA,1, EA,2 = kinetic
reaction parameters; see Eq. (3)) and two inner linear least-
squares optimizations: (i) the identification of the reaction
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Fig. 1. Consecutive epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone with tert-butyl-hydroperoxide. The catalyst was dosed to the reaction mixture to
initiate the reaction.

Fig. 2. Schematic representation of the Combined Evaluation Algorithm for the epoxidation reaction. The unknown rate constantski (k1, k2), activation
energiesEA,i (EA,1, EA,2), reaction enthalpies�rHi (�rH1,�rH2) as well as the unknown matrix of pure component spectraE are highlighted.

enthalpies (�rH1, �rH2 = thermodynamic reaction param-
eters; see Eq. (4)) and (ii) the identification of the pure spec-
tra matrix E (spectroscopic reaction parameters; see Eqs.
(6)–(9)):

min
k1,k2,EA,1,EA,2

{SIR(�A(k1, k2, EA,1, EA,2) − �Amin)

+ Sq(�q(k1, k2, EA,1, EA,2) − �qmin)}, (3)

whereSIR (dimensionless) andSq [W−2] are scaling factors
(see below),�qmin(W

2) and�Amin (dimensionless) are the
minimal calorimetric and infrared error as defined in Eqs.
(12) and (13), respectively.

�q(k1, k2, EA,1, EA,2)

= min
�rH1,�rH2




Nt,q∑
t=1

[qData,t − qCalc,t ]2

 (4)

qCalc =
2∑

i=1

Vr(−�rHi) ri(ki, EA,i), (5)

whereqDataandqCalcare the measured and calculated calori-
metric data (W) (vector of lengthNt,q ), respectively,Nt,q is
the number of calorimetric time samples. The reaction rates
ri are calculated according to Eq. (1) (however, in contrast
to Eq. (1),Vr andri are now vectors of lengthNt,q ). The lin-
ear minimization to calculate the reaction enthalpies�rH1,2
is carried out using a constrained linear least-squares algo-
rithm.

�A(k1, k2, EA,1, EA,2) =
N�̃∑
n=1

�An(k1, k2, EA,1, EA,2),

(6)
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�An(k1, k2, EA,1, EA,2)

= min
En




Nt,IR∑
t=1

[AData,t,n−ACalc,t,n(k1,k2,EA,1,EA,2,En)]2



(7)

ACalc(k1, k2, EA,1, EA,2, E)

= CCalc(k1, k2, EA,1, EA,2) × E (8)

CCalc(k1, k2, EA,1, EA,2)

= [cEduct, . . . , cTriton B] E =




eEduct
...

eTriton B


 (9)

whereAData andACalc are the measured and calculated in-
frared spectra (dimensionless) (matrix of dimensionNt,IR ×
N�̃), respectively,Nt,IR is the number of infrared time sam-
ples andN�̃ is the number of wave numbers in the reaction
spectrum. The matrixCCalc (dimensionNt,IR × NC , where
NC is the number of chemical components in the reaction
model) contains the concentration time profiles of the eight
components calculated by numerical integration of the reac-
tion model (Eq. (1)). MatrixE contains the eight unknown
pure component spectra (dimensionNC ×N�̃). En is thenth
column vector of matrixE at thenth wave number.

As shown by Eqs. (6)–(9), the estimation of the matrix of
pure component spectraE is carried out by applying a lin-
ear least-squares minimization at each wave number. As a
constrained algorithm is used, measured pure spectra could
be included into the estimation ofE in order to circumvent
a possible rank deficiency of the matrixCCalc. However,
as will be shown later, the rank deficiency does not influ-
ence the estimation of the desired reaction model parame-
ters(k1,2�rH1,2, EA,1,2). Thus, the inclusion of separately
measured pure spectra is only required if the pure spectra of
the reaction components were of further interest. It should
be mentioned that the evaluation of the infrared data by Eqs.
(6)–(9) is a straightforward approach, which allows a direct
inclusion of bounds for the estimated pure component spec-
tra. For example, the reduction of linear spectral unknowns
described byMaeder and Zuberbühler (1990)was not im-
plemented as the calculation time is rather dominated by the
numerical integration of the reaction model.

If several experiments are carried out they can be evalu-
ated in one single step by concatenating the measured data
to an augmentedqData vector andAData matrix. If several
experiments are evaluated at the same time, unique reaction
enthalpies�rH1 and�rH2 can be used for all experiments.
The nonlinear optimization (Eq. (3)) is repeated 10 times us-
ing random start values in a user-defined range. The nonlin-
ear optimization algorithm uses the same range as boundary
conditions for the model parameters.

The crucial task of the Combined Evaluation Algo-
rithm however is the determination ofSIR, Sq , �qmin as
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Fig. 3. Comparison of different separate and combined evaluations based
on Eq. (3) using all experiments conducted for the epoxidation reaction
given in Fig. 1. Only three of the total six reaction model parameters
are shown. However,k2, EA,2 as well as�rH2 show a similar behavior.
The value ofk1 at 30◦C is shown.

well as �Amin in order to calculate the combined objec-
tive function according to Eq. (3). For the epoxidation
reaction described above, the two objectives are to min-
imize �q(k1, k2, EA,1, EA,2) ((W2), Eq. (4)) as well as
�A(k1, k2, EA,1, EA,2) ([-], Eq. (6)) by varying the rate
constants as well as the activation energies.

