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Abstract

The phenomenon of bubble growth around a laser-heated nanoparticle suspended in a carrier liquid is analytically and numerically
investigated. The amount of particle coagulation occurring while the carrier fluid is in the liquid phase is estimated by a monodispersed
particle coagulation model using three different estimates of increasing accuracy, but also complexity, in determining the characteristic
time of vapor formation as the relevant coagulation duration parameter. The effect of the particle on the bubble stability and the bubble
dynamics is also demonstrated.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The unique thermophysical properties of ultrafine parti-
cles in the nanometer-range, exemplified by a significantly
reduced melting temperature compared to their bulk coun-
ter part [1], are of vivid interest in the engineering science
nowadays. The particles are commonly dispersed for tech-
nical applications in a carrier liquid to facilitate their trans-
port which in turn requires a separation process once the
particles reach their desired location. The latter is a non-
trivial task due to the negligibly small buoyancy force
(i.e. no particle settling). A method alleviating this difficulty
and adding the benefit of simultaneous thermal processing
is the use of volatile liquids as solvents evaporated with a
heat source after deposition. The deposition and successive
heating of these nanoinks has led to innovative manufac-
turing methods for electrical conducting structures [2–5].
These methods require the control of thermocapillarity,
wetting and evaporation under the influence of an external
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doi:10.1016/j.ijheatmasstransfer.2006.10.035

* Corresponding author. Tel.: +41 44 63 22588; fax: +41 44 63 21176.
E-mail addresses: dietzel@ltnt.iet.mavt.ethz.ch (M. Dietzel), dimos.

poulikakos@ethz.ch (D. Poulikakos).
1 Tel.: +41 44 63 22039; fax: +41 44 63 21176.
heat source for the liquid phase as well as particle motion,
coagulation and coalescence for the dispersed solid phase.
The nanoink structure is typically printed with a drop-
on-demand (DOD) ink jet device, whereby an extended
(e.g. oven) or a local (e.g. laser) heat source is used to evap-
orate the carrier liquid and to cure the nanoparticles [2,6].
Despite the fact that the heating process is crucial to the
quality (e.g. low specific electrical resistance) of the formed
structure, most attempts of improvement rely on empiri-
cism as the processes involved are complex and inter-
weaved: the particles are usually sterically stabilized with
a thiol-group adsorbed to the particle surface. This stabil-
ization collapses within a certain temperature range (typi-
cally Tcollapse = 330–430 K), allowing the particles to
coagulate. Vapor bubbles start to form as soon the liquid
temperature exceeds local superheating conditions. The
particles pose a void, initiating heterogeneous nucleation.
However, it is completely unclear whether particle coagula-
tion is mostly embedded in a vapor or a liquid surrounding.
In other words, an understanding is missing whether coag-
ulation is faster or slower than the heat-up and the bubble
formation phase. This particular question shall be accessed
within this work for a setup where the heat is supplied
through the absorption of laser light by the particles. A
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Nomenclature

Latin symbols

c heat capacity (J kg�1 K�1)
c0 particle concentration (�)
�cb fluctuation speed (–)
db bubble diameter (m)
dp particle diameter (m)
Ddiff diffusion coefficient (–)
g transition parameter (–)
hlv latent heat (J kg�1)
kB Boltzmann constant (J K�1)
_m00 mass flow density (kg m�2 s�1)
Np number concentration (–)
p pressure (Pa)
r, R radial coordinate (m), (–)
Rv gas constant (J kg�1 K�1)
sl specific liquid entropy (J kg�1 K�1)
sv specific vapor entropy (J kg�1 K�1)
t time (s)
T temperature (K)
v0 reference velocity (m s�1)
vv specific vapor volume (m3 kg�1)
w, W interface velocity (m s�1), (–)

Dimensionless numbers

Ja Jakob number (–)
LHP* laser heat parameter (–)
Rep Reynolds number (–)
Pr Prandtl number (–)
Wep Weber number (–)

Greek symbols

b, �b collision kernel (–)
e density parameter (–)

/ bubble parameter (–)
c, C surface tension (N m�1), (–)
g dynamic viscosity (kg m�1 s�1)
j interaction parameter (–)
k thermal conductivity (W m�1 K�1)
l chemical potential (J kg�1)
# temperature (�C)
q density (kg m�3)
s time (–)
n contact angle (rad)
P pressure (–)
H temperature (–)

Subscripts

0 initial
b bubble
c critical
eq equilibrium
init initialisation
l liquid
ML monolayer
s static
sat saturation
SPH superheat
p particle
v vapor

Mathematical operators

Ds Lagrangian derivative towards s
oR partial derivative towards coordinate R
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reasonable answer is expected to foster the further progress
in the suitable process timing and parameter control.

