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Viscous liquid sheets and operability bounds in extrusion coating
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Abstract

The steady-state extrusion coating of an extremely viscous power-law liquid from a slot and onto a moving substrate across a narrow
gap is examined. A key feature of this configuration is a two-dimensional liquid sheet that bridges the gap and might be subjected to an
ambient pressure drop across its wide faces. The local thickness of this sheet may be viewed as gradually thinning from the slot to the
substrate, and simplified equations governing its shape are derived. Analytical solutions for the shape of the liquid sheet, and the flow
within, are obtained in the limit where viscous and pressure forces dominate all others. It is found that the centerline shape of the liquid
sheet is circular when a pressure drop is applied, despite the fact that surface tension forces, which typically give rise to circular shapes in
narrow gaps, are neglected. Nevertheless, it is analytically shown that the stretching of the viscous-dominated liquid sheet gives rise to an
effective tension that plays an analogous role to surface tension. The range of possible applied pressures is thus deduced via geometrical
considerations of a circular shape constrained in the narrow gap, as in the analogous surface-tension-dominated analysis (Ruschak, 1976.
Chemical Engineering Science 31, 1057); extrusion coating fails when a liquid sheet cannot be constructed successfully.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Liquid films of high uniformity are deposited onto moving
substrates in coating processes used to manufacture photo-
graphic films, inkjet papers, and plastic sheets. The most so-
phisticated coating methods involve a die distributor that is
used to create wide and thin liquid sheets in preparation for
coating. As the flow rate to the die and substrate speed are
specified, a desired coated film thickness may be specified,
regardless of variations in fluid properties. Such methods are
referred to as “pre-metered,” to distinguish them from “self-
metered” methods in which fluid properties greatly affect
coated thickness. The pre-metered thickness can be achieved
in an operating space, referred to here as thecoating win-
dow, which is bounded by various failure mechanisms.
For example, the most prevalent and well-known failure
mechanism is entrainment of air between the coated liquid
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and substrate, which places an upper limit on the coat-
ing speed in all coating methods. In general, coating has
developed as an empirical art, although many of these
methods and their failure mechanisms are understood
scientifically—or at least well enough that sound engi-
neering judgments can be made. For a general review of
coating methods and known scientific principles, see the
comprehensive book byKistler and Schweizer (1997)and
the review article ofWeinstein and Ruschak (2004).

Ruschak (1976)provides perhaps the simplest and most
elegant coating window in his examination of slot coating.
In this method, a liquid bridge, often referred to as acoat-
ing bead, fills a narrow gapL between the coating die and
a substrate moving at speedVs to create a film of thick-
nessd (Fig. 1). Ruschak considers the flow of Newtonian
liquids in which gravitational and inertial effects are negli-
gible and capillary effects dominate. The flow configuration
is assumed to be two-dimensional and therefore invariant
with the distance perpendicular toFig. 1. For a liquid of
viscosity,�, and density,�, in the presence of gravity,g,
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Fig. 1. Side view schematic of a typical slot-coating geometry. The liquid
filling the gap between the die lands and the substrate, as well as the
bounding interfaces, are often collectively referred to as a “coating bead.”

this flow regime is characterized by small capillary numbers,
Ca=�Vs/�, small Bond numbers,Bd=�gL2/�, and small
Reynolds numbers,Re=�Vsd/�. In this limit, the two inter-
faces that bound the bead are essentially circular, and serve
to hold the bead in place. As a result, the coating window
can be examined geometrically, where coating failures occur
when either the upstream or downstream interface cannot be
constructed that bridges the gap. For a Newtonian liquid, the
constant radius of curvature of the downstream interface,R,
is set from the Landau–Levich relation (Levich, 1962) ac-
cording tod/R = 1.34Ca2/3. In the lowCa approximation,
d/R � 1, and the downstream interface appears on the scale
of the gap,L, to intersect the web so that the angle of in-
tersection is 0◦ (measured within the liquid); consequently,
coating failure occurs whenR<L/2, which limits the coat-
ing speed in dimensional form. Provided the downstream
interface may be constructed, the Young–Laplace equation
sets the pressure in the liquid relative to the ambient air pres-
sure,Pdown, applied along the face of the downstream inter-
face inFig. 1. The liquid pressure directly adjacent to the
downstream interface is imposed on the liquid side of the
upstreaminterface, as the lowCa approximation precludes
pressure variations in the liquid due to motion. The upstream
interface must then be constructed so that it is pinned at the
slot exit, meets the substrate at a specified dynamic contact
angle,�, and has a radius of curvature again dictated by the
Young–Laplace equation.The pressure applied along the air
face of the upstream interface,Pup, thus largely affects this
radius. Ruschak shows that an ambient pressure difference
across the bead, satisfyingPup −Pdown<0, is generally re-
quired to coat as thin and fast as possible; this negative pres-
sure difference is often referred to as suction. Failure modes
of the upstream interface therefore accompany the applica-
tion of too high or too low suction that precludes its geo-
metric construction.

Ruschak’s basic theory has been expanded by others to
include the effects of gravity and viscosity created by the
flow between the lands of the die and the substrate (Fig. 1),
as well as die geometries in which the lands are not parallel
to the substrate (Higgins and Scriven, 1980). Additionally,
Carvalho and Kheshgi (2000)have examined the inclusion of
inertial effects by replacing the Landau–Levich relation with

a height-averaged form of the boundary layer equations gov-
erning thin film flows with moderate inertia (Kheshgi, 1989;
Kheshgi et al., 1992). Hens and Boiy (1986)andCarvalho
and Kheshgi (2000)further propose that there is a coupling
between the upstream and downstream interfaces that is due
to a boundary layer along the substrate at higher speeds.
These complications typically serve to change the quantita-
tive predictions of Ruschak’s model, but they do not affect
the qualitative geometrical character of the predicted gross
failures described above. Ruschak’s model explains typi-
cal experimental observations of at least two gross failures
found, regardless of flow regime—too little suction causes
the bead to break into dry patches, and too much suction
pulls a portion of the bead into the vacuum chamber (Kistler
and Schweizer, 1997). Even with the above-cited extensions
of Ruschak’s theory, the flow regime is still limited to inter-
face shapes that are approximately circular, soCa, Re, and
Bdneed to be small; thus the physics is surface-tension dom-
inated. In other regimes, finite element predictions have been
used to examine slot coating (see, for example,Saito and
Scriven, 1981; Sartor, 1990; Carvalho and Kheshgi, 2000).