For a meaningful combined evaluation, these two ob-
jective functions have to be scaled or weighted and then
totalized. If no scaling would be applied, the evaluation
would always be dominated by one of the two objective
functions. Generally, the determined model parameters
(k1, k2, EA,1, EA,2) will thus depend on the selected weight-
ing or scaling factors. This behaviour is demonstrated in
Fig. 3using the evaluation of all experiments conducted for
the epoxidation reaction example investigated in this study.

The first plot shows the Pareto curve (solid line) of the
two objective functions (�q and�A) that have to be min-
imized during the combined optimization. The calculation
was carried out according to Eq. (3) by settingSIR = 0 →
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∞, Sq =1, and�Amin =�qmin =0. In the lower three plots,
the corresponding reaction model parameters (onlyk1, EA,1
and �rH1) are shown. As mentioned above, the reaction
model parameters depend significantly on the scaling factor
SIR and the crucial task of choosing an appropriateSIR is
left to the user.

The end points of the Pareto diagram can also be obtained
by Eq. (3): (i) conducting aSeparate Calorimetric Evalua-
tion by settingSIR = �qmin = �Amin = 0 andSq = 1, and
(ii) conducting aSeparate Infrared Evaluationby settingSq

= �qmin = �Amin = 0 andSIR = 1. These results are also
shown inFig. 3. For the chosen example, the variables�qmin
as well as�Amin can now be determined:�qmin = 173 W2,
�Amin = 2.53. The corresponding reaction model parame-
ters determined during these evaluations are shown in the
lower three plots. The results inFig. 3 show that the reac-
tion model parameters on the Pareto curve can lay outside
of the range given by the separate evaluations.

The results of a first attempt to combine the two objective
functions according to Eq. (3) by settingSIR = Sq = 1 and
�qmin = �Amin = 0 are also shown inFig. 3 where it is
referred to asEqual Weighting. The results are dominated
by the calorimetric measurements and thus correspond to

the Separate Calorimetric Evaluation. For this example,
no combination of the two objectives is achieved with this
approach.

A standard attempt to combine the two objective functions
could be to normalize the two data sets. This can be achieved
if qData, qCalc, AData as well asACalc in Eqs. (4)–(8) are
replaced by their normalized equivalents:

qData, norm = qData− min(qData)

max(qData) − min(qData)

qcalc, norm = qcalc − min(qData)

max(qData) − min(qData)
(10)

AData, norm = AData− min(AData)

max(AData) − min(AData)

Acalc, norm = Acalc − min(AData)

max(AData) − min(AData)
(11)

The combined evaluation according to Eq. (3) can now be
carried out by settingSIR = 1/(Nt,IRN�̃), Sq = 1/Nt,q and
�qmin =�Amin =0. The corresponding results are shown in
Fig. 3and are referred to asNormalizedWeighting. These re-
sults are again dominated by the calorimetric measurements
and thus correspond to the Separate Calorimetric Evalua-
tion. For this example, no combination of the two objectives
is achieved with this approach.

For the Combined Evaluation Algorithm, an automatic
procedure was therefore developed that delivers the required
scaling factorsSIR andSq in Eq. (3). In a first step, a Sep-
arate Calorimetric Evaluation (Eq. (12)) and a Separate In-
frared Evaluation (Eq. (13)) are carried out in order to de-
termine the minimal calorimetric error�qmin(W2) as well
as the minimal infrared error�Amin[-]:

�qmin = min
k1,k2,EA,1,EA,2

[�q(k1, k2, EA,1, EA,2)

→ estimated parameters: �q,1..NP
(12)

�Amin = min
k1,k2,EA,1,EA,2

[�A(k1, k2, EA,1, EA,2)]
→ estimated parameters: �IR,1..NP

(13)

whereNP is the number of model parameters (for this exam-
ple equal to four:k1, k2, EA,1, andEA,2=̂�1..Np) to be de-
termined. The method then calculates the scaling factorsSq

andSIR within three steps, starting with a sensitivity analy-
sis of the single objective functions�q and�A with respect
to the model parameters. The sensitivity is calculated by in-
verting the average deviations of�q and�A from their min-
imal values�qmin and�Amin caused by a change of all the
model parameters (positive as well as negative deviation):

Sq,1 = 2NP∑NP

i=1 |�q(�q,i + ��i ) − �qmin| + ∑NP

i=1 |�q(�q,i − ��i ) − �qmin|
(14)

SIR,1 = 2NP∑NP

i=1 |�q(�IR,i + ��i ) − �Amin| + ∑NP

i=1 |�A(�IR,i − ��i ) − �Amin|
(15)

where��i is defined as follows:

��i = �q,i − �IR,i (16)

In a second step, a combined optimization is carried out
based on Eq. (3) (usingSq,1 and SIR,1 as Sq and SIR ).
The results of the first iteration of the Combined Evalua-
tion Algorithm are shown inFig. 3. In a third step, the cal-
culation of the scaling factors (Eqs. (14) and (15)) is re-
peated using the model parameters from the preceding com-
bined optimization instead of�q,1..Np and�IR,1..Np obtained
from Eqs. (12) and (13). Finally, the combined optimization
(Eq. (3)) is repeated using the updated scaling factors. The
results of the second iteration of the Combined Evaluation
Algorithm are shown inFig. 3. The difference to the first
combined optimization is rather small. Therefore, the iter-
ative adaptation of the scaling factorsSIR andSq was not
continued although in principle this is possible.

