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Abstract

The effects of using diesel–methanol–dodecanol blends including methanol of various proportions on a CI engine performance are
experimentally investigated. The methanol concentration in the blend has been changed from 2.5% to 15% with the increments of
2.5%, and 1% dodecanol was added into each blend to solve the phase separation problem. Experimental study has been conducted
on a single-cylinder, water-cooled CI engine. The engine has been operated at different compression ratios (19, 21, 23 and 25) and
the engine speed was varied from 1000 to 1600 rpm at each compression ratio. The performance parameters such as torque, effective
power, specific fuel consumption and effective efficiency for each blend at various conditions are calculated depending on the experimen-
tal data. It was concluded that among the different blends, the blend including 10% methanol (DM10) is the most suited one for CI
engines from the engine performance point of view. Improvements obtained up to 7% in performance parameters with this blend without
any modification to engine design and fuel system are very promising.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Compression-ignition (CI) or diesel engines are widely
used in the fields of commercial transportation, automo-
tive, agricultural applications and industrial sector due to
its high fuel conversion efficiency and ease of operation
[1]. The existing CI engines operate with conventional die-
sel fuel derived from crude oil. It is well known that the
world petroleum resources are limited and the production
of crude oil is becoming more difficult and more expensive.
On the other hand, although CI engines emit low CO2

emission, they are the most important source of particulate
emissions, soot, smoke and oxides of nitrogen (NOX) which
are harmful for the environment [2]. Oxides of nitrogen can
also cause smog production, reacting with hydrocarbon
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compounds in the presence of sunlight [2]. In this connec-
tion, improving the performance and reducing emissions
of these engines will be helpful to improve fuel economy
and to reduce environmental pollution.

Using alternative fuels produced from non-petroleum
resources in CI engines is suggested as one of the most
attractive methods for improving their performance and
emissions. These fuels include alcohols (such as ethanol
and methanol), ethers, vegetable oils, animal fats, gaseous
fuels (hydrogen, natural gas, liquefied petroleum gas) and
bio-diesel [1,3–7]. Among these fuels, despite its very low
cetane rating and poor solubility in diesel fuel, methanol
has advantages of low cost, being non-sooting fuel, and
high oxygen content [8,9]. The advantages and disadvan-
tages of methanol as a CI engine fuel will be discussed in
the next section.

The results reported in the numerous published papers
relating the effect of using methanol in CI engines on the
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Nomenclature

B mass flow rate of the fuel, kg/h
F/A fuel/air ratio, dimensionless
LHV lower heating value of the fuel, MJ/kg
_m mass flow rate, kg/h
n engine speed, rpm
Ne effective power, kW
P pressure, Pa
SFC specific fuel consumption, kg/kW h
T temperature, K
X volume percentage, %

Greek symbols

e compression ratio, dimensionless
/ fuel/air equivalence ratio, dimensionless

g efficiency, %
q density, g/cm3

Subscripts

a air
act actual
bl blend
e effective
0 standard atmospheric conditions
s stoichiometric
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exhaust emissions and engine performance are very pro-
spective [3,4,8,10,11]. It was also concluded from the liter-
ature review that studies in the matter of using methanol in
CI engines have been mainly related to the combustion and
exhaust emissions and studies concerning the effects of
methanol on engine performance and fuel economy are at
limited number. This topic needs to be further investigated
for widespread use of methanol. For this reason, in the
present study, it is aimed to investigate the performance
of a CI engine fueled with various diesel–methanol blends.
For this purpose, different diesel–methanol blends includ-
ing 1% 1-dodecanol (which is commonly named as dodec-
anol or lauryl alcohol) as solvent are examined in a single-
cylinder experimental CI engine and the effects on engine
performance are evaluated.

2. Properties of methanol as a fuel for CI engines

Methanol is manufactured from any material that can
be decomposed into carbon monoxide (or carbon dioxide)
and hydrogen [12]. In this regard, it may be produced from
the sources which are independent of petroleum. The
primary feedstocks for methanol production are natural
gas, lignite, coal and the renewable resources such as wood,
agricultural materials, biomass, waste biomass and munici-
pal wastes [12–14]. In the methanol production, raw
material is firstly converted to synthesis gas (CO + H2)
by gasification and finally CO and H2 are catalytically
combined by means of a catalyst like Cu–Zn–Cr to yield
methanol [15].

