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Abstract

System level optimization computations for engineering problems are typically based on continuum level, macroscopic system descrip-
tions, obtained using accurate closures. In many cases, however, including micro/nanoscopic systems, the best available description is a
fine scale (atomistic, stochastic or agent-based) model for which accurate, coarse-grained, system level descriptions are not known. The
recently introduced equation-free approach [Theodoropoulos, K., Qian, Y.-H., Kevrekidis, I.G., 2000. “Coarse” stability and bifurcation
analysis using timesteppers: a reaction diffusion example. Proceedings of the National Academy of Sciences 97, 9840–9843; Gear, C.W.,
Kevrekidis, I.G., Theodoropoulos, C., 2002. ‘Coarse’ integration/bifurcation analysis via microscopic simulators: micro-Galerkin methods.
Computers and Chemical Engineering 26, 941–963; Kevrekidis, I.G., Gear, C.W., Hummer, G., 2004. Equation-free: the computer-assisted
analysis of complex, multiscale systems. A.I.Ch.E. Journal 50, 1346–1354; Kevrekidis, I.G., Gear, C.W., Hyman, J.M., Kevrekidis, P.G.,
Runborg, O., Theodoropoulos, K., 2003. Equation-free multiscale computation: enabling microscopic simulators to perform system-level
tasks. Communications in Mathematical Sciences 1, 715–762] provides a computational bridge between the underlying microscopic process
model and system level numerical computations. In this paper, we employ the equation-free approach to perform system level optimiza-
tion by acting directly on microscopic/stochastic models. The approach substitutes the evaluation of closed form macroscopic equations
with the design and execution of appropriately initialized short bursts of fine scale simulation; processing the simulation results yields
estimates of the quantities (residuals, actions of Jacobians and Hessians) required for continuum computations. We illustrate the combi-
nation of “coarse timesteppers” with standard (both local and global) optimization techniques. The efficiency of alternative optimization
formulations is compared; we see that it can be enhanced by exploiting a separation of time-scales in the system dynamics. The approach
constitutes a computational “wrapper” around microscopic/stochastic simulators; yet it can also be wrapped around legacy continuum
dynamic simulators.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamics of many physicochemical systems occur
across different length scales, often classified as micro-
scopic, mesoscopic and macroscopic. Traditionally, when
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analyzing and designing engineering systems we are inter-
ested at the coarse-grained, macroscopic, systems level be-
havior and performance; the models that are used for these
tasks are evolution equations (e.g., mass, momentum and
energy balances) closed through constitutive equations (e.g.,
Newton’s law of viscosity, chemical kinetics). At the atom-
istic, finescale, the dynamics involve the evolution of inter-
acting entities (molecules); yet the macroscopic equations
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are written in terms of macroscopicobservables: typically a
few lower-order moments of the evolving microscopic en-
tity distributions, such as concentration or density (zeroth
moments) or momentum fields (the first moment of the dis-
tribution of molecules over velocities). Techniques of con-
tinuum numerical analysis are applied to these continuum
equations to analyze and optimize features of the system
behavior at the macroscopic, coarse-grained level.
In contemporary engineering modeling we are faced with

many new systems for which the coarse-grained equations
conceptually exist, but are simply not known; accurate
closures—which embody the effects of the detailed, mi-
croscopic evolution on the coarse-grained behavior—are
not available in closed form. Afine scale, molecular,
“microscopic” model of the system is available (e.g., ki-
netic Monte Carlo (kMC), lattice-Boltzmann, molecular
dynamics or Brownian dynamics), and we have reasons to
believe that “emergent”, coarse-grained dynamic behavior
arises from this model, even though no accurate closed
form description of this behavior is available. A similar
situation arises in the engineering study of nanoscopic sys-
tems in which fluctuations are inherently important. Here,
the “coarse-grained” equations would be equations for the
statistics of ensembles of replicas of such systems (e.g.,
expectations); we are again missing the closures giving rise
to accurate deterministic equations for these statistics—the
quantities that we want to design, control or optimize.
Over the last few years, we have been developing an

equation-freecomputational framework for the study of
coarse-grained dynamics of such “effectively simple”
systems—systems for whose behavior coarse-grained equa-
tions conceptually exist but are not available in closed form
(Theodoropoulos et al., 2000; Gear et al., 2002; Makeev
et al., 2002a; Kevrekidis et al., 2003). This approach con-
stitutes a bridge between traditional, continuum numerical
analysis and fine scale (atomistic/stochastic) simulation.
The simple underlying idea is to substitute function and
derivative evaluations of the (unavailable in closed form)
coarse-grained model with the design and execution of
short bursts of computational experimentation with the
fine scale simulator. The results of these simulations are
processed using standard systems theory tools (estima-
tion, filtering, variance reduction) to produceon demand
estimates of the macroscopic quantities (residuals, action
of slow Jacobians, Hessians) required for continuum nu-
merical analysis. Equation-free codes are thus two-tiered
(possibly multitiered) codes; at the top level lie traditional
continuum numerical algorithms (in our case, optimiza-
tion algorithms); yet the subroutine calls to a macroscopic
model are substituted with calls to thecoarse timestepper:
an input–output map between coarse-grained, macroscopic
observables at timet and their values at timet + �t (the re-
sult of evolving the system with the given initial conditions
for time �t). Because of the ease of prescribing arbitrary
initial conditions in a computer experiment (compared to
physical experimentation) and by using short bursts of

microscopic simulation from nearby initial conditions, we
can estimate the action of Jacobians of the unavailable
macroscopic equation; more generally, usingmatrix-free
iterative linear algebra techniqueswe can implement lin-
ear and non-linear equation solvers, eigensolvers, etc., as
computational wrappers around coarse timesteppers (Shroff
and Keller, 1993; Christodoulou and Scriven, 1988; Saad
and Schultz, 1986). Many continuum numerical tasks (inte-
gration, steady-state computation, stability and bifurcation
analysis, controller design, and, as we will illustrate in
this paper, optimization) can be performed wrapping this
computational enabling technology around microscopic
simulators (Kevrekidis et al., 2003; Siettos et al., 2003a;
Armaou et al., 2004; Armaou, 2005; Siettos et al., 2005;
Varshney and Armaou, 2005); for an application to dynamic
optimization (seeArmaou and Kevrekidis, 2005).
This “wrapper” methodology is common computational