The influence of the calorimetric and infrared error func-
tions on the combined objective function (Eq. (3)) is thus
equalized in two ways: (i) by subtraction of�qmin and�Amin
the absolute values of the two error functions�q and�A are
equalized, and (ii) by applying the automatically determined
scaling factorsSq andSIR, the change of�q−�qmin caused
by a change of the reaction model parameters (k1, k2, EA,1
or EA,2) is similar to the change of�A − �Amin. The ap-
plied scaling principle will thus automatically equalize the
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influence of the two measured data sets (calorimetric and
infrared data) on the determined reaction model parameters.

The time consuming part of the evaluation algorithm
(Eqs. (4) and (9), including the numerical integration of the
reaction model) is written in C and included into Matlab�

as a Dynamic Link Library. The outer optimization loop
is running in Matlab� using thefmincon function for the
non-linear optimization (Matlab Optimization Toolbox).
For a more detailed description of the presented calculation
method refer toZogg et al. (2004a)or Zogg (2003).

3. Experimental section

The prototype reaction calorimeter (Zogg, 2003; Zogg et
al., 2003) used for all reaction experiments of this work has
a sample volume of 25–45 ml, is combined with an IR-ATR
probe and runs at strictly isothermal operation conditions.
The ATR probe (Axiom, DMD 260) is connected to a Bruker
FTIR spectrometer (Equinox 55). The spectra were recorded
with a resolution of 4 cm−1 and a sampling time of 11.5 s (15
samples). The spectral region between 1800 and 2400 cm−1

was cut off by the diamond of the ATR sensing head.

3.1. Experimental procedure for the epoxidation of
2,5-di-tert-butyl-1,4-benzoquinone

After the reactor was cleaned, evacuated and purged with
N2, 1.29 g of 2,5-di-tert-butyl-1,4-benzoquinone (Aldrich,
5.85 mmol) were added. Care was taken that the ben-
zoquinone did not touch the ATR Sensor. After having
reached the desired jacket temperature, a reference back-
ground spectrum for the infrared measurement was taken.
Then, 19.2 ml Dioxan (Baker), 8 ml EtOH (Baker), and 8 ml
tert-butyl hydroperoxide (Aldrich, 70% solution in water,
58.5 mmol) were added subsequently. The stirrer was turned
on to 400 rpm and the desired reaction temperature was set.
After degassing the solution for 3 min with N2, 0.8 ml of
Triton B (Fluka, 40% in methanol, 1.78 mmol) were dosed
within 24 s into the closed reactor to start the reaction.
This experiment was carried out four times at 17◦C and
three times at 24, 30 and 36◦C. The reaction conditions
were chosen similar to the ones reported byMayes et al.
(1992). The infrared spectra were evaluated in the range
of 740 ∼ 860, 1150∼ 1450, and 1580∼ 1780 cm−1 (see
Fig. 4). The baseline drift of the spectrometer was corrected
by subtracting an average absorbance time profile at 712,
810, 1310, and 1550 cm−1 from the raw reaction spectra.
The reaction spectra of all experiments were then con-
catenated to a singleAData matrix (Eq. (7)). Similarly, the
calorimetric data was concatenated to a singleqData vector
(Eq. (4)).

Three additional experiments at 30◦C were carried out
using only 5 ml tert-butyl hydroperoxide (Aldrich, 70% so-
lution in water, 36.4 mmol) instead of 8 ml. The measured
reaction data of all six experiments at 30◦C were then con-
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Fig. 4. Epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone: one part of the
infrared spectrum recorded as a function of time at 17◦C. The peak at
1687 cm−1 is indicated with a fat line and is used for illustration purposes
in Fig. 5.

catenated to a secondAData matrix andqData vector. The ex-
perimental procedure is described in further detail inZogg
(2003).

