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A novel Kalman estimator has been proposed to provide the estimates of dynamic composition in a
ternary batch distillation process operated in an optimal-reflux policy. The estimator is formulated based
on a sequence of reduced-order process models representing a whole batch behavior. Therefore, the
full-order models are first developed around different pseudo-steady-state operating conditions along
batch optimal profiles. Then they reduce their orders to achieve all state observability and controllability
by a balanced truncation method. In the estimator scheme, the reduced models as well as relevant co-
variance matrices of process noise are pre-scheduled and switched according to any desired periods. Four
important issues have been studied including selection of a sensor frequency, effects of an integrating
step size, a state initialization and a measurement noise. The performances of the reduced estimator have
been investigated and compared with those of a conventional nonlinear estimator. Simulation results
have demonstrated that the performances of the novel linear estimator are reasonably good and almost
identical to the nonlinear estimator in all cases, though the linear estimator performs rather sensitively
to the effect of high measurement noise. Nevertheless, it has been found to be applicable to implement
in real plants with much lower computation effort, easier state initialization and unrequired a priori
knowledge of thermodynamics.

Crown Copyright � 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Batch distillation is an important unit operation widely used in
fine chemistry, pharmaceutical, biochemical and food industries to
process small amounts of materials with high added value. The main
reason is its operational flexibility that a single column can separate
all components of a multi-component mixture into several prod-
ucts within a single operation. So as to meet product specification,
the batch column needs to be operated as precisely as possible. If
instant compositions are known, an automatic closed-loop control
scheme can be implemented correctly to drive the process to the
desired operating strategy. An inferential composition estimator is
then introduced to provide estimates of the composition concentra-
tions based on available temperature measurements. The use of the
estimator has long been suggested to assist monitoring and control
of a continuous distillation (Yang and Lee, 1997; Zhang, 2001; Kano
et al., 2003). Conversely to the batch column, the issue has received
little attention.

In the area of batch distillation, most researches have focused on
a development of the composition estimator based on a nonlinear
fundamental model. An Extended Luenberger Observer (ELO) was
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primarily applied to a multi-component batch system through the
use of the tray temperature measurements (Quintero-Marmol et al.,
1991; Luyben, 1992). As the observer was based on a determinis-
tic model and its gains were obtained in off-line fashion, its perfor-
mance was degraded rapidly when the measurements were affected
by noise. Therefore, the use of a stochastic estimator such as a Kalman
Filter (KF) was recommended if large amount of noise is expected
(Barolo and Berto, 1998). Moreover, the ELO accuracy was likely to
degrade if tray hydraulic was taken into account, and increasing
number of trays makes the ELO harder to tune. Afterwards, a discrete
Extended Kalman Filter (EKF) for the conventional batch distillation
was developed to handle the effect of noise by Oisiovici and Cruz
(2000). For the reason that its gains were updated online, it could
manage to incorporate the effect of noise. Recently, Venkateswarlu
et al. (2001, 2006) have applied the EKF scheme for the composi-
tion estimation in a batch reactive distillation. Even though the EKF
has been proved in literatures to be much more robust to mismatch
and noise than the ELO, it is rather difficult to initialize all states
and requires considerable computational effort for online use. Fur-
thermore, its performance heavily depends on the thermodynamics
modeling of vapor--liquid equilibria.

Alternatively, this work develops a novel linear version of the
KF for the conventional ternary batch column to retrieve the dis-
tillate and reboiler composition profiles from the temperature
measurement information. An idea of using multiple local models
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sequentially is applied for the estimator design. The column is de-
signed to operate in an optimal reflux policy where its dynamic
changes rapidly introducing an estimation difficulty of the compo-
sition profiles. In most cases the full-order equations contain ad-
ditional unobservable and/or uncontrollable states. Therefore, the
models reduce their orders individually using a balanced truncation
method to attain only observable and controllable state contribu-
tions. The organization of the paper is as follows. A process descrip-
tion and a determination of the optimum reflux policy are presented
in Section 2. Background and implementation of the EKF and of the
novel KF are discussed briefly in Sections 3 and 4, while issues con-
cerning the development of a composition prediction model is in-
troduced in Section 5. The performances of both the estimators are
investigated in Section 6 and the conclusion is presented in Section
7.