The degree of particle coagulation as a function of time
is estimated with a monodispersed coagulation model
available from the literature [7]. The time of vapor forma-
tion describing how fast two vapor bubbles developing
around two heated neighboring particles meet is used as
the relevant characteristic time. This time is derived with
three different approaches of increasing complexity: the
first simply compares the laser power absorbed by one par-
ticle with the energy it takes to heat-up both, the particle
and the surrounding liquid, as well as to evaporate the lat-
ter. The second estimates the bubble growth with the Mikic
solution of the Rayleigh–Plesset equation [8] and the third
is based on the well-established vapor bubble growth
model of Scriven. This model solves next to the Ray-
leigh–Plesset equation the one-dimensional energy equa-
tion without assuming a thin thermal layer in which
evaporation is taking place [9]. Thus, it solves the one-
dimensional Navier–Stokes and energy equation in spheri-
cal coordinates. However, the laser heat source, the surface
tension effect (important for very small bubbles) as well as
the influence of the particle on the interfacial energy of the
bubble are not considered in Scriven’s work. These neces-
sary extensions are included in the present analysis.

The coagulation model is summarized in Section 2;
Section 3 contains the derivation of the characteristic time
of bubble growth in conjunction with some estimates of
how many particles coagulate in the liquid phase. Some
aspects about the stability of vapor bubbles forming
around heated nanoparticles are addressed in Section 4.
Concluding remarks are made in Section 5.

2. Coagulation times

Particle coagulation in a disperse suspension fluid can be
approximated with the monodispersed coagulation model
suggested by Kruis et al. [7]. The time evolution of the
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particle number concentration Np in a dimensionless form
reads:

DsN p ¼ �
1

2
�bN 2

p; ð1Þ

where s is the time non-dimensionalized with the ratio of a
reference velocity v0 (v0 = 5 m s�1) and the particle diame-
ter dp0 (dp0 = 10 � 10�9 m = 10 nm). The collision kernel �b
is the sum of Brownian (perikinetic) and shear-induced
(orthokinetic) coagulation:

�b ¼ bc0 ¼ ðbBrown þ bshearÞc0; ð2Þ

where c0 is the volumetric particle concentration. Typical
nanoparticle suspension liquids have a particle loading of
about 1.5% in volume (c0 = 0.015) and 30–40% in weight.
Integration of Eq. (1) with a constant overall collision
kernel provides:

Np ¼
1

1þ 0:5�bs
; 1 P N p > 0: ð3Þ

The Brownian collision kernel from the continuum to
the free molecular regime is for spherical particles [7],

bBrown ¼ 48Ddiff

1

1þ
ffiffiffi
2
p

�g
þ Ddiff

4
ffiffiffi
2
p

�cb

" #�1

ð4Þ

with the diffusion coefficient according to the Stokes–Ein-
stein relation [10]:

Ddiff ¼
CKn

d2
pv0

kBT p

3pgl

: ð5Þ

The correction for kinetic effects CKn (slip factor)
approaches unity in this application [7]. kB is the Boltz-
mann constant, Tp the absolute particle temperature
(assumed to be the boiling temperature of the carrier fluid
toluene, 383 K) and gv/l the dynamic viscosity of the carrier
fluid (vapor or liquid, gv = 2.75 � 10�5 Pas, gl = 5.6 �
10�4 Pas). The mean thermal speed �cb and transition
parameter �g read:

�cb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48

p2

kBT p

qpd3
pv2

0

s
; ð6Þ

�g ¼ ð1þ
�lÞ3 � ð1þ �l2Þ3=2

3�l
� 1; �l ¼ 8

p
Ddiff

�cb

ð7Þ

qp is the particle density (qp = 19 300 kg m�3).
The shear-induced coagulation kernel in Eq. (2) is

approximated with (spherical particle)[11]:

bshear ¼ 2:48 _�c: ð8Þ
The local dimensionless shear _�c is at most 6 � 10�3

as seen from FEM-simulations for typical nanoink-curing
applications [12]. Using the thermophysical properties of
toluene respectively gold (particle), one finds the following
values of the collision kernels:
bBrown;l ¼ 0:09306; bBrown;v ¼ 1:142; bshear ¼ 0:01488:

ð9Þ
These numbers reflect the common experience that

bshear < bBrown,l < bBrown,v for small particles and non-
turbulent flow.

Eq. (3) in conjunction with the values of the collision
kernels in Eq. (9) allows making a statement about what
percentage of the particles are coagulated before a vapor
bubble forms if the characteristic bubble formation time
is known. The latter is estimated in the next section.