3.2. Reference data

The epoxidation reaction was chosen because it was one
of the few consecutive reaction examples for which sev-
eral empirical kinetic reference data are available (Hairfield
et al., 1985; Mayes et al., 1992; Bijlsma et al., 1998). The
empirical kinetic model used by all authors can be written
as follows (according toFig. 1):

r1 = k+
1 cEduct r2 = k+

2 cMono Epoxide (17)

where k+
1 and k+

2 (l/mol/s) are the rate constants of the
first and second epoxidation step. Unfortunately, differ-
ent concentrations of the catalyst, 2,5-di-tert-butyl-1,4-
benzoquinone, and tert-butyl hydroperoxide were used in
the different studies. Therefore, the reported values had to
be transformed, assuming first-order behavior in the catalyst
and hydroperoxide concentration (for further details refer
to Zogg (2003)):

k1 = k+
1 /ccat,0/cHydroperoxide,0

k2 = k+
2 /ccat,0/cHydroperoxide,0 (18)

whereccat,0 and cHydroperoxide,0 are the initial catalyst and
hydroperoxide concentration (mol/l). The rate constantsk1
andk2 (l2/mol2/s) can now be compared between the dif-
ferent references and to the rate constants estimated in this
study as will be done below.

No measured reaction enthalpies for the epoxidation re-
action were found in literature. Based on standard heats of
formation of different saturated olefins (NIST, 2003; Dowd
et al., 1991), as well as an indirectly determined epoxidation
enthalpy of a benzoquinone system (Flowers et al., 1993),
the reaction enthalpy of a single epoxidation step was calcu-
lated to be in the range of−153 (benzoquinone system) to
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−212 kJ/mol (1-Butene). For further details, refer toZogg
(2003). However, no indications for a different epoxida-
tion enthalpy of the first and second epoxidation step were
found. Therefore, semi-empirical quantum mechanical cal-
culations were carried out to estimate the heat of formation
of the involved compounds.CAChe (2002)andHyperChem
(2002)as well as four different Hamiltonians (AM1, PM3,
PM5, MNDO) were used. In most of the calculations, the
first epoxidation step (compare toFig. 1) turned out to be
slightly more exothermal than the second step. It should be
noted that the standard deviation of the average values ob-
tained from these calculations are higher than the difference
between�rH1 and�rH2. Below, these values will be com-
pared to those determined from the Combined Evaluation
Algorithm.

4. Results and discussion

The reaction measurements were evaluated in different
ways in order to demonstrate the performance of the new
Combined Evaluation Algorithm. The different evalua-
tions are summarized inTable 1, a detailed discussion will
be given below. All three evaluation approaches Separate
Calorimetric Evaluation, Separate Infrared Evaluation, and
Combined Evaluation Algorithm identify the same reaction
parameters. However, it should be noted that the reaction
enthalpies determined by the Separate Infrared Evaluation
are determined in two steps: (i) identification of the ki-
netic reaction model parameters based on the infrared data
only (Eq. (13)); (ii) using these identified parameters the
reaction enthalpies can be subsequently determined by ap-
plying Eq. (4). In the following, the results obtained for the
different reaction models and physical constraints will be
discussed.

4.1. Case study A:�rH1 is allowed to deviate from�rH2

In addition to the measurement data (4, 3, 3, and 3
measurements at 17, 24, 30 and 36◦C, respectively, iden-
tical concentrations) and the reaction model described
by Eq. (1), bounds for the unknown reaction parameters
are required in order to apply the Combined Evaluation
Algorithm.

As several isothermal reaction measurements at different
temperatures are evaluated at the same time, the rate con-
stantsk1 and k2 in Eq. (1) were expressed according to
Eq. (2). Thus for the unknown reaction parametersk1 and
k2 (at Tref = 25◦C), a range, of 0–38 (l2/mol2/ min) was
chosen, and for the unknown activation energiesEA,1 and
EA,2 a range of 10–150 (kJ/mol). A total of 10 sets of ran-
dom start values were used for these four nonlinear reac-
tion model parameters. Additionally, two reaction enthalpies
�rH1 and�rH2 had to be identified inside the range of 0
to −1000 kJ/mol. The same reaction enthalpies were used
for all temperatures. Finally, feasible bounds for the eight

pure component spectra (educt, hydroperoxide, mono Epox-
ide, di Epoxide, alcohol, methanol, solvent, Triton B) had
to be specified. As no measured pure spectra were used,
all absorption coefficients at all wave numbers and for all
components were constrained in the range of 0–5. For each
temperature, a new set of pure component spectra (matrix
E) was identified, otherwise it was not possible to describe
the measurement data accurately. Based on this input data,
the evaluation of the measurements was carried out for the
three evaluation types:

4.1.1. Evaluation A.1: Combined Evaluation Algorithm
The developed scaling procedure automatically deter-

mined the scaling factorsSIR = 30 andSq = 0.009 (W−2).
Out of 10 random start value sets, eight resulted in the same
optimum, indicating a robust identification. The quality of
the model fit is shown inFig. 5 (only measurements at
17 and 30◦C are shown). For illustration purposes, only
one wave number at 1687 cm−1 is shown in the two lower
plots (compare toFig. 4); however, all wave numbers were
evaluated and peak overlapping was allowed. It can be
concluded that the calorimetric as well as the infrared data
were successfully modeled by the specified reaction model
(Eq. (1), �q = 201 W2, �A = 2.529) and the identified
reaction model parameters (k1, k2, EA,1, EA,2), which are
listed in Table 3. In Table 2, the identified reaction en-
thalpies (�rH1 and�rH2) are listed. They are compared to
the sum of�rH1 and �rH2(=��rHi) determined by in-
tegration of the calorimetric signal, to literature references
based on standard heats of formations, and to the results of
the semi-empirical calculations.