practice in optimization; in effect, it corresponds to devel-
oping a response surface for the problem in question us-
ing (computational) experiments with what we more or less
consider to be a black box code; the “twist” in this case is
that the black box macroscopic input–output relation is ob-
tained through appropriately designedfine scalecomputa-
tions. There is both long tradition and extensive current re-
search on wrapper-type methods for (both local and global)
optimization, where the essential call is to a “black box”
subroutine evaluating the objective function (Eldred et al.,
2003; Kolda et al., 2003; Biegler and Grossmann, 2004;
Grossmann and Biegler, 2004). In this paper, we will dis-
cuss and illustrate the combination of coarse timesteppers
with such optimization methodologies.
It is interesting that the same computational technology

that we wrap here around coarse timesteppers can also be
wrapped around macroscopic dynamic “legacy codes” used
as black boxes, in effect enabling a black box dynamic sim-
ulator to perform tasks that it has not been directly de-
signed for; see, for example, the recursive projection method
of Shroff and Keller (1993), turning a dynamic simulator
into a fixed point algorithm. Both coarse and deterministic
“legacy” timesteppers inherently contain effects of the dy-
namics of the process; we will see that when a separation of
time-scales and an associated “slow manifold” exists in the
system long-term dynamics, it can be exploited to enhance
the computations by effectively optimizing a reduced prob-
lem on this slow manifold (see, the examples and discussion
in Siettos et al., 2003c).
The paper is organized as follows: Section 2 contains a

brief introduction to the different aspects of the problem,
while alternative optimization formulations are listed is Sec-
tion 3. Our motivating kMC example is discussed in Section
4 illustrating the significance of the proposed optimization
approach for fine scale models. An illustrative case study is
then discussed in Section 5 for a problem for which both
a kMC description and an accurate macroscopic, ordinary
differential equation (ODE)-based description are available.
Standard optimization methods are applied in conjunction
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with both deterministic and coarse timesteppers (using the
ODE and the kMC model, respectively). The results for dif-
ferent optimization formulations, optimization strategies and
reduction through time-scale separation are presented. Our
motivating kMC problem is then revisited, followed by con-
clusions in Section 6.

2. Optimization using timesteppers

2.1. Timesteppers

A timestepper is an input–output, discrete-time model of
the evolution of a process; its input is a prescribed initial
condition representing the state of the system at timet, while
its output is the state of the system at timet + �t , result-
ing from the evolution of the system for time�t . If we do
have a closed, deterministic evolution equation describing
the process, the timestepper contains a call to an appropri-
ate integration code, which evolves the state—typically with
adaptive time-steps and error control—and returns the value
of the state at thetime reporting horizon�t . If we believe
that such an equation exists, but do not have it available in
closed form, we can obtain the same result through thefine
scalerealization of the process through the following steps:

• The lifting step, where the available macroscopic initial
conditions are used to create an ensemble of (macroscopi-
cally) consistent microscopic ones (e.g., microscopic dis-
tributions conditioned on their lower moments).

• The evolution step, where the “fine scale” evolution
scheme is used to evolve these microscopic initial condi-
tions; and

• the restriction step, where the macroscopic variables at
time t + �t are computed from the evolved microscopic
final conditions (e.g., computation of moments, possibly
averaging over the simulation ensemble).

These lifting and restriction steps are crucial elements of the
equation-free approach.
Constructing distributions conditioned on various statis-

tics may be relatively straightforward (e.g., creating a dis-
tribution with a given mean and standard deviation) or quite
intricate (e.g., creating distributions of points on a lattice
with several prescribed high-order moments, such as pair
or triplet probabilities, or even pair-correlation functions).
Techniques for attempting such initializations exist and are
successfully used (Torquato, 2001). Clearly, lifting is not
a “one-to-one” mapping—there are many more degrees of
freedom in the fine system state, and many initializations
consistent with a few macroscopic observables exist. The
knowledge (already assumed) that we can write a closed
macroscopic model based on only a few observables sug-
gests that, even if these additional degrees of freedom are
initialized “inaccurately”, a short direct transient will equi-
librate them (slave them) to the few, slow macroscopic vari-

ables (Kevrekidis et al., 2003). This brief “healing” period
brings the system close to the slow manifold, establishing
the missing closure; that is why we often refer to equation-
free computation as a “closure on demand” approach. It is
always desirable to “lift” (initialize) as close to the closure
(the slow manifold) as possible; this becomes especially im-
portant if the chosen macroscopic observables are adequate
for parameterizing the slow manifold but contain both fast
and slow components. This is discussed in more detail in
Gear and Kevrekidis (2005), Gear et al. (2004). Indeed, the
“preparatory” step bringing the state close to the slow mani-
fold may involve constrained evolution, reminiscent of pro-
cedures like SHAKE or umbrella sampling in computational
chemistry (Ryckaert et al., 1977; Torrie and Valleau, 1974).
The restriction step may sometimes be relatively simple

to implement (e.g., computing the average of a distribution);
yet estimating the expectation of fluctuating processes, es-
pecially in problems that are distributed in space, may re-
quire sophisticated maximum likelihood techniques (see, for
example, the Thermodynamic Field Estimator of Yip and
coworkers,Li et al., 1998)). A more detailed description of
these issues can be found in earlier works (Gear et al., 2002;
Siettos et al., 2000; Makeev et al., 2002b).

2.2. Some optimization facts

In traditional engineering/industrial modeling, the cost
functions are usually obtained from models cast in terms
of macroscopic variables, such as product concentrations,
temperature, pressure, etc. We are often interested in op-
timizing a cost function that depends onsteady-statepro-
cess outputs, given a range of input parameters. Depend-
ing on the nature of the objective function (differentiability,
smoothness, convexity), different approaches are utilized to
obtain the (global) optimal solution. In this paper, we are in-
terested in “wrapping” standard continuum optimization al-
gorithms around macroscopic input–output system descrip-
tions obtained through a microscopic/stochastic model; the
state variables are typically low-order moments of atom-
istically/stochastically evolving distributions. The outputs of
the model and the objective function are thus expected to
be noisy; therefore, derivative information of the objective
function with respect to the variables is non-trivial to esti-
mate accurately, and can affect the performance of the algo-
rithms. Moreover, fluctuations may lead to several apparent
local minima in the objective function, which are not of in-
terest, and the presence of noise might “trap” conventional
gradient-based methods.
Approaches to the problem of optimization of noisy