Properties of diesel, methanol and dodecanol are listed
in Table 1. Methanol has lower heating value than diesel
due to its partially oxidized state therefore much more
fuel is needed to obtain same performance with that of
diesel-fueled engine. Its high stoichiometric fuel/air ratio,
high oxygen content and high H/C ratio may be beneficial
for improving the combustion and reducing the soot and
smoke. However, it was reported that engines operating
with methanol and other oxygenated fuels emit more alde-
hyde emissions such as formaldehyde [2,12,15]. Formalde-
hyde can cause eye irritation and the formation of smog
[12]. The use of an exhaust catalyst is helpful to reduce
these emissions. Methanol has higher latent heat of vapor-
ization than diesel so that it extracts much more heat as it
vaporizes, therefore can lead to cooling effect on the cyl-
inder charge [18]. As a result of cooling effect on the
charge, cylinder temperature may decrease and therefore
emissions of nitrogen oxides would be reduced. Methanol
has the poor ignition behavior due to its low cetane num-
ber, high latent heat of vaporization and high ignition
temperature therefore it can produce longer ignition
delay. As shown in Table 1, methanol has very low viscos-
ity compared to diesel fuel therefore it can easily be
injected, atomized and mixed with air. In this case, a
lubricant additive should be added to the fuel to improve
the lubrication [19].

The possible benefits and shortcomings of methanol as a
fuel for CI engines are summarized above. Methanol can
be used in CI engines as pure or by blending with conven-
tional diesel fuel. Problems concerning the use of methanol
in diesel engines can be removed by different approaches
which are briefly described below. Using it in CI engines
as diesel–methanol blends is the simplest method. The most
important problem encountered in this case is the phase
separation. This problem can be prevented by adding some
solvent into mixture [20]. Moreover, an ignition improver
like diethyl ether [5] can be added in the blended fuel to
compensate the cetane number. This application requires
no modification on engine design and fuel system if concen-
trations of methanol in the blends are at low levels. In the
second way, methanol can be used as pure in CI engines by
the methods such as dual-fueling [1], blending with an
ignition improver [21], spark-assisted method [22] and
fumigation [23]. Although these methods eliminate the



Table 1
Properties of diesel, methanol and dodecanol [4,8,16,17]

Property Diesel Methanol 1-Dodecanol

Molecular formula C14.342H24.75 CH3OH C12H26O
Molecular weight (kg/kmol) 197.21 32.042 186.339
Stoichiometric fuel/air ratio 0.06924 0.15393 0.07462
Cetane number 45–55 3–5 –
Flash point (�C) 78 11 107
Ignition temperature (�C) 235 470 527
Viscosity at 298.15 K (mPa s) 3.35 0.59 16.136
Density (g cm�3) 0.83 0.79 0.83
Lower heating value (MJ/kg) 42.740 20.270 39.860
Heat of vaporization (MJ/kg) 0.270 1.110 –
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disadvantage of poor ignition quality of methanol, using
additional equipments such as spark plug, fuel-injection
system, carburetor or vaporizer and storage system results
in additional costs.

As a consequence of the above discussions, using meth-
anol in CI engines as diesel–methanol blends including
methanol at low concentrations is the most practical and
economic way. For this reason, the present study is mainly
concentrated on the use of diesel–methanol blends in CI
engines. Murayama [20] examined 10 different solvents
and found that dodecanol was the best one among them
for diesel–methanol blends. For this reason, in the present
study, dodecanol has been used as solvent to stabilize the
fuel mixture. Dodecanol is a fatty alcohol and commonly
produced from coconut. It has nearly same heating value
with diesel, has high viscosity and high ignition tempera-
ture [16,17]. Although the high viscosity and high ignition
temperature can cause difficulties in fuel atomization and
ignition, the present author’s opinion is that adding small
amounts of dodecanol into the fuel blends will not lead
to such problems.
3. Experimental study

3.1. Fuel properties

The molecular formulae of diesel, methanol and dodec-
anol used in this study are given in Table 1. The lower
heating value of each fuel has been calculated using the
Mendeleyev’s formula given by Khovakh [24] as follows:
LHV ¼ 34:013c0 þ 125:6h0 � 10:9o0 � 2:512ð9h0 þ w0Þ; ð1Þ
where c 0, h 0, o 0 and w 0 refer to the elementary composition
of fuel that is, the amounts of separate elements (carbon,
hydrogen, oxygen and water) in unit mass of the fuel.
The values of LHV for diesel, methanol and dodecanol
have been determined from Eq. (1) as 42.74, 20.27 and
39.86 MJ kg�1, respectively. The densities and stoichiome-
tric fuel/air ratios of diesel, methanol and dodecanol used
in this study are given in Table 1 and the properties of
blends have been determined from the following equations:
qbl ¼
P