2. A ternary batch distillation

In a conventional batch distillation as shown in Fig. 1, a liquid
mixture is charged into a vessel and heat is added to produce vapor
fed into a rectifying column. A concentration of the lightest compo-
nent increases in the upper trays sequentially in the column and a
concentration of a subsequent heavy component increases in a still
pot. As the concentration of the lightest component in the distil-
late reaches its specified purity level or the unit in total reflux op-
eration is taken to a steady state, the distillate product withdrawal
begins.

2.1. Process description

To develop mathematical models of a ternary batch distillation,
constant volume holdup (CVH) for all trays is assumed. The assump-
tion of CVH is reasonably valid because after the total reflux is run,
the volume holdup of each tray is relatively negligible in compari-
son with the volume of the reboiler. Therefore, the volume holdup is
rarely changed. Then, the equations describing the process are given
below More detailed description of the operation and modeling of
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Fig. 1. Schematic representation of a conventional column.

Table 1
Specification of a ternary batch column

Column specification

No. of ideal separation stages
(including a reboiler and a total condenser) =7
Total fresh feed, B0, kmol =2
Component =〈acetone, toluene,phenol〉
Feed composition, xB0 , mole fraction =[0.4,0.4,0.2]
Column volume, liter (at T = 352.87K):

Condenser =3.7551
Internal plates =0.5364
Reboiler =180.246

Column pressure, mmHg =760
Heat supplied in reboiler, J/h =5 × 107

the batch column are referred to (Distefano, 1968; Mujtaba, 2004)
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LC = VN−1 − �HN (7)
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N−1 − hl

N) − HN�hl
N (8)

where LN = rLC . Change rates of molar holdup and liquid enthalpy
are approximated by using an Euler integrating approach, i.e.

�H = dH

dt
= Hk − Hk−1

dt

where k is the current iteration. Reboiler holdup at any time is cal-
culated from the following algebraic combination:

H1,k = B0 −
⎛
⎝ N∑

j=2

Hj,k

⎞
⎠− Ha,k (9)

Antoine's equations are used in a bubble-point calculation, and both
liquid and vapor enthalpies are obtained from experimental corre-
lations (Holland, 1981; Reid and Sherwood, 2000). The variation of
liquid density is described by using a modified Rackett equation.
Column specification used in this study is given in Table 1.

2.2. Optimal reflux policy

In this work, optimal reflux profiles are prior determined by min-
imizing a final batch time subject to the process Eqs. (1)--(9) and
specified product amounts and purities. In this case, the purities of
acetone, toluene and phenol are required to be greater than 0.98,
0.98 and 0.995 mole fractions, respectively, as well as the amounts
of the products 0.72, 0.36 and 0.34kmols, respectively. So to solve
the dynamic optimization problem, the reflux variables are param-
eterized into a finite set in which a piecewise constant function is
utilized. It is assumed that the operations of each main-cut and off-
cut are divided into four and one intervals, respectively, resulting in
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Table 2
Optimal results for a ternary batch distillation

20 control variables including 10 reflux variables and 10 switching
times. The obtained optimal results given in Table 2 show that the
desired residue product can be achieved by neglecting the second
off-cut operation. In this case, the optimal batch time is 2.58h with
the first off-cut beginning to collect at time 1.17h and stopping at
1.62h.