Regardless of the degree of sophistication in any model or
simulation, quantitative comparisons with experiment are of-
ten confounded by the fact that it is possible for the upstream
and downstream interfaces to pin at various locations along
the lands of the die. Furthermore, none of these theories are
capable of predicting the value of the dynamic contact an-
gle as well as air entrainment at high speeds, which often
occurs when the contact angle approaches 180◦; these need
to be empirically determined and depend on the nature of
the interaction between the substrate, liquid, and air–liquid
properties. Another common gross failure, ribbing (Kistler
and Schweizer, 1997)—a hydrodynamic instability that de-
stroys the two-dimensional nature of a coating by creating
a regular lengthwise pattern of streaks—arises in diverging
slot geometries in the direction of flow, and it is only pre-
dictable via auxiliary stability analyses based on assumed
locations of the interface pinning points and dynamic con-
tact angle. It is therefore often examined experimentally as
well. These, and other constraints, can further limit the al-
lowable parameter ranges and applicability of a predicted
coating window.

The alternative extremely viscous coating regime, as char-
acterized byCa � 1 andRe � 1, has been studied primar-
ily in the context of film casting processes. Here, a highly
viscous melted polymer is extruded through a die to form a
two-dimensional planar liquid sheet, which falls vertically
through the air and impinges on a chilled roll to create a
solid sheet.Yeow (1974)provided the first theoretical anal-
ysis of both the steady-state flow and stability of this planar
configuration for a Newtonian liquid, which is analogous to
previous work done on the melt spinning of polymer fibers
(Matovich and Pearson, 1969). Yeow’s model treats the pla-
nar sheet as gradually thinning in the direction of flow; to
be consistent with this assumption, end effects near the slot
(e.g., die swell) and substrate are not included (Matovich
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Fig. 2. Side view schematic of a typical extrusion coating geometry
indicating coordinate system and physical parameters used in the analysis
of the extruded liquid sheet.

and Pearson, 1969). An analytical expression for the velocity
field and shape of the liquid interfaces is derived.Aird and
Yeow (1983)extend this analysis to power-law liquids, and
analogous steady-state analytical expressions are derived.
Later works byAnturkar and Co (1988)andIyengar and Co
(1993)examine more sophisticated viscoelastic liquids us-
ing non-analytical methods. In all of these works, the width
of the film is assumed to be constant and the film shape
two-dimensional, when in fact the sheet width reduces sig-
nificantly from the slot to the chill roll. This neck-in, and the
concomitant edge thickness variation in the cast film, is pre-
dicted theoretically for Newtonian (D’Halewyu et al., 1990;
Sakaki et al., 1996) and viscoelastic liquids (Silgay et al.,
1998; Satoh, 2001), and is clearly observed experimentally
(Dobroth and Erwin, 1986; Canning and Co, 2000).

A less-studied configuration, still within the confines of
a viscous-dominated regime, is a small space occurring be-
tween the die and the substrate. This configuration is referred
to as extrusion coating, and is distinguished from slot coating
described above (see Chapter 11a ofKistler and Schweizer,
1997). In contrast to slot coating in which liquid often wets
the lands of the die (Fig. 1), extrusion coating actually in-
vokes a short two-dimensional liquid sheet that bridges the
gap where the sheet only contacts the die at the slot exit (Fig.
2). The space between the die and substrate can be larger
than that in slot coating because capillarity is not required to
support the liquid bead. Instead, the liquid sheet in extrusion
coating is held in the space between the die and substrate
by the traction along the substrate and the slot. Despite the
narrow gap, this sheet will often be dragged so that it is still
relatively long compared with its thickness. Furthermore,
with a small die-to-substrate spacing and a large width, the
relative extent of the reduction in width of the liquid sheet,
as cited in the film casting literature above, will be small.

The preceding arguments suggest that a constant-width,
two-dimensional model of a gradually thinning sheet can
supply a reasonable approximation to the flow field in an
extrusion coating operation.Ding et al. (2000, 2001)model

the flow of this geometry, although they use an ad hoc as-
sumption about the form of the velocity field. Furthermore,
their derived model of the sheet does not reduce to that of
Yeow (1974)andAird and Yeow (1983)when the sheet is
vertical. This calls into question the validity of the analyses
of Ding et al. (2000, 2001), because the steady-state New-
tonian sheet equations ofYeow (1974)agree precisely with
those derived via asymptotic methods byVan De Fliert et al.
(1995)andRamos (1996)for a viscous-dominated sheet that
is gradually thinning. These results are also limiting cases of
more general asymptotic analyses of two-dimensional grad-
ually thinning liquid sheets involving inertia, gravity, and
viscous effects (Clarke, 1968; Ramos, 1996), generally re-
ferred to as “curtains” in the coating literature (Kistler and
Schweizer, 1997). These asymptotic liquid sheet equations
agree with those first derived using physical arguments by
Taylor in the appendix ofBrown (1961), who also verified
the result experimentally, and have also been experimentally
verified in the inviscid limit (Finnicum et al., 1993; Wein-
stein et al., 1997; Clarke et al., 1997). Again, as in the film
casting work cited above, end effects are neglected for all
of the derived liquid sheet equations. Note thatDing et al.
(2000, 2001)do not examine the effect of a pressure drop
applied across the thin sheet, which might be anticipated to
affect the size of the coating window as in the low capillary
number cases cited previously.

In this paper, we determine the steady-state operating win-
dow for extrusion coating in the presence of applied pres-
sures, and we explore the shape of the two-dimensional,
thin viscous sheet between the slot and the substrate for a
power-law liquid. The organization of this paper is as fol-
lows. Section 2 provides the theoretical analysis of the coat-
ing configuration. In Section 2.1, the boundary-value prob-
lem to determine the shape of the liquid sheet is set forth,
and an analytical solution is provided in Section 2.2. An an-
alytical expression for the extrusion coating window is de-
termined in Section 2.3 via geometrical construction in a
way directly analogous to the above-cited work ofRuschak
(1976). Theoretical results are provided in Section 3, and a
discussion is provided in Section 4. The main text closes in
Section 5 with a summary. Appendix A provides a derivation
of the steady equations governing the shape of a gradually
thinning planar sheet in the presence of a pressure drop via
a macroscopic balance on the control volume, indicated in
Fig. 2; this generalizes the above-cited asymptotically valid
equations to non-vertical configurations. Appendix B pro-
vides an analytical expression for the viscosity dependence
and average viscosity in the liquid sheet.

2. Theory

2.1. Boundary value problem for the extruded sheet

We now develop a well-posed boundary value problem to
solve for the liquid sheet in extrusion coating, which we will
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refer to as theextruded sheet. To this end, consider the con-
figuration shown inFig. 2, which shows the extrusion coat-
ing geometry to be modeled. Here, liquid of density� exits
a coating die with a slot of heightD and an imposed volu-
metric flow rate per unit widthQ to form a two-dimensional
extruded sheet that is invariant with distance perpendicular
to the plane ofFig. 2. The air–liquid interfaces bounding
the sheet are assumed to have a constant surface tension�.
The extruded sheet is pulled by a substrate moving at speed
Vs across a gap of distanceL. The dynamics of the ambient
air is neglected, although different pressures may be applied
on the upstream and downstream faces of the extruded sheet
denoted byPup andPdown, respectively.