3. Bubble meeting times

The characteristic time sc needed for two vapor bubbles
developing around neighboring particles heated by
absorbed laser light to meet is estimated herein. It is
assumed that the particle/bubble configuration keeps its
spherical symmetry in light of the small system dimensions
(i.e. negligible buoyancy forces potentially leading to bub-
ble lift-off) and the brief time-scales under investigation.
The bubble meeting time is defined herein as the time it
takes until the vapor bubbles developing around two neigh-
boring particles meet in the middle (assuming a symmetri-
cal growth rate for each particle). The volumetric particle
number concentration is defined as

c0 ¼ np

p
6

dp0

L

� �3

; ð10Þ

np is the number of particles in a reference volume of char-
acteristic length L. The average particle center-to-center
distance (cubic arrangement) is

Dlp ¼ L=
ffiffiffiffiffi
np

3
p ¼ dp0

ffiffiffiffiffiffiffiffi
p=6

c0

3

s
: ð11Þ

The critical bubble diameter dbc reads therefore in terms
of the bubble parameter / = db/dp0 (ratio between the time
dependent bubble diameter db and the particle diameter,
Fig. 1)

/c � /ðscÞ ¼
dbc

dp0

¼ 1

2

Dlp � dp0

dp0

¼ 1

2

ffiffiffiffiffiffiffiffi
p=6

c0

3

s
� 1

 !
ð12Þ

with c0 = 0.015 it is /c = 1.13.

Model 1: comparison between required heat and power

input

A first estimate of the bubble meeting time sums the
energy required to heat-up the particle and the liquid, evap-
orate the liquid and to perform the corresponding volumet-
ric and interfacial work to generate a bubble:

Qreq ¼ ðqpV pcp þ qvV bcclÞDT þ qvV bchlv þ ðpl � pvÞV bc

þ clvAbc þ c cos ðnsÞAp; ð13Þ

and compares this heat with the power provided by the
laser. In Eq. (13), cp and cl are the particle and the liquid
heat capacity, Vp is the particle volume and Vbc is the liquid



Fig. 1. Nanoparticle, vapor bubble and travelling evaporation layer.
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volume to be evaporated. DT is the corresponding temper-
ature difference during the heat-up phase, qv is the vapor
density and hlv is the latent heat of evaporation. pl and pv

are the liquid and the vapor pressure respectively. c is the
liquid–vapor interfacial energy with the bubble surface
area Abc. The last term in Eq. (13) considers the difference
in interfacial energy of the particle surface with area Ap if
the particle is either surrounded by a vapor or a liquid
phase using the Young–Dupré equation:

cvp � clp ¼ c cos ðnsÞ; ð14Þ

cvp and clp is the interfacial energy of the vapor-particle and
the liquid-particle interface. ns is the static contact angle
which approaches zero in this application (the carrier liquid
wets the particles well). If the pressure difference in Eq. (13)
is in addition replaced by Laplace’s equation (simplified
form of Eq. (A.7), i.e. neglecting the viscous stress and
recoiling pressure term) one finds,

Qreq ¼ ðqpV pcp þ qvV bcclÞDT þ qvV bchlv

þ c Abc þ Ap �
4

dbc

V bc

� �
: ð15Þ

The surface areas and the evaporated volume can be
expressed with

Ap ¼ pd2
p0; Abc ¼ pd2

p0/
2
c ; V bc ¼

p
6

d3
p0 /3

c � 1
� �

: ð16Þ

Introducing the dimensionless temperature

H ¼ T
T1

; ð17Þ

with T1 = 383 K as the (reference) saturation temperature
for a flat surface (which is here the boiling temperature of
toluene) and the particle Weber number,

Wep ¼
qlv

2
0dp0

clv

¼ 7:76� 10�3 ð18Þ
expression (15) can be rearranged to

Qreq

qlclT1pd3
p0

¼ 1

6

qp

ql

cp

cl

þ qv

ql

/3
c � 1

� �� �
DH

þ 1

6

qv

ql

hlv

clT1
/3

c � 1
� �

þ 1

Wep

c
clv

v2
0

clT1
/2

c þ 1� 2

3

/3
c � 1

/c

� �
ð19Þ

ql is the liquid density.
The laser power absorbed by the particle in a dimension-

less form is

P laser

qlclv0T1pd2
p0

¼
_I 000

qlclv0T1
� LHP�; ð20Þ

where _I 000 is the area-specific laser intensity irradiating on
the particle surface Ap. The laser power varies in typical
nanoink-curing applications between 0.05 and 0.4 W and
the focal diameter between 10 and 50 lm; the absorption
depth was estimated to 1 lm [2,3]. Here we use a laser
power of 0.17 W and a focal diameter of 30 lm. This leads
for a volumetric particle concentration of c0 = 0.015 to an
average dimensionless laser intensity per particle of
LHP* = 1.55 � 10�2.

The time to heat the particle and the liquid to the boiling
temperature can be approximated with the ratio between
the first term on the right hand side (RHS) of Eqs. (19)
and (20) (assuming negligible temperature gradients in
the liquid)

sML2boil;LHP ¼
1

6

1

LHP�
qp

ql

cp

cl

þ qv

ql

/3
c � 1

� �� �
DHB; ð21Þ

where DHB is the relevant temperature difference to be
estimated in the following:

The nanoparticles in realistic applications are protected
by a monolayer of a thiol-compound to prevent early coag-
ulation. This monolayer is temperature sensitive and
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collapses reversible above a critical temperature range of
330–430 K (dependent on the specific compound used). Here
we set this temperature to TML = 338 K (HML = 0.88). The
relevant temperature difference to overcome is therefore
DHB = 1 � HML = 0.12. With this, the initial heat-up
phase is according to Eq. (21) sML2boil,LHP = 2.162.