The complete calculation time using an Intel Pentium M,
1.4 MHz, 512 MB RAM is 2.6 h. The calculation comprises
the following:

• Separate calorimetric as well as infrared evaluation in
order to determine�qmin as well as�Amin (Eqs. (12)
and (13)).

• Two iterative applications of the Combined Evaluation
Algorithm in order to determine the appropriate scaling
factorsSIR as well asSq .

• All four evaluations were carried out 10 times using
random start values for the reaction model parameters
(in the defined range given above).

• A total of 13 experiments were evaluated at the same
time—including numerical integration of the reaction
model (Eq. (1)) for each experiment.

The average calculation time for one experiment using
only one start value is therefore only 12 min.

4.1.2. Evaluation A.2: Separate Calorimetric Evaluation
Out of 10 random start value sets, all resulted in the same

optimum (seeTable 2and3), indicating a very robust identi-
fication. The model fit quality was similar to evaluation A.1
(�q = �qmin = 173 W2, �A = 2.685).



5802 A. Zogg et al. / Chemical Engineering Science 59 (2004) 5795–5806

Table 1
Overview on the different evaluations carried out and the different measurement data used

Case study A Case study B Case study C

Combined Evaluation Algorithm Eq. (3) A.1 B.1 C.1
Separate Calorimetric Evaluation Eq. (12) A.2 B.2 C.2
Separate Infrared Evaluation Eqs. (4) and (13) A.3 B.3 C.3
Measurement data at 17, 24, 30, and 36◦C with equal concentrations C C —
Measurement data at 30◦C with different concentrations — — C
Special physical constraint — �rH1 = �rH2 —
Identified reaction parameters k1, k2 k1, k2 k1, k2

EA,1, EA,2 EA,1, EA,2 ordCat, ordHP
�rH1, �rH2 �rH �rH1, �rH2
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Fig. 5. Evaluation A.1, epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone using the Combined Evaluation Algorithm. All experiments at all temperatures
were evaluated simultaneously. A mean value of all reaction experiments at each temperature is shown. Only one wave number(1687 cm−1) of the
reaction spectrum is shown in the lower plots.

Table 2
Results of the different evaluations A.1–A.3 and B.1–B.3: Identified reaction enthalpies�rH1 and�rH(��rHi = �rH1 + �rH2). The reaction model
is described by Eq. (1)

��rHi , (kJ/mol) Integration ofqtot
a 17◦C 24◦C 30◦C 36◦C

−440± 50 −440± 20 −480± 30 −440± 10

Literatureb −307–−424

�rH1, �rH2, (kJ/mol) equal Semi empiricalc �rH1 = −140± 20 �rH2 = −130± 10 ��rHi = −270
for all temperatures Combined Evaluation Algorithm(A.1) �rH1 = −160 �rH2 = −200 ��rHi = −360

Separate Calorimetric Evaluation(A.2) �rH1 = −240 �rH2 = −150 ��rHi = −390
Separate Infrared Evaluation(A.3) �rH1 = −180 �rH2 = −170 ��rHi = −350

Combined Evaluation Algorithm (B.1) �rH1 = −180 �rH2 = −180 ��rHi = −360
Separate Calorimetric Evaluation (B.2) �rH1 = −190 �rH2 = −190 ��rHi = −380
Separate Infrared Evaluation (B.3) �rH1 = −180 �rH2 = −180 ��rHi = −360

aDirect integration of the calorimetric data without using a reaction model.
bCalculation based on standard heats of formation (see text for further details).
cDetermined by semi-empirical quantum mechanical calculations (see text for further details).

The complete calculation time using an Intel Pentium M,
1.4 MHz, 512 MB RAM is 36 min. The average calculation
time for one experiment using only one start value is there-
fore 2.7 min.

4.1.3. Evaluation A.3: Separate Infrared Evaluation
Out of 10 random start value sets, six resulted in the

same optimum, indicating a medium robust identification
The results are also given inTables 2and 3. The model
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Table 3
Results of the different evaluations A.1–A.3 and B.1–B.3: Identified reaction model parametersk1, k2, EA,1, EA,2. The rate constantsk1 and k2 were
identified at 30◦C. Using the identified activation energiesEA,1 and EA,2, the rate constants at 17, 24, and 36◦C were calculated by Eq. (2). The
reaction model is described by Eq. (1)

k1, k2 (l2/mol2/ min) EA,1, EA,2 (kJ/mol)

17◦C 24◦C 30◦C 36◦C

Literaturea 5 ± 1 — 17± 1 — 75
1 ± 1 4± 3 72

Combined Evaluation Algorithm(A.1) 4.9 8.8 14.2 22.5 60
1.2 2.4 4.2 7.3 70

Separate Calorimetric Evaluation(A.2) 3.2 5.8 9.4 15.1 61
0.6 1.2 2.1 3.8 76

Separate Infrared Evaluation(A.3) 5.0 8.3 12.6 18.9 53
1.3 2.6 4.7 8.2 73

Combined Evaluation Algorithm (B.1) 4.5 8.1 13.0 20.7 60
1.3 2.5 4.4 7.3 69

Separate Calorimetric Evaluation (B.2) 4.2 7.6 12.3 19.6 60
0.8 1.8 3.3 6.0 73

Separate Infrared Evaluation (B.3) 5.0 8.3 12.6 18.9 53
1.3 2.6 4.7 8.2 73

aTransformed and averaged literature references (for details, seeZogg (2003)).

fit quality was similar to evaluation A.1 (�q = 294 W2,
�A = �Amin = 2.528).