functions in the literature can be traced back to either the
response surface methodology or to the field of stochastic
approximation. The response surface methodology is based
on the work ofBox andWilson (1951)who were concerned
with minimizing an unknown quadratic objective func-
tion perturbed by random noise of constant strength. They
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proposed constructing a local linear or quadratic model of
the objective function by performing experiments in the
neighborhood of the current iterate, and taking a step in the
direction of steepest descent as derived from this model.
According toTrosset and Torczon (1997), the experimental
points considered in these studies can be used as patterns
in pattern search methods. Response surface methodology,
thus, is a direct precursor of methods such as those ofHooke
and Jeeves (1961), Spendley et al. (1962), Nelder and Mead
(1965), Torczon (1997), Humphrey and Wilson (2000), and
Anderson and Ferris (2001). Surface response ideas have
been used also in the area of global optimization where the
objective function is built based on a set of sample points.
Jones (2001)and Jones et al. (1998)provide an overview
of global optimization methods based on this idea.
Stochastic approximation on the other hand dates back to

work of Robbins and Monro (1951)andKiefer and Wol-
fowitz (1952). The latter authors suggested the use of fi-
nite differencing for obtaining an approximation to the gra-
dient of an unknown, noisy function, and proceed in the
direction of this (approximate) gradient. Theimplicit filter-
ing algorithm of hyperlinkbib26Gilmore and Kelley (1994)
and the simultaneous perturbation stochastic approximation
algorithm ofSpall (1992, 2000)are derived from this ap-
proach. Stochastic methods such as simulated annealing, or
genetic algorithms have been successful in locating good
suboptimal solutions (Srinivas and Patnaik, 1994). While
these methods are relatively simple to implement, their con-
vergence depends on a number of user-defined parameters
that cannot be easily evaluated. Nevertheless, some of the
recent strategies which have received considerable atten-
tion and have been found to be effective for noisy expen-
sive functions include differential evolution (DE) (Storn and
Price, 1995), multicoordinate search (Huyer and Neumaier,
1998), radial basis function (Guttman, 2001; Bjorkman and
Holmstrom, 2001), implicit filtering (Choi and Kelley, 2000;
Gilmore and Kelley, 1994) and DIRECT methods (Jones
et al., 1993; Kelley, 1999). A deterministic global opti-
mization framework has been recently proposed (Meyer et
al., 2002) for the case of constrained non-linear program-
ming problems in which some of the constraints are not
available in closed form. Our objective is not to evaluate
these algorithms; it is rather to illustrate how it is pos-
sible to link such algorithms to coarse timesteppers and
perform coarse-grained optimization using the underlying
atomistic/stochastic simulators directly.

2.3. On multiple time-scales

Many chemical processes involve evolution phenomena
occurring at different time-scales (from molecular reactive
and unreactive collisions to the evolution of a chemical con-
centration in a stirred reactor). Transport and mixing, and
their interaction with reactive dynamics also introduce dif-
ferent evolution time-scales. At the macroscopic level, a set
of simultaneous reactions, depending on the activation en-

ergy for each elementary step, may exhibit several response
time-scales; often these time-scales are separated by orders
of magnitude. When such a large time-scale separation ex-
ists, the long-term system dynamics may become attracted
to a slow manifold in phase space, on which lie the steady
states (stable and unstable), limit cycles and other attractors
of the system. This separation of scales can be quantified by
inspecting, for example, the spectrum of the linearized dy-
namics around the system steady states; its signature will be
a gap between a group of “slow” eigenvalues (close to the
imaginary axis) and a group of “fast” stable ones.
Commonly used approaches that take advantage of sepa-

ration of time-scales for model reduction/computational ac-
celeration purposes include the quasi-steady-state approx-
imation (QSSA), the method of intrinsic low-dimensional
manifolds (ILDM), and computational singular perturbation
(CSP). The main idea of these approaches is to generate an
appropriate (non-stiff) approximation of a dynamical system
by projecting it on an appropriate set of basis vectors so that
the contribution of fast modes can be neglected. These meth-
ods have been used in the reduction of chemical mechanisms
(Turanyi et al., 1996; Lovas et al., 2000) and identification
of the slow manifold using geometric considerations (Davis
and Skodje, 1999). In CSP (Lam, 1993; Lam and Gous-
sis, 1994) successive approximations are generated to match
the initial conditions to the dynamics of the slow manifold.
CSP successively refines a set of basis vectors for non-linear
problems, uncoupling the fast and the slow modes.Zagaris
et al. (2004)showed, in a detailed study, that the successive
application of the CSP algorithm generates, order by order,
the asymptotic expansion of the slow manifold. The appli-
cation of the CSP ideas to reduce partial differential equa-
tions (PDEs) has been explored byValorani et al. (2003),
in order to enhance the understanding and the accuracy of
the qualitative description of flow behavior. More generally,
the long-term dynamics of dissipative PDEs involving dif-
fusion, viscosity and/or heat conduction, are often charac-
terized by low dimensionality. The theory of inertial mani-
folds, leading to approximate inertial manifold algorithms,
also effectively exploits time-scale separation to obtain re-
duced models (Nicolaenko et al., 1989; Temam, 1988; Foias
et al., 1988; Jolly et al., 1990; Christofides, 2001).
In our case, the ability tomodel atomistically/stochastically

evolvingfine scaledynamics through a macroscopic closed
equation in terms of only a few variables is also, clearly,
a reduction process. This reduction is based again on the
separation of time-scales; typically the low-order moments
of the simulated distribution evolve over slow time-scales,
while the higher-order moments can be thought of relaxing
fast to functionals of the low-order, slow ones. A clear il-
lustrative example is the case of molecular simulations of
Newtonian fluid: even if the stresses are not initialized to be
proportional to velocity gradients, it will typically take only
a few collision times for them to relax to being proportional
to velocity gradients—to approach the “slow manifold”
described through the Newtonian viscosity closure.
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In all the above cases—whether in reduced chemi-
cal kinetics models, approximate inertial forms or coarse
timesteppers, separation of time-scales effectively allows
us to accurately reduce the model, so that the steady state
and optimization computations are performed in a reduced
space.

3. Optimization framework

Optimization is performed on the coarse-grained vari-
ables. In particular, the model presented to the optimization
software is a discrete time, input–output model (a timestep-
per). This is done both in a casewhere the appropriatemacro-
scopic equation is known (so that “black box” deterministic
timestepper results are compared with coarse timestepper
results obtained using a stochastic simulation) and in a case
where the known macroscopic closures are inaccurate.
Assuming that the macroscopic system behavior can be

described by the following ODE system:

dx

dt
= f (x, p),

wherexare the (observable, macroscopic) variables andp the
system parameters, the optimization problem is then defined
as minimization ofF(x∗; p), wherex∗ is the steady-state
solution of this ODE system andF(x∗; p) is the chosen
objective function. This can be formulated as:

(1) A constrained optimization problem, considering the
steady-state equations as constraints:

min
x,p

F (x; p),

s.t. f (x, p) = 0.
(1)

In this formulation the optimization variables include
both the parameters and the variables of the model.