Correspondingly, the approximate time to heat-up the
particle as well as the liquid from the boiling temperature
to the bubble formation temperature (superheating) and
to generate the bubble reads (ratio between Eqs. (19) and
(20)):

sboil2c;LHP ¼
1

6

1

LHP�
hlv

clT1

qp

ql

cp

cl

þ qv

ql

/3
c � 1

� �� �
Ja

�

þ qv

ql

/3
c � 1

� �
þ 2

C
Wep

v2
0

hlv

/2
c þ

2

/c

þ 3

� ��
: ð22Þ

The terms involving the Jakob number (Ja) consider the
energy required to heat the particle, respectively the liquid
from the boiling to the superheating temperature. The sec-
ond term accounts for the latent heat of evaporation
whereas the last incorporates the interfacial and volumetric
work of bubble formation with C � c/clv. The Jakob num-
ber in Eq. (22) is defined as

Ja ¼ clDT
hlv

; ð23Þ

DT is the superheat required to maintain an equilibrium
bubble and is depending on the bubble size and the surface
tension. The latter is herein allowed to vary and estimated
with the following equation:

C� c
clv

¼ 1� DT
T crit�T1

� �2

1þ
clp

clv

�1

� �
exp½�jð/�1Þ�

	 

:

ð24Þ
Tcrit is the critical temperature, clv is the liquid–vapor
(without the presence of the particle) and clp is the liquid-
particle interfacial tension, approximated herein with
clp = 0.18clv. Eq. (24) combines in an empirical fashion
Macleod’s well-known formula (first brackets) for the tem-
perature dependence of surface tension [13] with an expres-
sion suggested by Kofman et al. [14] for the dependence of
surface tension on the particle-to-interface distance. The
latter dependence can be understood as follows: the inter-
facial tension must be that of a solid–liquid interface if
the distance is zero. On the other hand, the interfacial
tension must approach that of an isolated vapor–liquid
interface (without the particle influence) for very large dis-
tances. The Kofman-formula postulates now a continuous
(here exponential) variation between both limiting values
for distances in the range of intermolecular forces from
the solid surface, affecting the vapor–liquid interfacial ten-
sion. Considering the very small bubble sizes, respectively
vapor thicknesses in the present work, this effect has to
be accounted for herein. In Eq. (24), j is an empirical con-
stant quantifying the particle interaction range, i.e. the
range of the intermolecular forces from the particle surface
affecting the surface tension of the bubble interface.
The required superheat to maintain an equilibrium bub-
ble of size / is given by [15]:

DT ¼
p1 � psatjDT

qlRv ln p1=psatjDT 1þ 4

Wep

C
/

� �� �� T1; ð25Þ

where Rv is the mass-specific gas constant. The saturation
pressure psatjDT is taken for toluene from [16]. An iterative
procedure using Eqs. (24) and (25) and the saturation curve
provides finally (for j = 10�1)DTj/=1 = 89.4 K, DTj/=1.13 =
87.8 K and an averaged Jakob number of Ja = 0.37. Evalu-
ating Eq. (22) results in sboil2c,LHP = 4.523.

Summing up the results of Eqs. (21) and (22) yields an
approximate bubble meeting time of sc,LHP = 6.685. With
Eq. (3) this would imply that the particle number concen-
tration Np is reduced to only Np ¼ 0:995 before vapor for-
mation start.

The time to heat-up the particle and the liquid from
HML to the superheated state Heq,10 nm = 1.23 (i.e. the equi-
librium temperature of a 10 nm bubble) where bubble for-
mation starts is

sML2SPH;LHP ¼ sML2boil;LHP

DHSPH

DHB

¼ 6:306;

ðDHSPH ¼ Heq;10 nm �HMLÞ: ð26Þ

The actual bubble growth time is thus anticipated to be
very brief compared to the heating period (sgrowth,LHP =
0.379). In the following, more refined models to estimate
the bubble meeting time are discussed.

Model 2: Mikic-solution

There exist numerous works in the literature on bubble
growth in an initially uniformly superheated liquid. In gen-
eral three stages of bubble growth can be distinguished:
growth controlled by surface tension, liquid inertia and ther-
mal diffusion. The Rayleigh solution predicts bubble growth
proportional to time for the inertia dominated region,
whereas bubble growth in the region dominated by thermal
diffusion occurs proportional to the square root of time. The
latter was derived by [17,18] through the assumption of a
thin thermal boundary layer as it is particularly fulfilled
for large superheats, and by [9], where the thermal diffusion
equation was solved. In Ref. [8] an expression for the bubble
radius evolution was obtained valid throughout the inertia-
and diffusion controlled domain. This solution interpolates
between the limiting solutions for inertia-, respectively diffu-
sion controlled growth and reads:

Rþ ¼ 2

3
½ðtþ þ 1Þ3=2 � ðtþÞ3=2 � 1�; ð27Þ

where the scaled variables are given by

Rþ ¼ 1

2
/

dp0A

B2
; tþ ¼ s

dp0

v0

A
B

� �2

;

A2 ¼ 2

3

qv

ql

h2
lv

clT1
Ja; B ¼ ql

qv

Ja

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

p
v0dp0

RepPr

s
;

ð28Þ
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Fig. 2. Bubble growth characteristics for water with ambient conditions,
p1 = 1 atm, DTsup = 15 K.
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Rep and Pr are the particle Reynolds and Prandtl number,
respectively. These are defined as

Rep ¼
qlv0dp

gl

¼ 7:74� 10�2; Pr ¼ clgl

kl

¼ 7:38: ð29Þ

For the critical bubble parameter it is

Rþc ¼ 2:15� 10�6; Ac ¼ 9:32
ffiffiffiffiffiffiffiffiffiffi
J=kg

p
;

Bc ¼ 0:157 m=
ffiffi
s
p
:

ð30Þ

Solving for the time tþgrowth;Mikic with Rþjtþ
growth;Mikic

� Rþc
results in tþgrowth;Mikic ¼ 2:15� 10�6 or sgrowth,Mikic = 0.3035.
The corresponding bubble meeting time is thus
sc,Mikic = sML2SPH,LHP + sgrowth,Mikic = 6.6095. With Eq.
(3) and according to the current estimate, the particle num-
ber concentration drops again only to Np ¼ 0:995 (0.5%
reduction) before bubble formation start. This estimate is
however highly sensitive to the specific collision kernel
employed in Eq. (3). The maximum possible collision ker-
nel for this application is obtained if the influence of the
particle concentration on the collision kernel (Eq. (2)) is
neglected, i.e. c0 is set to unity. This leads to an estimate
of N p ¼ 0:737.

Model 3: extended Scriven-model (see Appendix A)

The shortcomings of both models in the present applica-
tion are either the complete disregard of inertial and diffu-
sive transport effects (Eq. (22)) or the focus on these two
mechanisms only, in combination with the assumption of
an initially uniformly superheated liquid. A more detailed
bubble formation model is used to improve the accuracy
of the prediction which solves numerically the one-dimen-
sional momentum (i.e. the Rayleigh–Plesset equation)
and energy equation in spherical coordinates, whereby
the formulation of [9] is adopted. However, since surface
tension effects are particularly important for small droplets,
the basic approach is merged with formulations of [19,20]
to also incorporate surface tension. The main difference
to the previous work is a variable surface tension as a func-
tion of bubble size and temperature according to Eq. (24)
as well as the inclusion of a nanoparticle in the bubble inte-
rior and heated through the absorption of laser light.

The model is detailed in Appendix A and computes the
bubble parameter /, the dimensionless interface velocity
W and the particle temperature Hp with a standard fourth
order Runge-Kutta scheme in time (time step Ds =
[10�7,10�3]). The liquid temperature field is solved with a
second order finite difference scheme in space and either
the implicite Euler (uniformly preheated liquid) or a fully
implicite scheme (laser-heated particle) are used for the
time integration. The temperature grid employs spherical,
non-constant grid spacings in R expressed with the follow-
ing coordinate transformation function:

x ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � ðf� bÞ2

q
; x ¼ R� R0

Rmax � R0

;

b ¼ 1� a; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aða� 1Þ þ 1

p ð31Þ
The numerical grid in f is equally spaced with
Df = 2.5 � 10�3. The grid parameter a is set to a = 1.1
herein. This provides with Rmax = 50 a variable grid spac-
ing for R in the range DR � [10�1,6 � 100]. The thermal
Neumann boundary condition (A.26) at the bubble inter-
face is incorporated with the help of a fictitious interior
node to keep second order accuracy at the interface node
[21]. It was ensured that the solutions obtained are time
step and grid size independent.

Fig. 2 shows the characteristic bubble growth quantities
(i.e. bubble diameter, interface velocity and liquid pressure
difference Dp ¼ pl;db

� pl;1, Eq. (A.6)) for water at ambient
conditions (p1 = 1 atm), superheated with DT = 15K and
containing no particle in the interior. The thermophysical
properties of water, in particular the saturation curve, are
taken from [22]. The initial (equilibrium) bubble diameter
is db0 = 4.25lm. The initial disturbance to initiate the bub-
ble growth is solely the numerical inaccuracy between
determining the initial bubble diameter as a function of
the given superheat and computing the vapor pressure
for a given temperature. However, it could be seen from
additional simulations (not shown for brevity) that adding
and increasing the initial temperature disturbances short-
ens the bubble growth waiting period as discussed in [20].
The characteristics found are in excellent agreement with
data published by [23] on the same problem which serves
as a verification case.