An S–N coordinate system is oriented as indicated inFig.
2, whereS andN denote the respective distances along the
centerline and normal to the extruded sheet. An auxiliary
X–Y coordinate system, also shown inFig. 2, is related to
theS–N system in terms of the angle� between the tangent
to the centerline and the verticalX-axis as

dX

dS
= cos�,

dY

dS
= sin�. (1)

The local thickness of the sheet is parameterized asH(S),
where the downstream and upstream interfaces are located
atN =H(S)/2 andN = −H(S)/2, respectively. The sheet
is assumed to thin gradually in the direction of flow, and
it is therefore anticipated that the streamwise velocity com-
ponent,U , is essentially invariant withN , and can thus be
parameterized asU(S). The liquid obeys a power-law con-
stitutive equation�=��, where� is the stress tensor,� is the
rate of strain tensor, and� is the shear-dependent viscosity;
this viscosity can be expressed as�=m|�|n−1, wherem is the
consistency coefficient,n is the power-law exponent, and the
vertical lines denote magnitude. In this paper, we restrict at-
tention to either Newtonian (n=1) or shear thinning(n<1)
liquids. A derivation of the general mass conservation and
force equations for a power-law liquid sheet is provided in
Appendix A using macroscopic balances; these equations
are consistent with all asymptotically correct equations for
gradually thinning sheets cited in Section 1.

The assumption of a gradually thinning liquid sheet is not
valid in the vicinity of the slot and substrate because the
flow in theS andN directions are comparable. Thus, as in
the literature cited in Section 1, end effects are neglected in
these regions. The slot boundary conditions are thus applied
at the locationS=0, where it is assumed thatU =Q/D and
H =D. The length of the centerline is denoted bySL, which
is determined as part of the solution of the problem. The
angle of intersection between the sheet centerline and the
substrate atS=SL, denoted as�L, is specified (Fig. 2). It is
also assumed that liquid at the bottom of the extruded sheet
moves at the speed of the substrate, which is resolved along
the tangent to the centerline, i.e.,Vs cos�L. We require that
Vs cos�L >Q/D in our analysis, so that the film is stretched
and thinned by the moving substrate—this is typically the
industrially relevant situation. A discussion of the validity

of these assumed boundary conditions, and the implications
of the neglected end effects, is provided in Section 4.

Dependent and independent variables are made dimen-
sionless as follows:

s = S

L
, x = X

L
, y = Y

L
,

u= UD

Q
, h= H

D
. (2a)

Upon substitution of Eq. (2a) into the governing equa-
tions and boundary conditions, the following dimensionless
groups are obtained:

Re = �QL

D�∗ , Ca = �∗Q
L�

, G= �gDL2

�∗Q
,

vs = VsD

Q
, pdown = PdownL

2

Q�∗ , pup = PupL
2

Q�∗ . (2b)

In Eq. (2b),g is the gravitational constant, and the viscosity
scale,�∗, is defined in terms of parameters of the assumed
power-law relation as

�∗ =m

(
Q

DL

)n−1

. (2c)

This scale is justified by inspection of the functional form
of the viscosity, which is simplified for a gradually thinning
film, as given by Eq. (A.3b).

As evident in the dimensionless form of the general force
equation, Eq. (A.6), derived in the appendix, the first three
parameters,Re, Ca, andG determine the magnitude of iner-
tia, surface tension, and gravitational forces compared with
viscous forces. For typical extrusion coating conditions as-
sociated with a small gap spacingL, Re � 1, Ca � 1 and
G � 1. Under these circumstances, viscous and pressure
forces dominate all others, and the limiting form of the force
equation, Eq. (A.6), for the extruded sheet become

d

ds

(
h

[
du

ds

]n)
= 0, (2d)

4nh

(
du

ds

)n d�
ds

= pdown − pup. (2e)

The mass balance in the sheet Eq. (A.1) is given in dimen-
sionless form as

d(uh)

ds
= 0. (2f)

We note here that for a Newtonian liquid (wheren= 1, and
m is interpreted as the viscosity) Eqs. (2d–f) are identical to
those derived byVan De Fliert et al. (1995)under steady-
state conditions. The dimensionless boundary conditions are:

u= 1, h= 1 at s = 0, (2g)

u= vs cos�L, � = �
2

− �L at s = SL

L
≡ sL. (2h)
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A constraint on the length of the extruded sheet is derived
from Eq. (1) as

sL∫
0

cos� ds = 1. (2i)

The system Eq. (2) is well posed to determine the shape
of the extruded sheet’s centerline,�(s), its local thickness,
h(s), and internal speedu(s). Note that the system, Eq. (2)
is general for an arc-length-dependent pressure drop, but we
restrict attention in this paper to cases wherepdown−pup in
Eq. (2e) is constant.

Once solved, thex–y-coordinates of the extruded sheet’s
centerline can be extracted by integrating Eq. (1) to obtain

xc =
s∫

0

cos� ds, yc =
s∫

0

sin� ds, (3a)

where the subscript “c” has been added to denote the center-
line location. The position of the downstream and upstream
interfaces are obtained by relating theX–Y andS–N coor-
dinate systems inFig. 2 to yield

x = xc ∓ 1

2
�h sin�, y = yc ± 1

2
�h cos�, � = D

L
,

(3b)

where the upper and lower signs correspond to the down-
stream and upstream interfaces, respectively.

2.2. Solution for the shape of the extruded sheet

The solution of the system, Eq. (2) is now obtained.
Eq. (2f) is integrated and the boundary conditions, Eq. (2g),
are applied to yield:

h= 1

u
. (4)

Eq. (2d) is integrated to yield:

h

[
du

ds

]n
= 	, (5)

where	 is a constant to be determined. Substituting Eq. (4)
into Eq. (5) and using the speed boundary condition in Eq.
(2h), the result is

u=
[(

1 + (n−1)
n

	1/ns
)n/(n−1)

, for n<1

e	s , for n= 1

]
, (6a)

where

	 =


(
n(1−[vs cos�L](n−1)/n

)

(1−n)sL

)n
, for n<1

ln(vs cos�L)
sL

, for n= 1


 . (6b)

A constraint on the velocity field that is evident in Eq. (6b)
for n<1, is that:

vs cos�L�1. (6c)

This mathematical restriction arises because we have lim-
ited attention to cases of thinning extruded sheets where
du/ds >0; see Appendix A for a more general governing
equation, which is not subject to this restriction. Note that
the velocity result, Eq. (6a), is consistent with derived an-
alytical expressions for both Newtonian and power-law liq-
uids for the special case of a vertical sheet (Yeow, 1974;
Aird and Yeow, 1983). An interesting analytical feature of
the velocity field, Eq. (6), is that it yields a viscosity varia-
tion that is linear with arc length along the sheet whenn<1.
A derivation of this result, and an expression for the average
viscosity in the extruded sheet, are provided in Appendix B.