X iqi

100
; ð2Þ

ðF =AÞsbl ¼
P

X iqiðF =AÞsiP
X iqi

; ð3Þ

LHVbl ¼
P

X iqiLHViP
X iqi

: ð4Þ

Here, subscript i refer to diesel, methanol or dodecanol.
The other properties of fuels given in Table 1 have been ta-
ken from the cited literature [4,8,16,17].
3.2. Experimental setup and procedure

The engine used in the experiments is a single-cylinder,
four-stroke, water-cooled, variable compression, direct
injection (DI) compression-ignition engine having a swept
volume of 763 cm3. Dimensions of the engine are: the bore
D = 90 mm and stroke H = 120 mm. The shaft of the
engine is coupled to the rotor of an electric dynamometer
which is used to load engine by increasing the field voltage
and to measure the engine output torque. A calibrated bur-
ette and a stopwatch were employed to measure the mass
flow rate of fuel. Diesel–methanol–dodecanol blends have
been prepared by blending the analysis-grade anhydrous
methanol having a purity of 99.8%, with diesel in concen-
trations of 2.5 through 15% (by volume) with the incre-
ments of 2.5% and have been directly injected in to the
combustion chamber. Dodecanol of 1% (by volume) was
added into each blend to obtain stabilized mixture. Above
the 15% methanol, engine could not run smoothly there-
fore experimental results obtained up to this percentage
of methanol are presented. The engine has been operated
at full throttle setting and at the compression ratios of
19, 21, 23 and 25. At each compression ratio, engine speed
has been changed from 1000 to 1600 rpm with the incre-
ments of 100 rpm. All the experiments have been per-
formed at the fixed fuel-injection timing condition. The
engine performance parameters when using diesel and dif-
ferent diesel–methanol–dodecanol blends have been com-
paratively determined.

The torque exerted by the engine is measured from the
stator of dynamometer by balancing it with weight of
200 N and a spring. The engine effective power is corrected
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for the standard atmospheric conditions by Eq. (5), and
then the specific fuel consumption and effective efficiency
are calculated from Eqs. (6) and (7) as follows:

N eo ¼ N e

0:1013

p0

T 0

293:15
; ð5Þ

SFC ¼ B
N e

; ð6Þ

ge ¼
3:6

LHV� SFC
: ð7Þ

Finally, the actual fuel/air ratio (F/A)act and the fuel/air
equivalence ratio /bl are calculated from Eqs. (8) and (9),
respectively

ðF =AÞact ¼
B
_ma

; ð8Þ

/bl ¼
ðF =AÞact

ðF =AÞsbl

: ð9Þ
4. Results and discussion

The fuel/air equivalence ratio of the blends /bl has been
calculated from Eqs. (3), (8) and (9). Methanol has the
higher stochiometric fuel/air ratio than diesel due to its
partially oxidized state or it is an oxygenated fuel, therefore
blending it into diesel leads to the leaner operation. This
effect is clearly shown in Figs. 1 and 2: fuel/air equivalence
ratio of the diesel–methanol blend /bl decreases as the pro-
portion of methanol increases. As shown from the figures,
blending methanol with diesel leads to a leaning effect of
about 18% on the blended fuel. The leaner operation can
result in some improvements in engine performance param-
eters as will be explained below.