Fig. 3 plots the bubble growth time sgrowth,SPH (disre-
garding the heating phase of the particle and the liquid
to superheated conditions) as a function of the initially uni-
form liquid superheat for different values of the interaction
parameter j (Eq. (24)), i.e. the simulations use a variable
surface tension depending on the temperature and on the
interface location. Heat transfer from the liquid to the
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particle is assumed by convection (neglecting the influence
of the vapor phase thickness) and radiation. A Nusselt
number (related to the vapor heat conductivity) of 7.42 is
employed. The latter value was derived in accordance with
the kinetic theory of gases [24]. The initial bubble radius is
equal to the particle diameter, dp0 = 10 nm, and the ther-
mophysical properties of toluene are used. All growth times
are equal or below sgrowth,SPH = 10.0, whereby the slowest
bubble growth occurs if the initial liquid temperature
equals the equilibrium temperature of a 10 nm vapor bub-
ble, Heq,10 nm = 1.23. Increasing the superheat lowers rap-
idly the growth time to a value below sgrowth,SPH = 0.1 at
an initial liquid temperature of Hl,init = 1.45. The influence
of the interaction strength j is generally weak except for
values above j = 0.5 where it prevents the formation and
growth of a vapor bubble for smaller values of Hl, init. This
behavior is further reasoned in Section 4. The bold line in
Fig. 3 uses a variation of surface tension with temperature
only (Macleod’s formula, first bracket in Eq. (24)). It
requires a higher liquid superheat to maintain and grow a
10 nm bubble (Hl,init P 1.35 = Heq,10 nm,Macleod) and thus
the bubble growth time stays well below sgrowth,SPH = 10.0.
Note in this context that a 10nm bubble in toluene requires
theoretically supercritical conditions if a surface tension
correction in the form of Eq. (24) is not introduced. In
summary, Fig. 3 emphasizes that the bubble growth time
should be very short after the conditions for bubble forma-
tion are attained compared to the heat-up time.

At last we want to discuss the case when the particle is
embedded in a cool liquid and heated e.g. by laser light
absorption. Heat transfer from the particle to the liquid
is assumed by conduction (taking the thickness of the
vapor layer into account) and radiation; the vapor film is
assumed to have negligible heat capacity. The simulations
for this case were undertaken with Rmax = 0.565 (=0.5/c)
for the temperature solution, i.e. the symmetry boundary
condition of a horizontal temperature gradient was applied
at this location. The spacing of the numerical grid is
Df = 14.5 � 10�3, which provides a variable grid spacing
for R in the range DR � [10�4,7 � 10�3]. The model pre-
dicts a particle/liquid heating time to superheated con-
ditions of sML2SPH,LHP = 8.73 which is markedly longer
than the analytical approximation made in Eq. (26) for
the same laser intensity (LHP* = 1.55 � 10�2). This is
due to the fact that the simulation considers the liquid mass
of volume Vbc as a heat sink whereas Eq. (26) uses the
vapor mass of the same volume only, which is by the factor
qv/ql less. Using

~sML2SPH;LHP ¼
1

6

1

LHP�
qp

ql

cp

cl

þ /3
c � 1

� �� �
DHSPH;

DHSPH ¼ 0:35; ð32Þ

for the heat-up phase provides indeed ~sML2SPH;LHP ¼ 7:971.
Thus, non-linear effects are weak during the heating phase
and the model predicts that a steady-state temperature
gradient is established at the particle surface after only
Dsnon-linear = 5 � 10�3. Temperature gradients in the liquid
are generally small thereafter and the liquid temperature is
quasi-uniform for all times. The start of bubble formation
is assumed to occur always at the particle surface, hence
decisive for bubble formation is the smallest activation en-
ergy not the smallest Laplace pressure (promoting larger
bubbles, see Section 4).

Fig. 4 plots the bubble growth time vs. the particle inter-
action parameter j for the two laser intensities LHP* =
{0.0155, 0.155} and for either conductive (case c1) or infi-
nite (i.e. the interface temperature equals the particle tem-
perature, case c2) heat transfer between the particle and the
bubble interface. The initial heating period was neglected
and all simulations start with an initial temperature of
Hl, init = 1.23. The model predicts a bubble growth time
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between 0.75 < sgrowth,LHP < 4.0 for LHP* = 1.55 � 10�2

and 0.24 < sgrowth,LHP < 0.7 for LHP* = 1.55 � 10�1. Low-
ering the heat transfer from the particle to the interface
prolongs as expected the growth time. The range of
sgrowth,LHP for low laser intensity suggests that the other
two estimates significantly underestimated the growth time
between two and thirteen times. Increasing the particle
interaction parameter for both laser intensities and heat
transfer assumptions leads to a progressive increase in the
bubble growth time until j = 10.0, whereby the strong rise
is more pronounced for the low laser intensity. A further
increase of j flattens the slope of the growth time for both
laser intensities. The case with a finite (conductive) heat
transfer assumption reaches a peak in growth time at about
j = 30.0.