3. Conventional nonlinear estimator

3.1. An extended Kalman filter (EKF)

A nonlinear process can be described by following differential
and measurement equations:

ẋ = f(x, u) + w

y = h(x) + v (10)

where w and v are vectors of process and measurement noises, re-
spectively, with covariance Q and R, respectively. Corrected esti-
mates are computed as a linear combination of a priori estimates and
a weighted difference between actual and predicted measurements:

x̃k|k = x̂k|k−1 + Kest,k(yk − h(x̃k|k−1)) (11)

where Kest,k =�k|k−1HT
k
(Hk�k|k−1HT

k
+R)−1 is an estimator gain and

Hk = (�h(x)/�x)|x̂k|k−1
. Corresponding to a state covariance,

�k|k = �k|k−1 − Kest,kHk�k|k−1 (12)

For a prediction step, the estimates for the next time step are pre-
dicted based on the current estimates in which the discrete predic-
tion equations are employed:

x̃k+1|k = f̄ (x̃k|k, uk) (13)

The concerning covariance matrix can be rewritten as

�k+1|k = Fk�k|kFT
k

+ Q (14)

where

Fk =
(

�f̄ (x, u)

�x

)∣∣∣∣∣
x̂k|k,uk

3.2. Implementation of EKF

As the nonlinear estimator-based rigorous mathematical model
of an actual plant is rather complex, a simplified model integrated
with a bubble-point calculation is easier to be employed in practice.
The simplified equations are given by

dx1i

dt
= rV

H1
(x2i − x1i) − V

H1
(y1i − x1i) (15)

dxji

dt
= V

Hj
(yj−1,i − yji) + rV

Hj
(xj+1,i − xji) (16)

dxNi

dt
= V

HN
(yN−1,i − xNi) (17)

At each integration step in an EKF scheme, a reboiler holdup predic-
tion is obtained as

H1,k = B0 − (N − 2) × Hj − HN − Ha,k

where

Ha,k = Ha,k−1 + �t × [(1 − r)V ]

In this case, a state vector is [x11, x21, . . . , xN1, x12, x22, . . . , xN2]T
in which only the first two components are considered. The heav-
iest component can be obtained by subtracting the summation of
the first two components from one. The measurement equations are
derived from Antoine's equations. From Eqs. (15)--(17), the knowl-
edge of Hj , HN and V are acquired. In the work of Oisiovici and Cruz
(2000), the instant vapor flow rate is estimated by the knowledge
of vaporization heat and heating power. Nevertheless, the exact cal-
culation of the heat of vaporization is difficult; hence, the assump-
tion of the constant vapor load along the batch is made here. The
constant values of the parameters Hj, HN and V are obtained in an
optimal manner as 0.0052, 0.0427 and 1.4195kmol/h, respectively.

4. A novel estimator scheme

An application of an EKF estimator to a batch distillation for es-
timating column compositions has not much been reported in liter-
atures, even though the EKF is proved to be robust to mismatch and
noise. The main reasons are that it requires considerable computa-
tional effort for online use and a priori thermodynamic knowledge
which is rarely known in reality. Moreover, it is difficult to initial-
ize all states of the column perfectly. A novel linear version of a KF
estimator is then proposed in this section to overcome those prob-
lems. In a continuous process, an accurate linear model can be eas-
ily obtained. Conversely, a batch process description using a single
local model is rarely possible because of non-stationary and time-
varying behavior. On the other hand, the batch representation can
be achieved using a sequence of the local models as shown in Fig. 2.
This modeling strategy is motivated by the fact that the batch system
goes through a series of phases with substantially different charac-
terization. The individual model is employed for an output predic-
tion within a particular duration. The models are developed around
different pseudo-steady-state operations along the reference batch
profiles.

4.1. A novel KF approach

Once measurements are available, the model states and out-
puts are updated and predicted for the next step by using the
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Fig. 2. Representation of a batch column using a sequence of multiple models.
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Fig. 3. Estimation scheme of KF-based multiple models.

corresponding model equations. An estimation scheme of the novel
KF-based multiple models is shown in Fig. 3. As in most cases the
original full states contain additional unobservable and/or uncon-
trollable states; the obtained full models should reduce their orders
separately to attain only observable state contributions by using
a model reduction approach. Since ranks of observability matrices
vary along the batch, the reduced models may have a different num-
ber of states. At a model connection, a state covariance matrix � is
transformed by multiplying matrix Kj for an estimation consistency
as follows:

�k|k,j+1 = Kj�k|k,jK
T
j (18)

Although the models are in different state domains and may ob-
tain different model orders, process inputs and outputs are identical,

y = Cjxj = Cj+1xj+1 (19)

The transform matrix Kj can be simply derived from the above equa-
tion,

Kj = (CT
j+1Cj+1)−1CT

j+1Cj , (20)

where

xj+1 = Kj · xj

It can be seen that matrix Kj is only dependent on the measure-
ment of matrices C of the two considered models (j) and (j + 1); in

Table 3
An approach of KF estimator-based multiple models

STEP 0: t, yk, x̂k,dt
STEP 1: Current model specification, jk (at time t)

�j,k → {A, B, C, D} in which j =

⎧⎪⎨
⎪⎩
1 t0 < t � t1
2 t1 < t � t2
. .
n tn−1 < t � tf

STEP 2: State and covariance transformation,
IF jk �= jk−1 THEN

x̂k,j = Kj−1 · x̂k,j−1 and �k,j = Kj−1�k,j−1KT
j−1

ELSE GO TO STEP 3 END
STEP 3: Correction step:

x̂k|k = x̂k|k−1 + Kest(yk − Cx̂k|k−1)
�k|k = �k|k−1 − KestC�k|k−1
where, Kest = �k|k−1CT(C�k|k−1CT + R)−1

STEP 4: Prediction step:
x̂k+1|k = Ax̂k|k + Buk

�k+1|k = A�k|kAT + Q
STEP 5: IF t < tf THEN

k = k + 1
GO TO STEP 0

ELSE STOP END

other words it is independent of instant time. Table 3 summarizes
the estimation approach of the KF-based multiple models. It can be
seen that the conventional KF with a single model can be executed
by discarding steps 1 and 2.
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4.2. Implementation of a novel estimator

By applying a local linearization to nonlinear model equations, a
first-order Taylor approximation is employed in which for a contin-
uous process the steady term is zero at the steady-state operating
condition. However, the steady term does not exist for a batch system
because there is no such steady-state operating point. An augmented
state vector including a differentiated state (�xr,k =xr,k −xr,k−1) vec-
tor and the measurable outputs is introduced instead of using the
model states solely to eliminate the constant term,∣∣∣∣ �xr,k+1
CTr · xr,k+1

∣∣∣∣=
∣∣∣∣ � 0
CTr · � I

∣∣∣∣ ·
∣∣∣∣ �xr,k
CTr · xr,k

∣∣∣∣+
∣∣∣∣ �
CTr · �

∣∣∣∣ · |�uk|

yT,k = |0 I| ·
∣∣∣∣ �xr,k
CTr · xr,k

∣∣∣∣ (21)

where �=[I +�t ·Ar ], �=[�t ·Br ] and �t is an integrating interval. If
the current augmented states are known, the unmeasurable outputs
can be calculated from the following equation:

yx,k = |Cxr 0| ·
∣∣∣∣ �xr,k
CTr · xr,k

∣∣∣∣+ yx,k−1 (22)

The main advantages of using the augmented states are that the
constant term which results from the linearization can be discarded.
In addition, the differentiated states can be initialized easily with the
values of zero. It is noted that this work develops the state-space
models based on the first-principle equations; alternatively, one can
obtain the system matrices through experimental information by
using a subspace state-space identification method (Favoree et al.,
2000; Jimenez et al., 2002; Andrew and Jay, 2003).