(2) An unconstrained optimization utilizing a penalty
function:

min
x,p

F (x; p) + �f (x, p), (2)

where� is a penalty parameter the value of which should
be judiciously chosen.Although the number of optimiza-
tion variables remains the same, unconstrained problems
may, in some cases, be easier to solve given a good
choice for� (Fletcher, 1981); see also the more general
review (Forsgren et al., 2002).

(3) An unconstrained optimization, evaluating the system
steady state independently:

min
p

F (x∗; p), (3)

wheref (x∗, p) = 0. In this case a non-linear solver is
required to locate the steady state of the system.

3.1. Timesteppers and coarse timesteppers

The same system level optimization performed using the
closed form equations can be implemented using timestep-
pers. The objective function is thus defined on the solutions
of the fixed point equation:

�(x∗, p) − x∗ = 0, (4)

where�(x, p) represents the output from the timestepper
after a (relatively short) reporting time horizon andx∗ de-
notes the stationary values of the model variables. The con-
tinuum dynamic model itself can be used as a “legacy code”
timestepper.
For the coarse timestepper, fine scale (e.g., kMC) simula-

tions through the “lift-evolve-restrict” approach are used to
estimate the expected value of the system observables after
the time-reporting horizon. The same constrained and un-
constrained optimization formulations described above can
be solved withx∗ determined through the solution of the
fixed point equation using the (possibly coarse) timestepper
�(x, p). In particular:

• Constrained optimization

min
x,p

F (x; p),

s.t. �(x, p) − x = 0.
(5)

• Penalty-based unconstrained optimization

min
x,p

F (x; p) + �[�(x, p) − x]. (6)

• Decoupled unconstrained optimization

min
p

F [�(x∗, p); p]. (7)

4. Motivating example

To illustrate the significance of atomistic/stochastic mod-
eling and optimization around it, let us consider a lattice-gas
model of the catalytic CO oxidation reaction on aN × N

square lattice, representing a single metal crystal surface
(a Pt surface), as described inMakeev et al. (2002b). Our
objective is to optimize the (stationary) reaction rate for this
process as a function of operating process parameters
(specifically, the oxygen gas phase pressure). The model
considers six elementary steps, involving two types of ad-
sorbed species in the reaction mechanism. Each lattice site
is characterized by the local occupation numbers of CO and
O adsorbed species. The model takes into account the lateral
interactions between COads at the nearest neighbor (NN)
lattice sites. Also, it is assumed that the migration rates of
COads and Oads significantly exceed the rates of all other
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elementary processes such as adsorption, desorption and re-
action of CO2 formation. The time evolution of the reaction
system can be described by the chemical master equation. In
general, this equation cannot be solved directly; therefore,
one has to either use some approximations in order to derive
macroscopic evolution equations, or to implement a kMC
simulator which can calculate the solution of the lattice-
gas model with high accuracy. This motivating example has
been chosen becausein certain parameter regimesit is pos-
sible to obtain accurate macroscopic closures, while in other
regimes—which, as we will see below, critically affect our
optimization results—these explicit closures become inac-
curate.
Assuming that the adsorbed layer is randomly well-mixed,

the reaction can be approximated at the macroscopic level
by means of the mean-field approximation (MFA). This sim-
plest approximation gives two ODEs for the COadsand Oads
surface coverages:

d�1
dt

= ��0 − ��1 exp
[
4�1�
RT

]
− RCO2,

d�2
dt

= 4��20 − RCO2, (8)

whereRCO2 =4kr�1�2 exp[3�1�/(RT )] is the reaction rate;
�1 and �2 is the COads and Oads coverage, respectively;
�0= 1− �1− �2 accounts for empty sites;� is the energetic
parameter of lateral interactions between NN COadsspecies
(negative for repulsive interactions);T is the absolute tem-
perature andR the ideal gas constant. The dimensionless
constants�, � and � are associated with the rates of ad-
sorption of CO, dissociative adsorption of oxygen, and des-
orption of COads, respectively. In addition,kr represents the
rate constant of the surface reaction between adsorbed CO
and the adsorbed O atoms to give CO2 which immediately
desorbs upon formation. MFA becomes increasingly inac-
curate for strong interactions and high adsorbate coverages,
because it neglects the spatial correlations in the non-ideal
adsorbed overlayer.
In a more refined modeling step, we may employ the so-

calledquasi-chemical approximation(QCA) introducing the
pair probabilities,gij = gji . The QCA consists of a set of
five coupled differential-algebraic equations:

d�1
dt

= ��0 − ��1(S1)4 − RCO2,

d�2
dt

= 4�g00 − RCO2,

r11g11g00 = (g01)
2,

r22g22g00 = (g02)
2,

r12g12g00 = g01g02,

RCO2 = 4krg12(S1S2)
3,

∑
j

gij = �i (i, j = 0,1,2),

rij = rji = exp[−�ij /(RT )] (i, j = 1,2),

Si = (gi0 + ri1gi1 + ri2gi2)�i (i, j = 1,2). (9)

Here, �ij = �ji are the energetic parameters of lateral in-
teractions between NN adsorbed particles. In our case,
�11 = �<0, while all other interaction energies are equal
to zero. The independent variables are two surface cov-
erages and three pair probabilities, for example,g11, g22
andg12.
Because of lateral interactions, the rates of chemical reac-

tions and diffusion depend on the local environment; as a re-
sult, an ordered adsorbed overlayer may form on the lattice.
Repulsive COads–COadslateral interactions give rise to a so-
calledc(2×2) structure which corresponds to an Ising anti-
ferromagnet. Neither MFA nor QCA are able to model these
effects correctly at high coverages; therefore, kMC simula-
tions were implemented to calculate the “correct” station-
ary state coverages and reaction rate. Our implementation of
kMC simulations as well as the algorithms for timestepper-
based coarse-grained kMC (C-kMC) bifurcation computa-
tions have been described in previous publication (Makeev
et al., 2002b); they are very briefly reviewed here.
The C-kMC algorithm assumes that the (expected) dy-