The velocity field, Eq. (6), is in terms of a not-yet-known
length of the extruded sheet,sL, which is determined in
the following. The expression in Eq. (5) is substituted into
Eq. (2e) and rearranged to yield

d�
ds

= pdown − pup

4n	
≡ 
. (7)

This result indicates that the interface shape is circular with
dimensional curvature
/L. After integration of Eq. (7), and
application of the angle boundary condition in Eq. (2h), the
result is

� = 
(s − sL)+ �
2

− �L. (8a)

The result, Eq. (8a), is in turn substituted into Eq. (2i) to
obtain the following equation that can be solved to determine
the arc length,sL:

cos(�L + 
sL)= cos�L − 
 (8b)

Once Eq. (8b) is satisfied, the solution to the system of Eq.
(2) is complete.

The Cartesian coordinates of the centerline can be ex-
tracted by substituting Eq. (8a) into Eq. (3a) to yield

xc = 
−1(cos[�L + 
{sL − s}] − cos[�L + 
sL]), (8c)

yc = 
−1(sin[�L + 
sL] − sin[�L + 
{sL − s}]). (8d)

The locations of the downstream and upstream interfaces are
obtained from Eq. (3b) as

x = xc ∓ 1
2�h cos[�L + 
{sL − s}], (8e)

y = yc ± 1
2�h sin[�L + 
{sL − s}], (8f)

where� is defined in Eq. (3b). The result, Eq. (8), provides
a complete description of the shape of the extruded liquid
sheet.

2.3. The extrusion coating window

Of particular interest is the parameter space in which ex-
trusion coating is possible (i.e., the coating window) when
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a pressure drop is applied across the extruded sheet. Extru-
sion coating is possible when the circular shape of the ex-
truded sheet—subjected to the constraints that it is pinned
at the slot, meets the imposed angle at the substrate, and
has a specified radius of curvature—can bridge the gap be-
tween the slot and the substrate. This parallels the geomet-
rical construction and associated operability bounds for the
upstream interface in slot coating (Fig. 1), as elucidated by
Ruschak (1976)in surface tension-dominated flows, which
also involve circular interface shapes.

To obtain bounds, attention is focused in Eq. (8b). The
maximum and minimum values of the cosine function on
the left-hand side are 1 and−1, respectively, which sets lim-
iting values of the curvatures at±1 = cos�L − 
. The arc
lengths associated with these limiting values are obtained by
choosing the appropriate branch for the argument of the co-
sine on the left-hand side that is consistent with the physical
construction of a circle. The result is


1 = cos�L − 1, sL1 = �L
1 − cos�L

, (9a)


2 = cos�L + 1, sL2 = � − �L
1 + cos�L

, (9b)

where the subscripts have been added to
 andsL for later
reference. Note that all curvatures must lie in the range


 ∈ [
1,
2]. (9c)

Furthermore, the sense of the curvatures is different in the
two limiting cases. The curvature in Eq. (9a) is generally
negative, and that for Eq. (9b) is positive. According to the
expression for the surface angle� given in Eq. (7), a negative
curvature implies that the circular centerline is curved so that
its center lies to the left of the extruded sheet inFig. 2, and
the positive radius implies that its center lies to the right.

With the critical radii identified, we can now identify the
range of pressure drops that can be supported by the extruded
sheet. Rearrangement of Eq. (7) to solve for the pressure
drop in Eq. (9) yields the following inequality:

�pmin�pdown − pup��pmax, (10a)

where

�pmin ≡ 4n	
|1, �pmax ≡ 4n	
|2 (10b)

and the subscripts 1 and 2 indicate that	 and 
 in each
limit correspond to the critical locations in Eq. (9). Explicit
evaluation of Eq. (10b), using Eqs. (6b) and (9), yields

�pmin =



0, for �L = 0 ∀n
−(1 − cos�L)n+1

(
4n(1−[vs cos�L](n−1)/n)

(1−n)�L

)n
, for n<1

−4(1−cos�L)2

�L
ln(vs cos�L), for n= 1


 (10c)

�pmax =
[
(1 + cos�L)n+1

(
4n(1−[vs cos�L](n−1)/n)

(1−n)(�−�L)

)n
, for n<1

4(1+cos�L)2

�−�L
ln(vs cos�L), for n= 1

]
, (10d)

where, for ease of later reference, we rewrite the assumed
constraint Eq. (6c) here as

vs cos�L�1. (10e)

The dimensionless inequality in Eq. (10) provides the range
of applied pressures in which the extruded sheet can bridge
the gap between the slot and moving substrate, and thus
describes the parameter space in which extrusion coating is
possible.

3. Results

We begin our discussion by examining the centerline de-
flection of the extruded liquid sheet. Eqs. (6b) and (7) indi-
cate that the curvature
 of the sheet centerline is a function
of not only the pressure droppdown−pup, but of the power-
law exponentn, angle of intersection with the substrate
�L, and dimensionless speed of the substratevs . However,
Eq. (8b) indicates that it is permissible to alternativelyspec-
ify 
 and�L, solve forsL, and extract centerline shapes ac-
cording to Eqs. (8c) and (8d). This is convenient for data
presentation because all combinations ofpT − pB , n, and
vs , which give the same value of the curvature for given�L,
will yield the same centerline prediction; therefore, the range
of possible centerline shapes can be explored in an efficient
way.Fig. 3gives typical centerline shapes for�L=10◦ over
the range of possible curvatures that allow a circular arc to
be constructed according to Eqs. (9). Note thatx = 0 and
1 correspond to the locations of the slot and substrate, re-
spectively. CurvesA andF correspond to limiting curvatures

2 = 1.985 and
1 = −0.0152, and curvesB–E correspond
to intermediate values. Note that curveD corresponds to the
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Fig. 3. Coordinate plot showing the effect of curvature,
, on the centerline
shape of the extruded liquid sheet for�L=10◦. (A) Maximum curvature,

 = 
2 = 1.985; (B) 
 = 0.9; (C) 
 = 0.1; (D) 
 = 0; (E) 
 = −0.0135;
(F) minimum curvature,
 = 
1 = −0.0152.
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Fig. 4. Plots of the angle of the extruded sheet’s centerline at the slot relative to vertical,�0, expressed in degrees, and the arc length of the centerline,
sL, as a function of the curvature,
, of the centerline for�L = 10◦. This plot encompasses the range of curvatures and associated centerline shapes
examined inFig. 3. The indicated minimum and maximum allowable curvatures have respective values of
1 = −0.0152 and
2 = 1.985.
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Fig. 5. Coordinate plot showing the effect of curvature,
, on the centerline shape of the extruded liquid sheet for�L = 30◦. (A) Maximum curvature,

 = 
2 = 1.866; (B) 
 = 0.9; (C) 
 = 0; (D) 
 = −0.12; (E) minimum curvature,
 = 
1 = −0.134.

case of zero curvature and serves as a dividing line separating
positive curvatures (curvesA–C) and negative curvatures
(curvesE–F). It is also apparent that the arc lengthsL of
the extruded sheet increases as its curvature is reduced, as
expected from physical intuition.