To explain the general shape of the curves shown in
Fig. 4, one can plot the Kofman-part of the surface tension
Eq. (24),

CK ¼ C 1� DT
T crit � T1

� ��2

¼ 1þ
clp

clv

� 1

� �
exp½�jð/� 1Þ�

	 

ð33Þ

in the bubble parameter range of interest (/ = [1,/c]),
Fig. 5. The surface tension evolution itself until the bubble
has grown to the critical diameter and the change of this
surface tension evolution with j is relatively small for small
j-values (j = 0.01 � 1.0). Contrary, the evolution and the
change of this evolution is significant for larger, intermedi-
ate j-values, explaining the strong non-linear behavior seen
in the bubble growth time in Fig. 4. However, the surface
tension remains constant after an initial steep increase for
very large j-values (j P 100.0) which reasons the flattening
of the curve in Fig. 4 for large particle interaction param-
eters (the part of the bubble growth where the surface ten-
sion is not constant becomes increasingly small compared
to the part where the surface tension is constant for large
j-values). The general rise in surface tension within the
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Fig. 5. Surface tension evolution vs. bubble parameter according to Eq.
(33) as a function of particle interaction parameter j.
bubble parameter range of interest if j is increased explains
the generally longer bubble growth times for these cases
observed in Fig. 4 since it becomes increasingly difficult
to grow the bubble. As a summary of Figs. 4 and 5, the var-
iation of the particle interaction parameter j has the largest
impact on the bubble growth time if j is in the order or one
order larger than the bubble parameter, causing the largest
change of the bubble surface tension variation throughout
the bubble growth.

Computing the overall bubble meeting time sc,LHP with
the previously computed time to reach superheated condi-
tions (beginning with the collapse of the monolayer),
sML2SPH,LHP, and the bubble growth time and inserting
the result in Eq. (3) leads to the particle number concentra-
tion at the critical time. Fig. 6 plots the particle number
concentration at the start of vapor formation vs. the parti-
cle interaction parameter for both heat transfer assumption
and for a laser intensity of LHP* = 1.55 � 10�2. The parti-
cle number concentration is reduced only about 1% if the
coagulation kernel computed with Eq. (2) is used and is
practically independent of the specific value of the particle
interaction parameter. Since a monodispersed coagulation
model is known to underpredict the extent of particle coag-
ulation compared to a fully polydispersed model [10],
Fig. 6 shows also the particle number concentration at
the critical time using the maximal possible collision kernel
in this application, i.e. a kernel independent of the particle
concentration (c0 = 1.0) to visualize the sensitivity. Here,
the particle number concentration is reduced more than
35% and the particle interaction parameter has a significant
effect. Both heat transfer assumptions yield similar predic-
tions for low values of the particle interaction parameter.
However, the extent of particle coagulation is stronger
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Fig. 6. Particle number concentration at sc,LHP vs. particle interaction
parameter j for LHP* = 1.55 � 10�2, both heat transfer assumptions
(case c1: conductive heat transfer; case c2: interface temperature equals
particle temperature) and a collision kernel dependent (w/c0) or indepen-
dent (w/o c0) of the particle concentration.
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increased in the case of conductive heat transfer and high
values of j.

Hence, the particle interaction parameter has an effect
only for large collision kernels. In any case, the first esti-
mate of the particle coagulation upon bubble meeting time
is proven to be a good approximation, despite the partly
large differences in the bubble growth time prediction.
Thus, only a small amount of the particles can be expected
to coagulate in the liquid phase. The majority coagulates
after the evaporation of the carrier liquid. In fact, this is
desired from a technical stand-point since the risk of liquid
enclosures between coagulated particles is with this
unlikely.

Up to now we have assumed that the particle diameter
does not change during the heating phase sML2SPH,LHP,
i.e. the start of bubble formation was always at
Heq,10 nm = 1.23. This is an approximation since the parti-
cles coagulate during this period and change their diameter
due to mass conservation according to (assuming immedi-
ate full coalescence):

dp ¼ dp0N�1=3
p : ð34Þ

Fig. 7 shows the evolution of the relative particle diam-
eter dp/dp0 vs. time during the heating period along with the
particle temperature and the theoretical bubble equilibrium
temperature for a bubble diameter equal to the current par-
ticle diameter dp. It is assumed that the heating is linear
(dsH = 0.0443, Eq. (32)) and unaffected by the coagulation
process. The collision kernel is assumed to be constant with
�b ¼ 0:10794, which is the largest possible collision kernel
(again neglecting the influence of the particle concentra-
tion) to obtain the upper estimate. Bubble formation
occurs when the two temperature curves intersect, at
dp/dp0 = 1.1244 and sML2SPH,LHP,coag = 7.8 (Fig. 7). This
is only marginally smaller than the time needed to reach
superheated conditions for an initial bubble diameter of
dp = dp0 = 10 nm. Note that the (herein overestimated) col-
lision kernel becomes in general smaller with increasing
particle size (smaller particle diffusion coefficient), prolong-
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Fig. 7. Particle temperature, equilibrium temperature of bubble with size
dp and relative particle diameter dp/dp0 vs. time.
ing the coagulation process and further reducing the differ-
ence. In addition, the bubble growth rate is decreasing for
increasing initial bubble diameters so that the overall bub-
ble meeting time we are interested in will remain relatively
unaffected by the coagulation process.