namics of the lattice-gas model canin principlebe described
on a macroscopic level by a system of “coarse” ODEs for
average coverages	:

d	
dt

= F(	),

where the functionF is unavailable in closed form. All
higher-order moments of the distributions (e.g., pair prob-
abilities) do not appear in the deterministic equation; the
model closeswith coverages only. This is a significant
statement—it is easy to see thatover very short time-scales,
say of the order of a few kMC events, this statement can-
not be true; the details of initializing the lattice—i.e., not
only coverages, but pair probabilities, triplet probabilities
etc.,—should be important for the instantaneous reaction
rate. Yet over longer time-scales, due to a separation of
time-scales in the evolution of adatom distributions, higher-
order correlation functions are quickly slaved to the cov-
erages because of the fast mobility of adsorbed species.
This implies that the evolution of the moments of the
adatom distributions can be considered as a singularly per-
turbed system; over longer time-scales the dynamics can be
successfully modeled by areducedmodel—a continuous-
time ODE for the evolution of only coverages, the zeroth
moments of adatom distributions. Yet—as we will see
below—the true optimum cannot be accurately captured
by neither of the closed form explicit reduced models
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(MFA and QCA); instead, we had to resort to C-kMC com-
putations.
Since we want to optimize thestationary reaction rate,

we are clearly interested in finding stationary states. The
corresponding equations have to be solved at each (feasi-
ble) optimization step or must be satisfied upon conver-
gence; we briefly describe how to solve them here before
we consider using them in an optimization framework. The
C-kMC algorithm for the location of stationary states con-
tains the lifting, evolution and restriction steps as described
above. Through the “lift-evolve-restrict” procedure and ex-
ploiting the Newton–Raphson iterative method with numer-
ical derivatives to solve the equation	 − �(	) = 0, the
C-kMC algorithm calculates both stable and unstable sta-
tionary solutions of the “unavailable” fixed point system of
equationsF(	) = 0.
The following parameter values are considered in this pa-

per:�=1.6 s−1, �=0.001 s−1, kr =1 s−1, �=−2 kcal/mol,
T = 500K. To calculate a stationary reaction rate of the
lattice-gas model,Nrun different equilibrated lattices, ob-
tained by a Metropolis algorithm for the fixed stationary CO
and O coverages, were used for averaging.Figs. 1(a) and
(b) show bifurcation diagrams with respect to the parameter
�, whose variation corresponds to variation of the gas-phase
pressure of oxygen. The stationary CO coverages are shown
in Fig. 1(a), whileFig. 1(b) gives the stationary values of re-
action rate,RCO2. The bifurcation diagrams for MFA, QCA
and C-kMC are overlayed in the figures. They have been
obtained by combining the (coarse-grained) fixed point al-
gorithm described above with arclength continuation. It is
clear that both MFA and QCA become inaccurate at high
CO coverages, and as a result are not useful for optimization
under such conditions; C-kMC on the other hand, does cap-
ture the correct long-term kMC dynamics both at low and
at high CO coverages.

5. An illustrative case study

5.1. Problem Definition

Before we proceed with the optimization of our moti-
vating problem, we demonstrate equation-free optimization
computations using timesteppers in a test problem for which
the microscopic computations are simpler and much faster.
For this problem a good macroscopic closed model exists
in the regime of interest, so that we can compare the results
obtained through coarse timestepping with those obtained
through accurate closures; we selected a simple chemical
reaction mechanism example. In the deterministic setting,
the reactions are assumed to take place in an ideal CSTR
and the reaction network we consider is a modification of
the Fuguitt and Hawkins mechanism (Floudas and Parda-
los, 1990). The reaction network involves five species and
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Fig. 1. Bifurcation diagrams of the CO oxidation mechanism obtained
via pseudo-arclength continuation using MFA (thin lines), QCA (thick
lines) and C-kMC (circles joined by interpolation curves) with� as the
bifurcation parameter. Parameters of the C-kMC algorithm:
 = 0.001,
200×200 lattice,Nrun=105. (a) Solid (dashed) lines show stable (unstable)
stationary state branches of CO coverage,	1. (b) Solid (dashed) lines
show stable (unstable) stationary state branches of the reaction rate,RCO2.

reactions as follows:

A → E,

A → D,

B ⇀↽ D,

C ⇀↽ 2D,

2A → C,

where the rate constants arekf
1 = 3.33384 s−1, k

f
2 =

0.26687 s−1, k
f
3 = 0.29425 s−1, kr

3 = 0.18957 s−1, k
f
4 =

0.011932 s−1, kr
4=0.18957L(mol s)−1 andkf

5 =0.009598L
(mol s)−1. It is assumed that only speciesA andC enter
the CSTR, which has a residence time of
 = 12.5 s. The
range of permissible inlet concentrations for speciesA and
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C areC0
A ∈ [3.0,30.0]mol/L andC0

C ∈ [0.0,10.0]mol/L,
respectively. The system of ODEs describing the dynamic
behavior of the CSTR is as follows:

dCA

dt
= 1



(C0

A − CA) − k
f
1 CA − k

f
2 CA − k

f

5 C2
A,

dCB

dt
= 1



(−CB) − k

f
3 CB + kr

3CD,

dCC

dt
= 1



(C0

C − CC) − k
f
4 CC + 0.5kr

4C
2
D

+ 0.5kf

5 C2
A,

dCD

dt
= 1



(−CD) + k

f
2 CA + k

f
3 CB − kr

3CD

+ 2kf
4 CC − kr

4C
2
D,

dCE

dt
= 1



(−CE) + k

f
1 CA. (10)

The objective function involves the steady-state concentra-
tion values of speciesC andD, namelyC∗

C andC∗
D, respec-

tively, as follows:

F(x, y) = 4(x − 0.6)2 + 4(y − 0.4)2 + sin3(�x)

+ 0.4, (11)

where

x = 0.1428C∗
C − 0.357C∗

D, (12)

y = −0.1428C∗
C + 2.857C∗

D − 1.0. (13)

Selecting the values of initial conditions and utilizing the
linear transformation to the steady-state values ofC∗

C and
C∗

D, results inx, y ∈ (0,1). Figs. 2(a) and (b) present a three-
dimensional and a contour graph ofF(x, y) as function of
the variablesx andy, respectively; we observe the presence
of a local and a global minimum.
We also considered a stochastic implementation of the

same kinetic scheme using the stochastic simulation algo-
rithm (SSA) (Gillespie, 1976, 1992). In the SSA, the exten-
sivity parameter� relates the numbersNp of molecules of
speciesp (p = A, B, C, D, E) to the concentrationsCp =
Np/�, and controls the total number of particles that can
be present in the system. For the CSTR, in addition to the
seven chemical reaction events, events accounting for input
and output to the reactor are also taken into account. For
example, the transition probability of speciesA for inflow
to the reactor is equal to(�)(C0

A)/
, while the transition
probability for outflow from the reactor is equal toNA/
.
Overall, 14 different elementary events are accounted for in
the SSA. In the limit of a system with a large number of
particles (� −→ ∞), SSA and integration of deterministic
ODEs give effectively the same results.