As is evident from inspection ofFig. 3, the centerline
of the extruded sheet does not, in general, exit the slot (at
x = y = 0) vertically. The angle of the centerline at the
slot, relative to vertical, denoted as�0 (Fig. 2), is obtained
directly from Eq. (8a) evaluated ats = 0:

�0 = −
sL + �
2

− �L. (11)

Fig. 4 provides a plot of the angle�0 from Eq. (11) as well
as the arc length of the centerline,sL, as a function of cur-
vature
 for �L = 10◦; this figure encompasses the variation
in �0 and sL associated with all of the centerline predic-
tions of Fig. 3. Fig. 4 indicates that the angle�0 decreases
monotonically with increasing curvature in the range of the
limiting configurations. Note that curvesA andF in Fig. 3
correspond to the limiting configurations
2 and
1 shown
in Fig. 4, and have�0 = −90◦ and�0 = 90◦, respectively.
This result is general to all limiting configurations, regard-
less of parameter values.Fig. 4 indicates that the arc length

decreases monotonically with increasing curvature, except
in the immediate vicinity of the limiting configuration
2.
Additionally, Fig. 4 indicates that the arc length is a strong
function of curvature for small values of curvature close to

1.

Figs. 5and6 give analogous data toFigs. 3and4, except
for �L=30◦. CurvesA andE in Figs. 5and6 correspond re-
spectively to limiting curvatures
2=1.866 and
1=−0.134,
and curvesB–D in Fig. 5correspond to intermediate values.
Comparisons betweenFigs. 4and6 indicate that arc lengths
for the same values of curvatures, in the range of admissible
values, are smaller when�L = 30◦. Nevertheless, the same
general trends are observed when�L = 30◦ and 10◦.

Although centerline shapes can be conveniently examined
in the space of
 and�L, the local velocity and film thickness
centered about the centerline are strong functions ofn and
vs . Figs. 7 and 8 show the effect of power-law exponent,
n, on respective speed and thickness predictions Eqs. (6)
and (4) withvs = 6, for a centerline shape characterized by
�L = 10◦ and 
 = 0.9. Note that the centerline shape for
all values ofn in either figure is identical and is shown in
curveB of Fig. 3; this shape givessL=1.46 and�0 =4.87◦
from Fig. 4. In Figs. 7and8, the arc-length coordinates in
Eq. (6) is transformed tox (the vertical distance from the
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Fig. 6. Plots of the angle of the extruded sheet’s centerline at the slot relative to vertical,�0, expressed in degrees, and the arc length of the centerline,
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Fig. 7. Speed of liquid in the extruded sheet,u, as a function of linear
distance from the slot,x, for various power-law exponents,n. All curves
have�L =10◦ and
=0.9, and correspond to extruded sheets having the
same centerline shape given by curveB in Fig. 3.

slot in Fig. 2) through the centerline expression Eq. (8c).
Figs. 7and8 show that the velocity and film thicknesses are
monotonic with distance from the slot; it is apparent that
asn decreases, much of the speed and thickness variation
occurs in the extruded sheet near the substrate.

Fig. 9 gives a complete shape of the extruded sheet cor-
responding to the velocity and thickness profiles inFigs. 7
and8 for a Newtonian liquid (n= 1), where the local sheet
thickness ofFig. 8 has been superimposed on the center-
line shape, according to Eqs. (8e) and (8f) for� = 0.1. The
centerline location inFig. 9 is dashed, and the angle of the
centerline at its top is�0 = 4.86◦. Fig. 9 shows that the
film thickness dips below the substrate location atx = 1.
We could have chosen to ignore this portion of the solution
in our plot, which is clearly not physical. However, here,
we have elected to include this deviation to illustrate that
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Fig. 8. Thickness of the extruded sheet,h, as a function of linear distance
from the slot,x, for various power-law exponents,n, associated with fluid
speeds inFig. 7. All curves have�L = 10◦ and
 = 0.9, and correspond
to extruded sheets having the same centerline shape given by curveB in
Fig. 3.

our analysis ignores end effects; thus, it is unaware of the
physical constraint of the substrate apart from the speed and
angle imposed on the centerline.

Fig. 10gives a comparison between the shape of the New-
tonian and power-law liquid sheets corresponding, respec-
tively, to n= 1 and 0.25 fromFigs. 7and8; the Newtonian
interface shape, indicated with thin solid lines, is identical
to that shown inFig. 9. It is again emphasized that the cur-
vature
 and angle�L are identical for both liquids; there-
fore, the centerline shape, indicated with the small dashes
in the figure, is the same in both cases.Fig. 10shows that
the extruded sheet is thicker for a power law liquid at each
location, and it rapidly thins in the vicinity of the substrate
to meet the constraints of imposed angle and speed at that
location. This is in accordance with the thickness and ve-
locity behaviors observed inFigs. 7and8. Finally, Fig. 11
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Fig. 9. Complete shape of the extruded sheet for a Newtonian liquid
(n=1) for �L=10◦, 
=0.9, �s =6 and�=1. The centerline corresponds
to curve B of Fig. 3 and is indicated in small dashes. The associated
speed and thickness data are found inFigs. 7and 8.
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Fig. 10. Comparison of the complete shape of the extruded sheet for
power-law (n=0.25) and Newtonian (n=1) liquids for�L=10◦, 
=0.9,
�s=6 and�=1. The location of interfaces for the power law and Newtonian
liquids are indicated with dark and light solid lines, respectively. The
Newtonian shape is identical to that inFig. 9. The centerline for both
cases is identical and indicated in small dashes, and corresponds to
curve B of Fig. 3. The associated speed and thickness data are found in
Figs. 7and 8.

gives interface results for a Newtonian liquid, and param-
eter values identical to those inFig. 9, except the angle is
now �L = 30◦ (thus,
 = 0.9, vs = 0.6, � = 0.1). Compared
with Fig. 9, the arc length of the centerline is reduced to
sL = 1.201, and the centerline shape is different (in agree-
ment with trends shown inFigs. 3–6); despite this fact, a
similar thinning shape is obtained.