The complete calculation time using an Intel Pentium M,
1.4 MHz, 512 MB RAM is 48 min. The average calculation
time for one experiment using only one start value is there-
fore 3.7 min.

When comparing the three sets of results obtained for the
different evaluation types (Tables2 and 3) it can be con-
cluded that the separate evaluations of the calorimetric and
infrared data did not result in the same reaction parameters.
It is therefore essential to apply the Combined Evaluation
Algorithm in order to obtain a unique set of reaction param-
eters that represents an optimal solution for all measured
data. It should be noted that some of the reaction parameters
(�rH1, �rH2, k1, EA,2) determined by the Combined Eval-
uation Algorithm (A.1) are outside the range defined by the
separate evaluations (A.2, A.3). It would therefore be unrea-
sonable to simply average the identified reaction parameters
of the separate evaluations (A.2, A.3) in order to determine
a unique set of reaction parameters.

A comparison of the different identified reaction en-
thalpies reveals that the calorimetric evaluation (A.2) shows
a large difference between�rH1 and �rH2 (90 kJ/mol),
whereas�rH1 and �rH2 identified by the infrared evalu-
ation (A.3) only differ by 10 kJ/mol. The Combined Eval-
uation Algorithm (difference 40 kJ/mol) lies in-between.
However, considering the small difference predicted by
the semi-empirical quantum mechanical calculations (see
Table 2), in particular, the results of the calorimetric evalu-
ation become unreasonable.

All three evaluations (A.1, A.2, A.3) identifiedEA,1 to be
smaller thanEA,2. Such a difference was not found by the
literature references. However, it should be noted that some
inconsistencies were found in the literature values (for a

further analysis refer toZogg (2003)). The difference ofEA,1
andEA,2 suggested by the infrared evaluation is rather large
(20 kJ/mol), whereas the results of the Combined Evaluation
Algorithm are most reasonable from the point of mechanistic
considerations. Comparing the determined rate constants it
is concluded that the results of the Combined Evaluation
Algorithm (A.1) agree well with the literature references.

Since the rank of the calculated concentration matrixCCalc
(obtained by integration of Eq. (1)) equals five, the eight
identified pure component spectra in matrixE (Eq. (9))
were not reasonable (linear dependencies) as the concen-
tration time profiles inCCalc are linearly dependent. How-
ever, it is important to note that the identification of the re-
quired reaction parameters is not influenced by these linear
dependences as they do not affect�A in Eq. (3). For sim-
pler reaction systems, it is even possible to identify the pure
component spectra. This was shown based on the hydrol-
ysis of acetic anhydride inZogg et al. (2004a)and Zogg
(2003). For a more complex reaction example, such as the
one shown here, the determination of the pure component
spectra could be achieved by the inclusion of bounds for
some of the pure component spectra. This is straightforward
as for the linear least-squares optimization in Eq. (7) a con-
straint algorithm is used. However, the identification of pure
component spectra is not the topic of this work.

4.2. Case study B: Additional constraint:�rH1 = �rH2

Based on the discussion of the identified�rH1 and�rH2
by case study A and the results of the semi-empirical quan-
tum mechanical calculations (see above), another evaluation
was carried out using the additional constraint�rH1=�rH2.
Again the evaluation was carried out three different times:
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4.2.1. Evaluation B.1: Combined Evaluation Algorithm
The developed scaling procedure automatically deter-

mined the scaling factorsSIR =111 andSq =0.017 (W−2).
Out of 10 random start value sets, all resulted in the
same optimum, indicating a very robust identification. The
quality of the model fit is slightly worse compared to
evaluation A but still satisfying and optically identical to
Fig. 5 (�q = 210 W2, �A = 2.529). The identified reaction
parameters are listed inTables 2and3.

4.2.2. Evaluation B.2: Separate Calorimetric Evaluation
Out of 10 random start value sets, all resulted in the same

optimum (seeTables 2and3), indicating a very robust iden-
tification. The model fit quality was similar to evaluation
B.1 (�q = �qmin = 183 W2, �A = 2.571).

4.2.3. Evaluation B.3: Separate Infrared Evaluation
Out of 10 random start value sets, six resulted in the

same optimum, indicating a medium robust identification.
The identified reaction model parameters are given in
Table 3. They are identical to evaluation A.3 as the ad-
ditional constraint has no influence on Eqs. (6)–(9). In
Table 2, the identified reaction enthalpies (�rH1 and�rH2)
are listed. They are influenced by the additional constraint
and thus no more identical to evaluation A.3. The model
fit quality was similar to evaluation B.1 (�q = 305 W2,
�A = �Amin = 2.528).