5.2. Computational results

The decoupled unconstrained optimization problem of
Section 3 using the steady states of Eq. (10) was solved to
identify the optimal solutions and served as a benchmark for

optimization with timesteppers. The parameters were ran-
domly initialized. For each call to the objective function the
steady state was computed using Newton’s method.Table 1
shows the two local solutions obtained for different initial
conditions. For comparison purposes, we integrated the de-
terministic ODE system to form the deterministic timestep-
per which we used as a “black box” legacy dynamic code; the
corresponding coarse timestepper was implemented through
averaging several realizations of the SSA algorithm for “the
same” extent of macroscopic time. An important numerical
issue with the stochastic timestepper is that of noise, which
is inherent in the lifting process and the stochastic simula-
tion; this affects both the objective function evaluation and
the coarse derivative evaluations. The level of noise depends
on the physical system size (number of particles in our sim-
ulation) and the number of copies in the kMC simulation
ensemble. Asymptotically, an SSA simulation will approach
the “corresponding” ODE for large enough system sizes. For
validation purposes, we utilize system sizes (number of par-
ticles) and ensemble sizes (number of copies) for which the
coarse timestepper yields results close to the deterministic
ones; more particles and more ensemble copies had compa-
rable effects in reducing fluctuations for this particular SSA
coarse timestepper output.Table 2illustrates this in terms of
the objective function and the stationary states of the system
for 100 runs using the same macroscopic initial conditions.
Fluctuations due to noise are critical in the estimation

of partial derivatives for derivative-based optimization al-
gorithms and for the selection of “scales” (maximum dis-
tance along a search direction) for direct search algorithms.
If the magnitude of these optimization “scales” is chosen
too small, grossly erroneous searches and/or increased com-
putational time with no apparent improvement in the search
can result; the reader may refer toArmaou and Kevrekidis
(2005) for a discussion of these issues in a dynamic opti-
mization context.

5.3. Local optimization

Three different algorithms for local optimization of the
above problem using both ODE-based and coarse timestep-
pers were investigated—the Nelder–Mead (NM) algorithm
and the Hooke–Jeeves (HJ) algorithm, as well as gradient-
based sequential quadratic programming (SQP). NM
maintains a simplex of points while HJ evaluates the ob-
jective function values on a stencil; both search for the
optimal solution based purely on objective function evalua-
tions. SQP, on the other hand, iteratively solves a quadratic
approximation of the problem requiring explicit local Ja-
cobian information. Centered finite differences are used to
numerically estimate this Jacobian. In our simulations, the
tolerance for the Newton iteration was set to 5× 10−4.
The optimization scales used for the HJ algorithm were
[1,2−1,2−2, . . . ,2−8]. The stencil size was successively
reduced to the lowest scale and the optimal solution found
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Fig. 2. Profile of objective function of Eq. (11),F(x, y), as a function ofx and y: (a) three-dimensional plot; (b) contour plot.

was used to initialize another search before declaring
convergence “over all scales” (Kelley, 1999). Tables 3–5
illustrate the performance of NM, HJ and SQP, respectively.
Note that as the number of particles increases, the optimal
solution found using the coarse timestepper approaches

that of ODE-based one. The number of objective function
calls was found to be comparable for SQP and NM; HJ,
however, necessitated a larger number of function calls, due
to the restarting of the optimization and the stencil scales
used.
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Table 1
Optimal solutions to the kinetic problem

Local optimum Global optimum

Starting point [C0
A
, C0

C
] [15.0,5.0] [8.0,6.0]

Steady state [C∗
C
, C∗

D
] [3.192,0.649] [8.121,0.895]

Optimal solution [Copt
A

, C
opt
C

] [13.202,3.163] [10.117,8.378]
Objective value 1.23641 0.74221
Eigenvalues of linearization −0.64398 −0.69891

−0.21787 −0.24433
−0.08000 −0.08000
−0.08000 −0.08000
−3.68621 −3.68904

5.4. Global optimization

Two global optimization strategies were investigated for
finding the global optimum of the kinetic problem using both
the deterministic timestepper and the coarse-grained, kMC-
based one.A variant of DIRECT calledmultilevel coordinate
search (MCS) algorithm (Huyer and Neumaier, 1998) was
employed as a deterministic global strategy and a modified
genetic algorithm called DE was used as a heuristic global
strategy (Storn and Price, 1995). MCS divides the search
space into hyper-rectangles where it searches for the local

Table 2
Effect of system size and copies on kMC results’ variance

Model No. of particles No. of copies Mean [C∗
C
, C∗

D
] Mean objective Std. dev. objective

Legacy – – (4.8699,0.7077) 1.4728 –
kMC 105 1 (4.8666,0.7074) 1.4742 0.0123
kMC 104 10 (4.8664,0.7062) 1.4742 0.0124
kMC 103 102 (4.8715,0.7077) 1.4740 0.0110

Table 3
Nelder–Mead search results

Model No. of particles No. of copies Objective value Solution [C
opt
A

, C
opt
C

] Time (s) Obj. fun. calls

SS – – 0.7422 (10.122,8.379) 2.0 44
Legacy – – 0.7422 (10.115,8.378) 38.5 44
kMC 104 5 0.7432 (9.505,8.460) 793.9 56
kMC 104 10 0.7424 (10.449,8.382) 1947.5 67
kMC 105 5 0.7422 (10.353,8.378) 10111.1 69
kMC 105 10 0.7422 (10.133,8.385) 22101.8 75