We now turn our attention to typical predictions of coat-
ing windows according to Eq. (10). As is evident by inspec-
tion of Eq. (10), windows are functions ofvs , �L, andn. A
more physical interpretation ofvs can be obtained by recon-
sidering its definition in Eq. (2b). For a pre-metered flow
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Fig. 11. Complete shape of the extruded sheet for a Newtonian liquid
(n=1) for �L=30◦, 
=0.9, �s =6 and�=1. The centerline corresponds
to curveB of Fig. 5 and is indicated in small dashes.
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Fig. 12. Extrusion coating windows expressing the allowable range of
pressure drops,�p = pdown − pup, as a function of the dimensionless
thickness ratio,�s , for various power-law exponents,n, and�L = 0◦.

on a horizontal surface, the dimensional final film thickness
on the substrate,d (Fig. 2), is given by the plug relation
d=Q/Vs , and thusvs in Eq. (2b) is alternatively interpreted
as a thickness ratiovs = D/d. Fig. 12 gives coating win-
dows for�L=0◦ expressing the range of allowable pressure
drops across the liquid sheet,�p = pdown − pup, for vari-
ous power-law exponentsn as a function of the thickness
ratio vs . The curves shown for each value ofn correspond
to �pmax in Eq. (10b); according to Eq. (10c),�pmin = 0
when�L = 0◦. Thus, the range of allowable pressure drops
for a given power-lawn lies between the indicated curve
and the abscissa inFig. 12. Note that the positive values of
�p within the window indicate that suction is applied to the
upstream face of the liquid sheet, relative to the pressure
applied to the downstream face (Fig. 2). As is evident from
Fig. 12, regardless of the value ofn, the window collapses
whenvs =1, which is the smallest allowable value ofvs that
satisfies Eq. (10e). Furthermore, forn = 1, the size of the
pressure window continues to increase with increasingvs ,
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Fig. 13. Extrusion coating windows expressing the allowable range of
pressure drops,�p=pdown−pup, as a function of the sheet angle at the
substrate,�L, for various values of�s and for a Newtonian liquid (n=1).

which can also be deduced by direct inspection of Eq. (10d).
For n<1, however, all�pmax curves ultimately asymptote
to a constant value for largevs , as evidenced by the curves
for n = 0.2 and 0.4, although asn → 1, the value ofvs re-
quired to reach this asymptote becomes large. The form of
the limiting value for largevs for anyn<1 is given by the
expression in Eq. (10d) with terms involvingvs eliminated.

It is apparent that the smaller the value ofn, the smaller
the available window inFig. 12. Note, however, that this is a
statement made in the dimensionless space. The interpreta-
tion of this trend in dimensional form is confounded by the
fact that the scales for pressure in Eq. (2b) involven itself
through the characteristic viscosity scale�∗ in Eq. (2c). To
see this explicitly, we rewrite Eq. (10a) in dimensional form
using the pressure scaling in Eq. (2b) as(
Q�∗

L2

)
�pmin�PT − PB �

(
Q�∗

L2

)
�pmax. (12)

From physical considerations for fixed geometry and flow,
smaller values ofn give smaller values of the characteristic
viscosity scale; so the general trends shown inFig. 12also
hold in the dimensional space. It is also apparent that the
larger the characteristic viscosity for a given geometry, the
larger the dimensional window.

Fig. 13shows the dependence of the coating window on
the angle�L for a Newtonian liquid and various thickness
ratiosvs . Note that this figure is consistent with data for�L=
0 fromFig. 12for n=1. Each of these windows collapses to
a point for parameter values satisfyingvs cos�L=1, the limit
for which the thickness of the liquid no longer decreases in
the direction of flow according to Eq. (10e). It is apparent
that the magnitude of the dimensionless pressure latitude is
relatively insensitive to angle for small values of�L for each
thickness ratio. Note the appearance of negative values of
the allowable pressure drop inFig. 13for larger angles; this
indicates that it is now possible to maintain a liquid sheet
when a positive pressure is applied along the upstream face
of the liquid sheet, relative to the downstream face.Fig. 14
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Fig. 14. Extrusion coating windows expressing the allowable range of
pressure drops,�p = pdown − pup, as a function of the sheet angle at
the substrate,�L, for various values of�s and forn= 0.4.

provides data analogous to that inFig. 13, except nown=0.4.
Because the values ofvs are the same in bothFigs. 13and
14, the values of the angles at which each window collapses
(again corresponding tovs cos�L=1) are identical. As in the
case ofFig. 13, note the relative insensitivity of the pressure
window to angle variations for small angles. Dimensional
Eq. (12) reveals that the pressure scaling (explicitly shown
in parentheses) remains constant when fluid type, flow rate,
and geometry are fixed. Thus, data trends in eitherFig. 13
or 14 can be interpreted as corresponding to dimensional
experiments in which the only parameters varied are the
dimensional substrate speedVs and intersection angle�L.

4. Discussion

We begin our discussion by extracting an important phys-
ical result from the solution for the extruded sheet given in
Section 2.2. In particular, the form of Eq. (7), which gives
a relation between pressure drop and the curvature of the
sheet centerline, suggests that the liquid-extruded sheet ex-
periences an effective dimensionless tensile force per unit
width, �e, given as

�e = 4n	, (13a)

where	 is given by Eq. (6b). This interpretation is obtained
by direct analogy to solid mechanics for a cylindrical shell
of constant curvature subjected to a pressure drop, or alter-
natively, to the Young–Laplace equation for a pressure drop
across a cylindrical interface with surface tension. The cor-
responding dimensional tensile force per unit width,�∗ is
given as

�∗
e =

(
�∗Q
L

)
�e, (13b)

where�∗ is given by Eq. (2c). According to Eq. (6), the pa-
rameter	>0, and thus Eq. (13) indicates that the extruded
sheet is in a state of isotropic tension; this is an intuitively
pleasing result consistent with the sheet being stretched by
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the moving substrate. Inspection of the dimensionless rela-
tion, Eq. (13a), and with the expression for	 in Eq. (6b),
indicates that�e decreases as arc length increases with other
parameter values fixed. This is accomplished, according to
Figs. 3–6, by reducing the value of the curvature,
, which
corresponds to a smaller pressure drop across the extruded
sheet according to Eq. (7). Inspection of the dimensional
functionality, Eq. (13b), indicates that this dimensionless
trend does correspond to a dimensional physical trend where
the pressure drop across an extruded sheet is adjusted for
fixed-fluid type, geometry, and intersection angle. So, it is
deduced that relatively large dimensional tensions are inher-
ent in extruded sheets of small length, and these are incurred
for large values of the imposed pressure drop.