When comparing the results of this case study to the re-
sults of case study A (seeTables 2, 3), it can be concluded
that the Separate Calorimetric Evaluations (A.2, B.2) sig-
nificantly differ in most reaction model parameters (�rH1,
�rH2, k1, k2), whereas the Separate Infrared Evaluations
(A.3, B.3) only show slightly different reaction enthalpies.
The results obtained with the Combined Evaluation Algo-
rithm (A.1, B.1) significantly differ in the identified reaction
enthalpies. The reaction model parameters are only slightly
affected. The identified activation energiesEA,1 andEA,2
are similar to case study A and thus the comments are equal.

As compared to case study A, the separate evaluation of
the calorimetric (B.2) and infrared data (B.3) differ less (sim-
ilar �rH1, �rH2, k1, EA,1, EA,2, differentk2), but it is still
essential to apply the Combined Evaluation Algorithm in
order to obtain a unique set of reaction parameters. Similar
to case study A, some of the reaction parameters (k1, EA,2)
determined by the Combined Evaluation Algorithm (B.1)
are outside of the range defined by the separate evaluations
(B.2, B.3).

4.3. Case Study C: Different reaction model

As mentioned above, three additional experiments at 30◦C
were carried out using less hydroperoxide. They were evalu-
ated together with the three standard measurements at 30◦C.
Thus, the dependency of the reaction kinetics on the hy-
droperoxide concentration can be analyzed. Therefore, the

definitions of the reaction ratesr1 andr2 in Eq. (1) were re-
placed by the following modified empirical reaction model:

r1(t, k
′
1, ordCat, ordHP)

= k′
1

nEduct(t)

Vr(t)

[
nTriton B(t)

Vr(t)

]ordCat

×
[
nHydroperoxide(t)

Vr(t)

]ordHP

r2(t, k
′
2, ordCat, ordHP)

= k′
2

nMono Epoxide

Vr(t)

[
nTriton B(t)

Vr(t)

]ordCat

×
[
nHydroperoxide(t)

Vr(t)

]ordHP

(19)

wherek′
1 andk′

2 are the unknown rate constants of the two
epoxidation steps. They were identified within the range 0–1
((l/mol)(ordCat+ordHP)/s). As only experiments at 30◦C were
evaluated, no activation energies were identified. The reac-
tion orders ordCat and ordHP [-] of the catalyst and hydroper-
oxide concentration were identified within the bounds of 0–3
and−3 to 3, respectively. Similar to case study A, the two
reaction enthalpies�rH1 and�rH2 were identified within
the bounds of 0 to−1000 kJ/mol and all absorption coef-
ficients at all wave numbers and for all components were
constrained in the range of 0 to 5. Based on this input data,
the evaluation of the measurements was carried out in three
different ways:

4.3.1. Evaluation C.1: Combined Evaluation Algorithm
The developed scaling procedure automatically deter-

mined the scaling factorsSIR = 33 andSq = 0.009 (W−2).
Out of 10 random start value sets, all resulted in the same
optimum, indicating a very robust identification. The calori-
metric as well as the infrared data of all the six experiments
were successfully modeled by the specified reaction model
(Eq. (19), q = 58 W2, �A = 0.284) and the identified
reaction model parameters. The identified reaction model
parameters (k′

1, k′
2, ordCat, ordHP) as well as the reaction

enthalpies (�rH1 and�rH2) are listed inTable 4.

4.3.2. Evaluation C.2: Separate Calorimetric Evaluation
Out of 10 random start value sets, all resulted in the

same optimum, indicating a very robust identification (see
Table 4). The model fit quality was similar to evaluation C.1
(�q = �qmin = 45 W2, �A = 0.326).

4.3.3. Evaluation C.3: Separate Infrared Evaluation
Out of 10 random start value sets, only one resulted in the

optimum, indicating a low robustness of identification (see
Table 4). The model fit quality was similar to evaluation C.1
(�q = 104 W2, �A = �Amin = 0.282).

Similar to case studies A and B,Table 4shows that the
separate calorimetric and infrared evaluations did not result
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Table 4
Results of the evaluations C.1–C.3: Identified reaction model (k′

1, k′
2, ordCat, ordHP) and thermodynamic reaction parameters (�rH1, �rH2) based on

six measurements at 30◦C at different hydroperoxide concentrations. A modified reaction model (Eq. (19)) was applied

30◦C Combined Evaluation Algorithm(C.1) Separate Calorimetric Evaluation(C.2) Separate Infrared Evaluation(C.3)

�rH1, �rH2, ��rHi (kJ/mol) −180 −240 −200
−180 −140 −140
−360a −380a −340a

k′
1, k′

2 ((l/mol)(ordCat+ordHP)/ min) 36.6 25.2 39.6
11.1 5.8 15.6

ordCat (dimensionless) 1.13 1.12 1.20
ordHP (dimensionless) −0.16 −0.15 −0.18

aSum of�rH1 and�rH2.
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Fig. 6. Conclusion from Evaluation C: hypothesis of a modified reaction
model for the epoxidation reaction.