Table 4
Hooke–Jeeves search results

Model No. of particles No. of copies Objective value Solution [C
opt
A

, C
opt
C

] Time (s) Obj. fun. calls

SS – – 0.7422 (10.121,8.379) 4.97 87
Legacy – – 0.7422 (10.117,8.378) 111.26 80
kMC 104 10 0.7422 (10.054,8.339) 2670.5 150
kMC 105 5 0.7425 (10.593,8.410) 19908.5 216
kMC 105 10 0.7422 (10.363,8.382) 25926.1 194
kMC 106 5 0.7422 (10.207,8.383) 162540.0 113

optima, and keeps a “shopping basket” of hyper-rectangles
based on the function values at the vertices/center where
it continues the local search by further subdivision. This
method guarantees an optimal solution for a deterministic
system based on exhaustive search; no such guarantee can
be provided for stochastic models since the optimality con-
ditions at the optima are not defined for noisy functions. The
choice of the scale parameter in such a strategy would be
the size of the hyper-rectangle in the search process, which
is estimated by the number of times the initial box has
been subdivided. For our simulations, initially the parame-
ter space was divided into boxes with function evaluations
at the corners and midpoint, and a maximum of 20 subdi-
vision levels were allowed, with successive local searches
in the smaller boxes. DE, on the other hand, is a stochastic
method which uses a randomly generated initial population
drawn from within the bounding box. It generates a new set
of trial vectors by taking the difference of two randomly se-
lected population vectors and adding it to a third randomly
selected vector, referred to as the mutation process. The se-
lection is based on the objective function value. The number
of population vectors chosen is 10 with a maximum of 50
mutation iterations. The coefficient parameter of the differ-
ential (of two randomly selected vectors) can be considered
as a “scale parameter” for optimization of noisy functions.
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Table 5
Sequential quadratic programming search results

Model No. of particles No. of copies Objective value Solution [C
opt
A

, C
opt
C

] Time (s) Obj. fun. calls

SS – – 0.7422 (10.121,8.379) 0.005 50
Legacy – – 0.7422 (10.117,8.378) 0.24 56
kMC 105 1 0.7471 (10.327,8.478) 1321 69
kMC 5× 105 1 0.7428 (10.185,8.428) 6544 61
kMC 106 1 0.7422 (10.144,8.377) 11637 56

Table 6
Multilevel coordinate search results

Model No. of particles No. of copies Objective value Solution [C
opt
A

, C
opt
C

] Time (s) Obj. fun. calls

SS – – 0.7422 (10.119,8.378) 5.9 142
Legacy – – 0.7422 (10.119,8.378) 117.0 129
kMC 104 5 0.7422 (10.482,8.367) 1878.6 246
kMC 104 10 0.7423 (10.359,8.399) 3368.5 200
kMC 105 5 0.7422 (10.307,8.374) 17473 201
kMC 105 10 0.7422 (10.098,8.396) 18966 109

Table 7
Differential evolution search results

Model No. of particles No. of copies Objective value Solution [C
opt
A

, C
opt
C

] Time (s)

SS – – 0.7422 (10.119,8.379) 17.9
Legacy – – 0.7422 (10.118,8.378) 434.8
kMC 104 5 0.7558 (9.286,8.371) 4065.4
kMC 104 10 0.7423 (10.264,8.371) 8048.1
kMC 105 5 0.7422 (10.011,8.371) 41425.8
kMC 105 10 0.7422 (10.120,8.373) 83801.7

In our optimization runs a value of 0.8 for all system sizes
performed consistently well.Tables 6and7 present the opti-
mal solution for different initial system sizes using MCS and
DE, respectively. As with local optimization techniques, us-
ing increased number of particles results in an optimal solu-
tion that approaches that of the ODE-based timestepper. The
number of objective function calls for MCS was found to be
higher than the local methods, since this approach searches
at various locations over the entire domain. The number of
function calls for DE was fixed at 500.

5.5. Reduced optimization

As discussed in Section 3, the complexity of the optimiza-
tion problem can be reduced when separation of time-scales
prevails in the dynamics of the problem under consideration.
This is qualitatively analogous to using (when appropriate)
a QSSA in a high-order model, reducing it to a lower-order
one, and performing the optimization computations on the
reduced model. If the evolution equations are available they
can be used to construct explicit reduced-order models (e.g.,
Kumar et al., 1998; Prud’homme et al., 2002); this would be

followed by optimization based on the reduced model for
steady or dynamic process operation (e.g.,Bendersky and
Christofides, 2000; Armaou and Christofides, 2002; Otto et
al., 1997). When we have a “black box” simulator, the dy-
namic equations are not explicitly available; as a result we
cannot analytically reduce them to a closed, accurate, sim-
pler model. Since timesteppers naturally contain dynamic
information about the short-term system evolution, it is pos-
sible to use them for “on line” model reduction without
explicitly constructing a reduced model. If the long-term dy-
namics of the system of interest quickly approach a lower-
dimensional slow manifold (the graph of a function over a
reduced set of variables in phase space), a short integration
with the detailed simulator will bring a transient close to this
manifold and the corresponding reduced description. Thus,
one can use the direct short integration that constitutes part
of the timestepper to estimate the dynamics (and the steady-
states, in which we are interested) of the full systemclose
to this slow manifold, effectively reducing the number of
degrees of freedom we need to search in for steady-states
during optimization. Our kinetic ODE problem is clearly a
good candidate for time-scale-based model reduction: see
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Fig. 3.CA–CC phase portrait for system of Eq. (10), during evolution to
steady state.

the linearized stability analysis at the steady-state for typical
conditions shown inTable 1. This eigen-analysis suggests
that variablesCA andCE will exhibit a relatively fast tran-
sient response as compared to other variables. To illustrate
the difference in time-scales, a plot exemplifying the two-
scale response ofCA as it approaches the slow manifold is
shown inFig. 3. The deterministic ODE process model was
integrated for 200 s and the concentration ofCA is plotted
as a function ofCC . It can be seen from the plot thatCA

approaches a slow manifold in phase space rapidly—from
different initial conditions—and then slowly evolves on it
towards the ultimate steady-state.
A reduced optimization problem was then solved for the

steady-state concentrations ofB, C andD. In an optimiza-
tion context this translates to a reduction in the number of
variables for the steady-state calculation for feasible (de-
coupled) computations, or, alternatively, a reduction in the
number of constraints in the constrained optimization for-
mulation with timesteppers. The performance of the method
should of course be strongly dependent on the reporting
horizon of the timestepper. For successful reduced optimiza-
tion runs, the reporting horizon of the timesteppers has to be
greater than the largest relaxation timecorresponding to the
fast variables, which, for the case study chosen, was 1.4 s. If
the reporting horizon of the timestepper is smaller than the
relaxation time of the fast variables, then the fast variables
will not have relaxed on the slow manifold, and no reduc-
tion is possible; a sufficiently long reporting time horizon of
2 s was chosen for all the calculations here.
The adaptive estimation of this “longest fast variable”

relaxation time using timesteppers is discussed in more de-
tail in Siettos et al. (2003b); it involves matrix-free iterative
linear algebra eigen-computations, performed on demand
to identify a gap between local fast and slow system dy-
namics. These computations, similar to adaptive time-step
or mesh computations in traditional continuum numerical
analysis, should be performed periodically to test whether