5. Composition prediction model

5.1. A model reduction approach

In most cases, a full-local model contains additional unobserv-
able and/or uncontrollable states. However, only observable and con-
trollable states are needed for monitoring and control. A balanced
truncation method is then applied to attain only the observable and
controllable contributions. Table 4 summarizes the approach of the
reduction method for an unstable system. For more details of the ap-
proach refer to Nering (1963), Skogestad and Postlethwaite (1996)
and Zhou and Doyle (1998). Because the reduction method cannot be
applied directly to the unstable process, the system matrix A of the
original realization � → {A, B, C, D} should be firstly diagonalized for
simply identifying stable and unstable parts of the system. It is noted
that the elements in the main diagonal of Ad are the eigenvalues
of A. The stable realization is balanced subsequently that both ob-
servability and controllability gramians are equal and diagonal. The
less observable and controllable states of the balanced realization
are further truncated. A measure of the accuracy of the method is
an error in H∞ norm of the approximation, and it should satisfy the
inequality equation as shown in step 4. In this work, the maximum
value of the error has been arbitrarily chosen as 0.0001. In the last
step, the reduced stable and unstable parts are composed together
to preserve the main characteristic of the process.

5.2. A prediction model for a composition estimation

For a batch distillation, the process outputs consist of measur-
able tray temperatures and unmeasurable product compositions. It
is noted that the reduced models developed above consider only
the measurable outputs. In spite of this a monitoring of the instant
product compositions is also required for a precise implementation
of a control strategy. In this sub-section, a prediction model for dy-
namic composition estimation is derived in a reduced-state domain.

Table 4
A balanced truncation approach

STEP 0: Model realization: � → {A, B, C, D}, x
STEP 1: System diagonalization [MATLAB command: strans]:

�d → {Ad, Bd, Cd, Dd},
where, xd = v−1x, Ad = v−1Av, Bd = v−1B, Cd = Cv and Dd = D

STEP 2: Stable and unstable parts decomposition:
�s → {As, Bs, Cs, Ds} where As contains only negative eigenvalues
�u → {Au, Bu, Cu, Du} where Au contains only positive eigenvalues

STEP 3: Balanced realization [MATLAB command: balreal]:
�b → {Ab, Bb, Cb, Db},
where, xb = Sxs , Ab = SAsS−1, Bb = SBs , Cb = CsS−1 and Db = Ds

STEP 4: Truncation approach [MATLAB command: modred(mod, []`del')]:
�nr+1 � ‖G − Grs‖∞ �2

nx∑
i=nr+1

�i

where, G and Grs are transfer functions of full and reduced-order model.
Let nr = nx

WHILE 2
nx∑

i=nr+1
�i >0.0001

nr = nr − 1; modred(mod, [nr + 1 : nx], `del');
END
�rs → {Ars, Brs, Crs, Drs}

STEP: 5 Reduced and unstable parts combination:

The original measurement equation considering only the measurable
outputs is

yT = CT · x (23)

where x is a composition vector [x11, x21, . . . , xN1, x12, x22, . . . , xN2]T.
By applying Table 4 the output equation in the reduced-state do-
main, xr can be obtained as

yT = [CTb|ny×nr CTu] · xr = CTr · xr (24)

where CTu = C+
Td

and CTb = C−
Td

S−1 in which C+
Td
, C−

Td
are the matrix

CTd(CTd = CTv) corresponding to positive and negative eigenvalues,
respectively, and CTb|ny×nr is the matrix CTb that the last (nr + 1) to
nx columns are truncated. From the full-order model, the distillate
compositions can be monitored as⎡
⎢⎢⎣

xN1
xN2
x11
x12

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
0 . 1 0 . 0
0 . 0 0 . 1
1 . 0 0 . 0
0 . 0 1 . 0

⎤
⎥⎥⎦ · x

yx = Cx · x (25)

where the compositions of a distillate and a reboiler are monitored.
Similarly, a prediction equation of the compositions in xr domain is
obtained as follows:

yx = Cxr · xr (26)

where Cxr = [Cxb|4×nr Cxu], Cxb = C−
xd

S−1 and Cxu = C+
xd

.C+
xd
, C−

xd
are

thematrix Cxd(Cxd=Cxv) corresponding to unstable and stable eigen-
values, respectively, and Cxb|4×nr is the matrix Cxb where only the
first nr columns are considered. The system equations considering
both the measurable and unmeasurable outputs can be rewritten as

ẋr = Ar · xr + Br · u[
yT
yx

]
=
[
CTr
Cxr

]
· xr (27)

In the estimation scheme, the reduced-state estimates are updated at
each iteration by using available information of actual and predicted
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temperature measurements. Then, the un-measurable product com-
positions are estimated using the current estimates of the reduced
states. The estimates for the next step are predicted by using Eq. (27).