in the same reaction parameters. Application of the Com-
bined Evaluation Algorithm is thus required. Again some of
the reaction parameters (�rH1, �rH2) determined by the
Combined Evaluation Algorithm (C.1) are outside the range
defined by the separate evaluations (C.2, C.3). Of all the de-
termined reaction parameters, only the reaction enthalpies
are similar to those obtained from case studies A and B.
Similar to case study A, the difference of�rH1 to �rH2
is maximal and unreasonable for the calorimetric evalua-
tion (100 kJ/mol). The reaction enthalpies determined by the
Combined Evaluation Algorithm (C.1) are rather close to
the results of case study A and B and are reasonable as they
were identified to be equal.

The negative reaction orders determined for the hydroper-
oxide concentration (ordHP) represent the fact that the
reaction experiments carried out using less hydroperoxide
proceeded faster compared to the other experiments. How-
ever, a negative reaction order does not make sense with the
reaction scheme ofFig. 1 and indicates that the empirical
reaction model (Eq. (19)) does not accurately describe the
epoxidation reaction. A more appropriate guess for a reac-
tion model, which might describe such a situation within
the studied concentration region, is given inFig. 6. In a
preliminary equilibrium, the hydroperoxide is deprotonated
to produce the active epoxidation reagent. Assuming that
these equilibrium reactions are much faster compared to the
epoxidation reaction and that at equilibrium the catalyst is
nearly completely protonated it might be concluded that the
concentration of the active epoxidation reagent (Hydroper-
oxide_dep) increases if the amount of hydroperoxide is

decreased due to the total volume decrease (as long as hy-
droperoxide is in excess). This would explain the observed
and identified negative reaction order with respect to the
total hydroperoxide concentration. Such a reaction model,
which was found based on the results obtained by the
new evaluation algorithm, is also supported by mechanistic
considerations (Moore, 1967; House, 1972).

5. Conclusions and outlook

The consecutive epoxidation of 2,5-di-tert-butyl-1,4-
benzoquinone with tert-butyl hydroperoxide was carried
out at different temperatures and initial concentrations of
hydroperoxide. The online measured calorimetric (reaction
power) and infrared data (reaction spectrum) were eval-
uated simultaneously, using a new Combined Evaluation
Algorithm. The infrared spectra were evaluated without the
knowledge of any pure component spectra and overlapping
peaks were allowed. The algorithm is able to identify sev-
eral reaction parameters, such as reaction enthalpies, rate
constants, activation energies as well as reaction orders in
a single step.

The Combined Evaluation Algorithm was applied to three
case studies using different physical constraints and reac-
tion models. In addition, similar evaluations were conducted
considering only calorimetric or infrared data. First of all
it was shown that the reaction parameters identified by the
separate evaluations of the two data sets can differ signifi-
cantly. It is therefore essential to apply the Combined Eval-
uation Algorithm in order to obtain a unique set of reaction
parameters that represent an optimal solution based on all
measured data. The task of performing an appropriate scal-
ing of the calorimetric and infrared data was successfully
carried out by the developed automatic scaling principle. It
was observed that some of the reaction parameters deter-
mined by the Combined Evaluation Algorithm are outside
of the solution range defined by the separate evaluations. It
would therefore be unreasonable to simply average the re-
action parameters determined by the separate evaluations in
order to determine a unique set of parameters.

Based on the analysed reaction data, it can further be
concluded that the Separate Calorimetric Evaluation was
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mathematically robust as for all 10 randomly selected start
values the same reaction parameters were identified in all
the three case studies. However, the identified reaction pa-
rameters were most doubtful as the differences between the
identified reaction enthalpies (�rH1 and �rH2) are rather
large. The separate evaluation of the infrared data gener-
ally showed the opposite behavior: the identification of the
reaction parameters was mathematically much less robust
but reasonable values were obtained, e.g. the differences
between the identified reaction enthalpies were small. The
Combined Evaluation Algorithm however showed the best
overall performance: a mathematically robust identification
in all three case studies resulting in reasonable reaction pa-
rameters: small differences between�rH1 and�rH2 as well
as small differences between the identified activation ener-
gies (EA,1 andEA,2). The identification of reaction param-
eters is thus significantly improved by the application of the
Combined Evaluation Algorithm as the two analytical sig-
nals complement one another.

Based on the two case studies A and B, it was possible to
identify reasonable reaction parameters for identical initial
concentrations. The identified reaction parameters of case
study B agree well with literature references. By evaluating
measurements at different initial hydroperoxide concentra-
tions, it was further shown that the application of the Com-
bined Evaluation Algorithm also supports the identification
of a more accurate reaction mechanism. Thus, the proposed
analytics combined with the new evaluation signify a major
advance in practical applications.

In future work, the concept of simultaneous evaluation of
different analytical signals will be extended to the additional
measurement of gas uptake or gas production rate during a
reaction. Due to the general concept of the presented auto-
matic scaling principle it should not be required to change
it for such an application.
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