A comparison between the expressions for the coating
window, Eq. (12), and tension, Eq. (13b), reveal similar di-
mensional dependences (these are in parentheses in each ex-
pression). These expressions indicate that the size of the di-
mensional pressure windows, shown in dimensionless form
in Figs. 12–14, increases for larger values of the character-
istic viscosity,�∗, for larger values of the volumetric flow,
Q, and for smaller values of the die to substrate spacing,
L. This expansion in the dimensional windows, in general,
corresponds to overall increases in tension in the extruded
sheet. As is intuitive, higher tension sheets can support larger
pressure drops; this, in turn, increases the size of the coating
window.

We now comment on the approximate nature of the bound-
ary conditions applied at the die slot (s = 0) and substrate
(s=sL). The analysis of entrance and end effects neglected in
this analysis actually determines the correct boundary con-
ditions to be applied. Unfortunately, the equations govern-
ing the mathematics in these regions are more complex than
those given by Eq. (2) because the approximation of a grad-
ually thinning extruded sheet does not apply (flow variations
in the direction of flow and across it are of the same or-
der). Boundary conditions valid for the simplified governing
equations are obtained by using the physical features of the
local regions at their outer extremities where the governing
Eqs. (2) become valid. Entrance effects, such as die swell,
could thus be incorporated into the extruded sheet analysis
by reinterpreting the slot height,D, as the local thickness of
the extruded sheet at a small distance downstream from the
slot itself. If the length of the region of die swell is small
compared with the overall length of the extruded sheet, this
die swell can be imposed directly at the slot itself as an ad-
justed value ofD (even if the actual slot height is different).

At the bottom of the extruded sheet, the angle and speed
constraints could be determined by local analysis and im-
posed similarly to constraints at the slot. Note that one se-
vere restriction on the analysis presented here is that the an-
gle �L is a free parameter. Nevertheless, physical reasoning
suggests that this angle is relatively small, since the substrate
pulls the extruded sheet forward, and so this uncertainty is
somewhat mitigated. This is reinforced by results ofFigs.
13 and14, which show that the size of the coating window

does not change very much for small�L. This is despite the
fact that variations in the angle�L, even when small, can
have a large effect on the shape of extruded liquid sheets
for small curvatures (cf.Figs. 3and5). At small curvatures,
the pressure drop incurred is small and does not largely af-
fect the location of the lower bound on the pressure window.
The upper bound on the pressure window, however, involves
sheets having shapes with similar arc lengths for small�L.
The net effect of these two trends is a relative insensitivity
in coating window to angle when it is small.

Despite the uncertainty in boundary conditions, operation
limits on the extrusion coating process can be elucidated
with the solution to Eq. (2) since theform of the applied
boundary conditions are not to be expected to change even
with improved accuracy in their numerical values. Uncer-
tainties in these constraints translate to an increased mar-
gin of error in model predictions compared with experi-
ment, and the size of the operating parameter space must
be reduced to be conservative enough to compensate. When
experiments are performed, a semi-empirical adjustment of
the boundary conditions in the model is likely required to
achieve a more quantitative result. The need for empirical
adjustment is further emphasized by the fact that satisfac-
tion of Eq. (10) is only anecessarycondition for extrusion
coating. In practice, it is not a sufficient condition because
other failure modes, such as air entrainment, will further
limit the operating space. Even within this more restrictive
operating space, the ability to resist perturbations to distur-
bances will generally make one operating condition more
desirable than another. The issue of disturbances cannot be
directly assessed with the current steady analysis, but it re-
quires a frequency response examination of the governing
time-dependent equations. Nevertheless, we note thatFigs.
3–6reveal that arc lengths for sheets having small curvatures
are especially sensitive to variations in curvature. According
to the above discussion, this suggests that there is likely a
large sensitivity of the extruded liquid sheet, and subsequent
coating quality on the substrate, to ambient pressure fluctu-
ations when the pressure drop across the sheet, is small.

5. Summary

It has been demonstrated that the physics of a two-
dimensional gradually thinning viscous liquid sheet is
critical in determining the extrusion coating window. The
shape and flow field within this sheet have been derived
analytically for power law liquids. The centerline shape
of the liquid sheet is circular when a pressure drop is ap-
plied, despite the fact that surface tension forces, which
typically give rise to circular shapes in narrow gaps, are
neglected. The stretching of the viscous-dominated liquid
sheet, however, gives rise to an effective tension that plays
an analogous role to surface tension. The range of allowable
applied pressures in extrusion coating, which defines the
coating window in this work, is deduced via geometrical
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considerations of a circular shape, constrained in the narrow
gap; extrusion coating fails when a liquid sheet cannot be
constructed successfully. Practically, the coating window
defined in this paper provides necessary, but not sufficient,
conditions to achieve successful coating. As discussed, un-
certainty in the applied boundary conditions, as well as
other phenomena not accessible via the analysis provided
here, will further limit the predicted operating range of an
extrusion coating process.

Notation

Ca capillary number
d final liquid film thickness coated on substrate
D slot height
g gravitational constant
G gravitational dimensionless group
h dimensionless local thickness of extruded liquid

sheet
H local thickness of extruded liquid sheet
L gap spacing between slot and substrate
n power-law exponent
m consistency coefficient in power-law exponent
pdown dimensionless ambient air pressure applied on

downstream interface
Pdown ambient air pressure applied on downstream in-

terface
pup dimensionless ambient air pressure applied on

upstream interface
Pup ambient air pressure applied on upstream inter-

face
Q volumetric flow rate per unit width
Re Reynolds number
s dimensionless arc length coordinate measuring

distance along sheet centerline
S arc length coordinate measuring distance along

sheet centerline
SL arc length of sheet centerline
u dimensionless local speed of liquid in sheet
U local speed of liquid in sheet
vs dimensionless substrate speed; equivalent to

thickness ratioD/d

Vs substrate speed
x dimensionless Cartesian coordinate measuring

vertical distance from slot to substrate
X Cartesian coordinate measuring vertical distance

from slot to substrate
xc x coordinate of the extruded sheet’s centerline

(dimensionless)
y Cartesian coordinate measuring horizontal dis-

tance parallel to substrate
yc y coordinate of the extruded sheet’s centerline

(dimensionless)

Y Cartesian coordinate measuring horizontal dis-
tance parallel to substrate

Greek letters

	 dimensionless parameter defined in Eq. (6c)
� dimensionless ratio (≡ D/L)
�Pmax maximum possible pressure drop across ex-

truded sheet, given in Eq. (10)
�Pmin minimum possible pressure drop across ex-

truded sheet, given in Eq. (10)
� local angle between tangent to centerline and

vertical
�0 local angle between tangent to centerline and

vertical at the slot exit (s = 0)
� rate of strain tensor
� generally shear-dependent viscosity
�∗ viscosity scale

 dimensionless curvature of sheet centerline

1 minimum possible dimensionless curvature of

sheet centerline

2 maximum possible dimensionless curvature of

sheet centerline
�L angle of intersection between the sheet center-

line and substrate atS = SL
� liquid density
� surface tension
�e effective tensile force per unit width in liquid

sheet
� stress tensor

Appendix A. General governing equations for the shape
of a gradually thinning liquid sheet