6. Simulation results

Inferential composition estimation for a ternary batch column
operated in an optimal operation is studied here. Optimal profiles
are pre-determined by minimizing a total batch time to yield desired
product quantity and purity. The optimal solution is obtained with
two main-cuts and one off-cut. In this system, acetone and toluene
are separated as distillate products and phenol is separated as a
residual product in a still pot. For solving the rigorous model (Eqs.
(1)--(9)), backward differentiation formula or Gear's type method, an
implicit numerical method, is employed. An approximation of the
differential equations used in the estimators is achieved by using an
Euler integration method. All simulations studied are carried out on
Window XP 2002 (Pentium M 1500MHz) by using MATLAB program
version 6.5.

6.1. Multiple model development

As mentioned earlier, it is rarely possible to predict a whole batch
behavior by a single linear model. Therefore, a set of models are
developed based on batch trajectory and used sequentially along a
batch operation. Here, it has been found that as instant distillate
compositions remarkably change every 5min during the operation
period, the novel estimator is activated 5min in all cases. Consequen-
tially, a series of 35 models are developed and employed to represent
a whole batch operation involving 16 models for the first main-cut,
6 models for off-cut and 13 models for the second main-cut.

The 35 models developed contain 14 full states (no. of total plates
7×2 components), including additional unobservable states. For good
monitoring, the models further reduce their order individually using
a balanced truncation method. It is assumed that all tray tempera-
tures are measurable (six sensors) in all cases. Fig. 4a shows error in
the H∞ norm as well as lower and upper bounds calculated from the
inequality equation as given in Table 4 (step 4). The reduced orders
are plotted with time as shown in Fig. 4b. It is noted that by applying
model reduction the original full states can be computed as a linear
combination of the new reduced states. In the off-cut operation, the
highest reduced orders are obtained because composition changes
of both the components are significant. Afterwards, the model order
decreases continuously in the production of toluene. Since the ace-
tone amount in the column is completely exhausted and removed
from the column, only seven new states are required for the last
model.

As the batch process is operated in an optimal reflux policy, the
dynamic behavior of the system changes correspondingly during the
batch, leading to difficulty in the estimation/control. For the reason
that the reduced models are developed separately and the process
is highly nonlinear, the developed models may give poor dynamics
response. It is a fact that estimates of an estimator are poor for the
whole batch with the use of a fixed value of process covariance.
Therefore, 35 matrices Q are defined and scheduled according to the
corresponding model equations. However, the diagonal elements of
the matrices R and �0 are constant at 10 and 10−5, respectively.
For the EKF estimator, the diagonal elements of both �0 and Q are
selected as 10−6. The diagonal elements of R for all the cases of
measurements are defined as 100.

6.2. Selection of sensor frequency

It is well known that a sampling frequency has a great influence
on the accuracy of the filter estimates, and its value must be prop-

Fig. 4. Reduced models development: (a) error in H∞ norm and (b) model order.

erly chosen depending on system dynamics. For both nonlinear and
linear versions of the KF estimator, differentiate equations are ap-
proximated using the first-order Euler method; then a sampling pe-
riod must be chosen considering stability of the numerical approach.
For batch distillation, the criteria for the method to prevent the in-
stability is noted by Seader and Henley (1998) as

h <
2

|�|max
= 2	min

It can be seen that an integral interval (h) (or sampling period) is
limited to a small step by a fastest response of the process (mini-
mum time constant, 	mim) which is at the end of the operation as
can be seen in Fig. 5. In this case, the maximum absolute eigenvalues
(|�|max) are about 5400 and 2500 for full- and reduced-state mod-
els, respectively. So the sampling time needed for the conventional
implementation of the EKF estimator (based on full-state models) is
chosen as 2 s. It is noted that the sampling frequency for the novel
KF estimator (based on reduced-state models) can be chosen lower
than the one needed for the EKF because its |�|max is lower.
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Fig. 5. Absolute eigenvalues of full and reduced models.