Table 8
Sequential quadratic programming search results with time-scale
separation

Model Optimization Number Time (s) Obj. fun. Timestepper
method variables calls calls

Legacy Constrained 7 0.0074 131 269
Legacy-ts Constrained 5 0.0062 89 139
Legacy Penalty based 7 0.0100 475 475
Legacy-ts Penalty based 5 0.0088 194 194
Legacy Decoupled 2 0.04 52 706
Legacy-ts Decoupled 2 0.03 51 544

the model can be reduced, and to what number of variables.
It is suggested inSiettos et al. (2003b)that theeigenvectors
corresponding to the slowest among the group of “fast re-
laxation times” can help detect which of the fast variables to
retain as a slow one if we need to augment the dimension of
the reduced model. The comparison of results for reduced
optimization with optimization in the full space is shown in
Table 8. The computational time and number of function
calls are averaged for 500 runs from random initial condi-
tions in the variable space. The optimization variable space
for the constrained and penalty-based formulation was re-
duced from 7 to 5. This reduction led here to computational
savings of approximately 20%. As can be seen from the
reduction to the number of timestepper calls, time-scale
separation and subsequent reduction of optimization space
dimension may improve the computational efficiency when
function calls are very “expensive” computationally (e.g.,
when using coarse timesteppers). Also, for large-scale en-
gineering problems described by legacy simulators, this
separation of time-scales may be useful to exploit in
optimization-based wrappers. This subject will be revisited
in the discussion below.

5.6. Coarse-grained optimization for the CO oxidation
model

We now return to our motivating example, and consider
the following optimization problem: maximize the station-
ary reaction rate of the lattice-gas model with respect to the
parameter� (i.e., the gas-phase pressure of oxygen, a param-
eter one can realistically manipulate in experiments).Fig. 4
shows that deterministic models (MFA and QCA) are not
capable of capturing the maximal stationary reaction rate
correctly. This is, clearly, because the maximum occurs un-
der conditions (high enough coverages) where these models
are not accurately capturing the stationary states. We use the
C-kMC algorithm in order to accurately find the stationary
solution of the problem with the maximal reaction rate. In
a simple feasible optimization scheme, prescribing the oxy-
gen gas phase pressure (the parameter�) we find the sta-
tionary states for this value of�, compute the corresponding
stationary reaction rateRCO2,ss(�) and then simply solve
dRCO2,ss/d� = 0, using Newton–Raphson with derivatives
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Fig. 5. Convergence of coarse Newton–Raphson method to a local max-
imum of the stationary reaction rate. Squares and digits represent the
sequence of iterations. A perturbation�=2×10−2 was used to calculate
the numerical derivatives ofRCO2. Parameters of the C-kMC algorithm:


 = 0.001, 500× 500 lattice,Nrun = 105.

estimated using the timestepper. Note that coefficients for
finite difference estimates of derivatives in the presence of
noise have been discussed inDrews et al. (2003).
Fig. 5 demonstrates the convergence of iterations to a

local maximum ofRCO2,ss(�) starting from�0 = 1.2. It
was found that a value of� ≈ 1 provides the maximal
rate of CO2 production at stationary conditions. For these
calculations, we used a 500×500 lattice withNrun=105 and
�=2×10−2. The dashed curve inFig. 5presents the reaction
rate calculated with lower accuracy (using a 200×200 lattice
with Nrun = 2× 105) for various fixed values of�.

Note that the maximum occurs in a regime with three
steady states, and, even more interestingly, very close to
the turning point, apparently on the unstable branch. This
has interesting implications; for example, feedback con-
trol must be used to stabilize the corresponding stationary
state if it is unstable; seeSiettos et al. (2003a), Armaou
et al. (2004), Armaou (2005), Siettos et al. (2005), for an
equation-free approach to coarse controller design-basedmi-
croscopic/atomistic process models. Direct kMC simulation
would simply not be able to find this maximum, since it lies
on an unstable stationary state branch, which is not accessi-
ble to direct dynamic simulation.

6. Conclusions

In this work, we have illustrated the application of op-
timization search algorithms using timesteppers on micro-
scopic/macroscopic input–output black box models. Both
gradient-based and simplex-based algorithms were suc-
cessfully applied for local optimization of deterministic
and stochastic models. DE and MCS strategies were also
successfully used for global optimization. In all cases the
optimal solution was found to approach the solution ob-
tained using a deterministic, ODE-based, timestepper as the
system size was increased. For the SSA fine scale simulator,
the coarse timestepper results are expected to approach the
“correspondingODE” ones at sufficiently large system sizes.
For most microscopic/stochastic fine scale models however
(e.g., for nanoscale applications, such as the field emitter
tip oscillations of Imbihl and coworkers (Suchorski et al.,
1998)) closed form deterministic equationsfor the statistics
of ensembles of experimentsare not available, and variance
reduction techniques are required tomake coarse timestepper-
based optimization practical. Finding the appropriate statis-
tics (observables) of the fine scale simulation that become
the state variables of the coarse-grained model is an impor-
tant issue. For the examples discussed in this paper these
observables were known (concentrations, coverages, pair
probabilities); the discovery of the appropriate observables
based on data processing techniques is the subject of intense
current work (see, e.g.,Belkin and Niyogi, 2003; Nadler et
al., 2005).
When accurate, closed form coarse-level models are avail-

able, it is obvious that they should be used for optimiza-
tion instead of the kMC ones. When coarse timestepper-
based optimization becomes necessary, the wall clock time
can be reduced using distributed computing: each proces-
sor evolves a different realization of the same coarse ini-
tial condition. It was found that constrained or penalty-
based methods may become computationally more efficient
than the unconstrained decoupled formulation. Different for-
mulations (e.g., constrained vs. unconstrained) of the op-
timization problem may provide advantages depending on
the problem features; exploiting the time-scale separation of
the unavailable macroscopic equations, along with modern
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matrix-free linear algebra techniques, seems to hold promise
for the coarse computational optimization of what we call
“effectively simple” systems (Kevrekidis et al., 2004).
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