In this appendix, the steady-state force and mass conser-
vation equations governing a two- dimensional, gradually
thinning liquid sheet are derived via a macroscopic balance.
To this end, consider the sheet geometry and coordinate sys-
tem shown inFig. 2. All notation and assumptions used are
as provided in the problem statement of Section 2.1. As indi-
cated inFig. 2, the control volume used to perform the force
balance cuts through the interfaces on both sides and extends
into the air over an infinitesimal distance. Note that for a
gradually thinning sheet, the variation in thicknessH(S) is
small enough on the scale of the control volume that tangent
and normal vectors at both interfaces (i.e., atN=±H(S)/2)
can be approximated as those along the sheet centerline.

The mass balance on the control volume is given by the
simple expression:

�(UH)

�S
= 0. (A.1)

Furthermore, taking into account momentum, pressure vis-
cous stress, gravitational, and surface tension forces on the
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control volume, the following balance arises:

d

dS
(�U2H Ŝ)= (Pup − Pdown)N̂ + d

dS
(Ŝ · �H)

+ �gH X̂ + 2�
dŜ
dS

, (A.2)

whereŜ, N̂, X̂, andŶ (used below) are unit vectors in the
directions of their respective coordinates. An expression for
the constitutive equation for the viscous stress for a power-
law liquid Ŝ · � in Eq. (A.2) is required. Following Taylor’s
derivation inBrown (1961)for a vertical sheet, and antic-
ipating that this is valid for a gradually thinning sheet in
the deflected coordinate system ofFig. 2, we assume that
the rate of strain tensor,�, and stress tensor,�, in the sheet
satisfy:

� = 4
dU

dS
ŜŜ, � = 4�

dU

dS
ŜŜ. (A.3a)

Thus, for a power-law liquid,

� =m

∣∣∣∣4dU

dS

∣∣∣∣
n−1

, Ŝ · � =m

∣∣∣∣4dU

dS

∣∣∣∣
n−1(

4
dU

dS

)
Ŝ, (A.3b)

where the vertical lines denote absolute value.
According to the geometry ofFig. 2, the following rela-

tions between the unit vectors are obtained:

Ŝ= X̂ cos� + Ŷsin�, (A.4a)

N̂ = −X̂ sin� + Ŷcos� (A.4b)

and, therefore

dŜ
dS

= N̂
d�
dS

, (A.4c)

The relations of Eq. (A.4) coupled with the constitutive Eq.
(A.3) allow for a separation of Eq. (A.2) into tangential
and normal components. After simplification of the left-hand
side of Eq. (A.2) using the mass conservation expression
Eq. (A.1), the tangential and normal components become

Ŝ : �HU
dU

dS
=m

d

dS

(
H

∣∣∣∣4dU

dS

∣∣∣∣
n−1(

4
dU

dS

))

+ �gH cos�, (A.5a)

N̂ : �HU2 d�
dS

= Pup − Pdown +m

∣∣∣∣4dU

dS

∣∣∣∣
n−1(

4
dU

dS

)
H

d�
dS

− �gH sin� + 2�
d�
dS

. (A.5b)

Eqs. (A.1) and (A.5) are the desired governing equations for
the shape of a planar liquid sheet.

In this paper, we restrict attention to the case of a thinning
liquid sheet for which dU/dS >0. Using this assumption,
and making the force balance Eq. (A.5) dimensionless using

the scales for the extruded sheet given by Eq. (2a) the result
is

Ŝ : Re hu du

ds
= d

ds

(
H

[
4

du

ds

]n)
+Gh cos�, (A.6a)

N̂ : Re hu2 d�
ds

= pup − pdown

+
(

4
du

ds

)n
h

d�
ds

−Gh sin� + 2

Ca

d�
ds

, (A.6b)

where the dimensionless groupsRe, G, andCa are defined
in Eq. (2b). The general Eqs. (A.6) are the starting point for
the analysis of a liquid sheet provided in Section 2.1.

At this point, we note that Eqs. (A.1) and (A.5) are con-
sistent with various limiting cases in the literature. When in-
ertial, gravitational, and surface tension terms are neglected
in Eq. (A.5), and for a Newtonian liquid of viscosity� (i.e.,
n=1,m=�), the derived equations are identical to those of
Van De Fliert et al. (1995)obtained via asymptotic methods
for a small aspect ratio liquid sheet (it is long and thin). In
cases where viscous effects are neglected (m=0), Eqs. (A.1)
and (A.5) reduce to the large-deflection equations derived
by Finnicum et al. (1993), which in turn are shown to be
asymptotically correct in the limit of small sheet aspect ratio
and small deflections byWeinstein et al. (1997). Finally, for
a steady and vertical planar sheet, the centerline is located
along�=0 ands=x in Eq. (A.5); Eqs. (A.1) and (A.5) re-
duce to those derived by Taylor in the appendix of the paper
by Brown (1961). Again, these equations are demonstrated
to be asymptotically correct for a planar liquid sheet of a
small aspect ratio (Clarke, 1968; Ramos, 1996). Thus, the
derived governing equations have general applicability to a
variety of steady liquid sheet problems.

Appendix B. Viscosities in the extruded sheet

The viscosity variation and average viscosity in the ex-
truded liquid sheet are calculated in this appendix. The av-
erage dimensional viscosity in the extruded sheet,〈�〉 is ex-
pressed according to the following dimensionless relation:

〈�〉
�∗ = 1

sL

∫ sL

0

�
�∗ ds, (B.1)

where dimensional� is given by Eq. (A.3b) and the scaling
factor�∗ is given by Eq. (2c). Using the definitions in Eqs.
(A.3b) and (2c), and differentiating the velocity field, Eq.
(6a), the result is

�
�∗ = 4n−1	(n−1)/n

(
1 + (n− 1)

n
	1/ns

)
. (B.2)

The result, Eq. (B.2), indicates thatthe viscosity varies lin-
early with arc length forn �= 1, and yields�/�∗ = 1 when
n = 1. Upon substitution of Eq. (B.2) into Eq. (B.1) and
integrating, the final result for the average viscosity of the
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extruded sheet is obtained:

〈�〉
�∗ = 4n−1	(n−1)/n

(
1 + (n− 1)

2n
	1/nsL

)
. (B.3)
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