Table 5
Parameters which have been varied in the runs

Run Sampling time Integrating time h (s) Initial states Temperature noise

Nonlinear Linear

1 2 2 2 Exactly Ideal sensors
2 4 0.4 4 Exactly Ideal sensors
3 2 2 2 Inexactly Noise ±1K
4 2 2 2 Inexactly Noise ±3K

Table 6
Computation effort and IAE values for each run

Run Computation effort (min) % Saved IAE

Nonlinear Linear Nonlinear Linear

1 47.588 25.320 46.79 0.101 0.104
2 23.029 14.457 37.22 0.105 0.107
3 47.792 26.670 44.20 0.102 0.161
4 50.315 26.740 46.85 0.103 0.227

Though the sampling time required for the novel estimator is
lower than the one needed for the nonlinear estimator, both estima-
tors are tested with sampling time 2 s (Run 1) for evaluating their
performances. Table 5 lists the parameters varied in an experimen-
tal study and Table 6 gives the computation time as well as integral
absolute error (IAE) calculated based on the products. Even though
the IAE value in case of the linear estimator is slightly higher the
computation time is much lower. It has been found that the com-
putation effort can be saved by over 46% of the one required for the
EKF in this case.

Fig. 6 shows the estimation performances of the linear estimator
with high sampling time, 4 s (Run 2). The results show that the es-
timates have reasonable agreement with the actual ones, although
lower measurement information is provided. This is because the fast
responses at the end of the batch operation are truncated in case
of the reduced models as discussed above. However, estimates of
the composition obtained by the conventional implement of the EKF
estimator with the sampling time of 4 s are poor as seen in Fig. 7
(dotted lines). As the batch changes very rapidly at the end of the
operation, the estimator requires more measurement information.

Fig. 6. Estimates of distillate (a) and reboiler (b) compositions using novel KF in
Run 2.

6.3. Effect of integrating step for the EKF

As discussed above, the suitable sampling period for the im-
plementation of the estimator is selected considering the stability
characteristic of the numerical integrating procedure. If the sensor
frequency is high enough, a truncation error of the approximation
can be negligible. It has been found that measurement information
required for the conventional EKF estimator is remarkably needed
for a stiff system such as a batch distillation process. In this sub-
section, the effect of integrating step size needed for the integrat-
ing procedure is tested with the same measurement information.
It is expected that with the same sampling, composition estimates
during drastic changes of the process can be improved if the in-
tegrating step used in the estimator is smaller than the sampling
time.

Fig. 7 shows the profiles of the actual composition and the
composition estimated by the EKF in a nominal case, varying the
integrating step size used for the Euler approximation. The temper-
ature data of every 4 s are used as the input to the EKF algorithm. It
can be seen that both the nonlinear estimators give good estimates
of acetone. However, in case of the conventional implementation of
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Fig. 7. Distillate (a) and reboiler (b) estimates using EKF (sampling time 4 s).

the EKF (integrating step 4 s) the estimates of toluene are poor at
the end of the operation. The estimation performance is degraded
because the integrating method used in the estimator is unstable
for the second production. The composition estimates are signif-
icantly improved by decreasing the integration interval used in
the Euler approach to 0.4 s. The results show that with the con-
stant reflux, the measurement changes rarely effect the product
changes.