Since methanol has lower cetane number, higher igni-
tion temperature and higher latent heat of vaporization
than the conventional diesel fuel, it has poorer ignition
quality. Consequently, difficulties in the ignition of fuel–
air mixture may occur and the duration of ignition delay
could increase. Increasing ignition delay to some extent
may be beneficial for combustion and engine performance.
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Fig. 1. The effect of methanol amount on / at different engine speeds.
The amount of fuel burned in the premixed burning phase
can increase due to the longer ignition delay therefore
higher cylinder pressures would be obtained with diesel–
methanol blends. Meanwhile, blending methanol with
diesel fuel can supply additional oxygen for diffusive com-
bustion phase and can cause improvements in combustion
process; namely, more efficient and more complete com-
bustion. Moreover, as stated in Section 2, methanol addi-
tion in diesel fuel leads to cooling effect on the cylinder
charge because of its lower heating value, higher latent heat
of vaporization and higher stoichiometric fuel to air ratio.
As a result, the peak cylinder temperature decreases and
the engine knock could be prevented. Therefore, improve-
ments in engine performance can be expected when diesel–
methanol blends are used in CI engines. This is clearly
shown in Fig. 3–6 which indicate the engine output powers
obtained with different blended fuels at various engine
operating conditions. Here, ‘‘DM’’ designates the diesel–
methanol blend and numbers next to ‘‘DM’’ refer to the
volume percentage of methanol in the blended fuel. In all
cases, the blend including 10% methanol (DM10) gives
the better values for the effective power Ne. The maximum
increment in effective power obtained with this blend is
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Fig. 3. Variation of Ne with engine speed for diesel and different blends.
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about 7% at the operating conditions of n = 1500 rpm and
e = 23. These figures also show that the blends having
methanol proportions above 10% cause deteriorations in
the engine performance. This can be explained with the fol-
lowing reasons: The cetane number of the blended fuel
decreases and the auto ignition temperature and vaporiza-
tion heat of blended fuels increase as methanol concentra-
tion increases. When the cetane number drops below the
levels required for CI engine operation and the charge tem-
perature extremely decreases, very long ignition delays
could occur because of the difficulties in ignition, so that
combustion may start during the expansion process and
the fuel cannot be completely burned within this limited
time remaining for the combustion. Another reason for
decreasing power can be attributed to the decreasing lower
heating value of diesel–methanol blends with increasing
methanol concentration.

The improvement in combustion enhances the fuel con-
version efficiency and results in decreases in specific fuel
consumption SFC. On the other hand, SFC is inversely
proportional to the effective power as in Eq. (6). Due to
such reasons, SFC decreases with increasing methanol per-
centage up to 10% as shown in Figs. 7–10. A maximum
improvement of about 7% were obtained with DM10 at
n = 1300 rpm and e = 25. As stated above, the methanol
content higher than 10% affects the combustion and there-
fore SFC, negatively.

The exhaust temperature may decrease with the increas-
ing methanol amount owing to the decreasing peak cylin-
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der temperature resulting from both raising latent heat of
vaporization and the leaner operation. According to the
second law of thermodynamics, the engine thermal effi-
ciency increases due to the reduced heat loss from the
engine through heat transfer to the coolant and to atmo-
sphere. Moreover, the effective efficiency is inversely pro-
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Fig. 11. Variation of ge with engine speed for diesel and different blends.
portional to the SFC and LHV as in Eq. (7).
Consequently, decreases in the heat loss, SFC and LHV
improve the effective efficiency. As shown in Figs. 11–14,
ge reaches maximum at DM10 and then decreases. The
maximum increase in effective efficiency obtained with this
blend is about 7%.
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5. Conclusions

In the present study, a detailed experimental investiga-
tion has been conducted on the effects of methanol addition
up to 15% (by volume) into diesel fuel on the engine perfor-
mance parameters. The phase separation problem has been
prevented by adding 1% dodecanol to each diesel–metha-
nol blend. The engine has been operated with each blend
at different compression ratios at which the engine speed
has been changed between 1000 and 1600 rpm. The main
conclusions can be summarized as follows:

1. The fuel–air equivalence ratio of diesel–methanol blend
decreases with the increasing methanol amount. The
blend of 15% methanol results in a leaning of about
18% in the fuel–air mixture.

2. Methanol causes improvement in engine effective power.
The maximum improvement of about 7% in Ne was
obtained with the blend of DM10.

3. The specific fuel consumption SFC decreases and the
engine effective efficiency increases when using the die-
sel–methanol blends. An improvement of about 7% in
both parameters was obtained with the blend of DM10.

4. Consequently, it can be concluded that methanol can be
used in CI engines without any modification on the
engine design and fuel system by blending it with diesel
fuel at low concentrations (up to 10%), and the engine
performance can be improved by this way. In this case,
phase separation which is the most important problem
encountered can be prevented by adding some solvent
(here dodecanol) into the blend. The optimum percent-
age of methanol was determined as 10%. The better
results would be obtained if the cetane rating of the
blends is raised by blending some cetane improver in
to the blends.
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