6.4. Effect of state initialization and noise

For Runs 1 and 2, it is assumed that all initial states are
known exactly and can be computed by multiplying the trans-
form matrix with initial full states. However, the initial compo-
sitions are rarely known in reality. Keeping all parameters and
conditions of Run 1, the robustness of both estimators is tested
with respect to the guess values of the initial states. For the EKF
estimator, exact initial values of the compositions at all stages
are x1 = [0.3709,0.8258,0.9681,0.9949,0.9992,0.9999,1] and

Fig. 8. Composition estimation profiles of distillate (a) and reboiler (b) in Run 3.

x2 = [0.4191,0.1695,0.0319,0.0051,0.0008,0.0001,0]. Neverthe-
less, the initial guess values are [0.4, 0.8, 0.9, 1, 1, 1, 1] and [0.4,
0.2, 0.1, 0, 0, 0, 0] for the first and second components, respectively.
For the linear estimator, the reduced states are in the incremental
changes; then they are initialized by zero for both the productions.
In addition, the initial guess of the distillate and reboiler composi-
tions are chosen as [1, 0] and [0.3, 0.43], respectively.

Furthermore, available measurements usually involve statistical
error, therefore six sensors are corrupted by a Gaussian white noise
with a zeromean and a certain standard deviation. As shown in Fig. 8,
both nonlinear and linear estimators still give reasonable estimates
of all products with the noise of the standard deviation of 1K (Run
3). The novel estimator requires the computation effort of only 56%
of the one needed for the nonlinear estimator. It has been found that
the performances of both linear KF and EKF become worse if the
variance of the temperature noise is higher. However, the linear KF
is much more sensitive to the higher variance than the EKF. Fig. 9
shows the estimates of both linear KF and EKF with respect to the
measurement noise of the standard deviation of 3K.
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Fig. 9. Composition estimation profiles of distillate (a) and reboiler (b) in Run 4.

7. Conclusion

In this work, both discrete nonlinear and linear versions of a
Kalman estimator are developed for inferential composition estima-
tion of a ternary batch distillation. For an EKF estimator, simplified
dynamic equations coupled with a bubble-point calculation are em-
ployed for an estimator design. Vapor flow rate and holdups of tray
and drum are constant for a whole batch operation, in which the
values of the parameters are pre-determined in an optimal manner.
For a novel linear KF, a set of reduced-order models is developed
individually and employed sequentially to predict the whole batch
behavior. Pre-scheduling of the models as well as corresponding co-
variance matrices of a process noise is made. Four important issues
are studied: sensor frequency selection, effects of an integrating step
size, a state initialization and a measurement noise.

Stability of an Euler approach appears to be an important issue
for a sampling period selection of an estimator design. The product
estimates at the end of the operation (fast responses) can be im-
proved by decreasing sampling time. It has been found that sampling
frequency needed for the estimator based on the reduced model is

smaller than the one required for the estimator based on the full
model. From the results, the estimation performances of the EKF
with the low sampling frequency can be improved by decreasing the
integrating step size in the prediction step.

Both estimators give comparative estimation performances even
in case of initial guessed conditions and measurement noise. How-
ever, the state estimates obtained by the EKF will only converge to
the actual values if an accurate thermodynamics model is available.
Although the novel estimator performs rather sensitively to the ef-
fect of high measurement noise, computation time can be saved by
over 44% of the ones required for the EKF estimator. Moreover, the
knowledge of the thermodynamic is not required and the augmented
states can be initialized easily by using zero values.

Notation

B0 initial charge in reboiler, kmol
hl
j

liquid enthalpy of tray j, J/kmol

hv
j

vapor enthalpy of tray j, J/kmol

Ha molar holdup of accumulator, kmol
Hj molar holdup of tray j, kmol (where 1 = reboiler and N =

reflux drum)
Kj a transform matrix of model j as shown in Eq. (20)
L liquid load, kmol/h
nr a number of reduced states
nx a number of stable states
ny a number of outputs
N total number of trays including reboiler and condenser
Q a covariance matrix of process noise
QC heat removed amount in condenser, J/h
QR heat supplied in reboiler, J/h
r internal reflux ratio
R a covariance matrix of measurement noise
V vapor load, kmol/h
xij liquid composition of i component in tray j, mole fraction
xr a reduced-state vector
yij vapor composition of i component in tray j, mole fraction
yT a vector of measurable outputs
yx a vector of unmeasurable outputs as shown in Eq. (25)

Greek letters

� a state-space realizaion
�0 initial values of a state covariance matrix
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