The next assumption made so far is that the temperature
profiles of two adjacent particles interact, i.e. a zero-valued
temperature gradient was imposed at the radial position
R ¼ 1

2
/c since /c marks the middle between two neighbor-

ing particles. However, this effect does not occur for dilute
particle suspension liquids and the consequently large tem-
perature gradient in the liquid at the particle, respectively
at the bubble interface once it is formed, will have a strong
effect on the dynamics of the problem.

Fig. 8 plots the bubble parameter vs. time for a sole par-
ticle heated with a laser intensity of LHP* = 1.55 (which is
hundred times more than in standard applications), start-
ing from an initial temperature of Hl,init = HML = 0.88.
The bubble parameter evolution appears to be usual at
first. However, strong oscillations are revealed if one takes
a closer look to the interfacial velocity just before major
bubble growth starts (inset of Fig. 8). These oscillations
are due to the large temperature gradient within the liquid
and the corresponding large diffusive heat removal: the
bubble starts growing as soon as the particle reaches the
required amount of superheat to maintain a bubble equal
to the particle diameter but it directly collapses again
because the surrounding liquid is too cold at the new inter-
face location after growing to sustain the required Laplace
pressure (the convective interfacial motion is faster than
the diffusive heat transport). This phenomenon repeats
itself in a progressive fashion (as the particle temperature
and with it the liquid superheat right at the particle surface
after a collapse is constantly increased) until the steep tem-
perature gradient in the liquid is sufficiently reduced due to
heat diffusion. These oscillations have a similar origin as
acoustical cavitations experimentally observed at hot wires
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[25]. They can be expected to occur only for very small
bubbles which are unaffected by buoyancy and keep the
assumed spherical symmetry, like in the current problem.
Using lower laser intensities markedly increase the heating
period and an efficient solution with the current simulation
program was not possible.
4. Stability of nanobubbles surrounding spherical particles

In this section we will discuss some general aspects
related to the stability of a vapor bubble surrounding a
nanoparticle. Fig. 9 plots the required superheat to main-
tain an equilibrium bubble of size /eq for different values
of the particle interaction parameter j. The graph is based
on an iterative evaluation of Eqs. (24) and (25). Generally,
the calculated superheat is very high since the Laplace pres-
sure is very high for nanometer-sized bubbles (in the order
of 112 bar).

The case where the particle has no effect on the surface
tension of the vapor-liquid interface is practically identi-
cally to the case with the largest j-value (j = 102) shown
in Fig. 9, except in the direct vicinity to the particle
(/ = 1) where the no-interaction-case intersects with the
ordinate at H = 1.35 (not shown), compared to H = 1.23
for all cases governed by Eq. (24). The curve is shifted to
lower superheats for long-range interaction (small j-values,
case 1–4), whereby the general trend of a monotonic expo-
nential decay is maintained. However, the plots showing
the short-range interaction cases (large j-values, case 6–
12) have a maximum at values of the bubble parameter
between 1 and 2. This has certain implications on the sta-
bility of the nanobubbles as will be discussed below.

The Gibbs free energy of a system containing a solid
particle suspended in a superheated liquid reads:

G1 ¼ mpl
1
p þ ml1l þ clpAp; ð35Þ

mp is the particle mass with the mass specific chemical po-
tential l1p . m = mv + ml is the sum of the liquid mass to be
evaporated, mv, and the liquid mass which remains liquid,
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Fig. 9. Superheat at equilibrium vs. bubble size as a function of particle
interaction parameter.
ml. The total fluid mass has in the initial state the mass spe-
cific liquid chemical potential l1l . A system of the same
superheat TSPH and containing next to the particle also a
vapor bubble surrounding the particle has the Gibbs free
energy of

G2 ¼ mpl
1
p þ mvuv þ mlul þ mv

pl

qv

þ ml
pl

ql

� T SPHðmvsv þ mlslÞ þ cAb þ cvpAp; ð36Þ

uv and ul are the mass specific internal energies of the vapor
and the liquid phase, respectively. sv and sl are the mass
specific entropies of each phase. Note that the pressure in
the fourth term on the RHS has to be the liquid pressure
since the vapor expansion is against the liquid pressure
not against the vapor pressure. Rearranging provides:

G2 ¼ mpl
1
p þ mv uv þ

pv

qv

� T SPHsv

� �

þ ml ul þ
pl

ql

� T SPHsl

� �
þ mv

pl

qv

� pv

qv

� �
þ cAb þ cvpAp

¼ mpl
1
p þ mvl

1
v þ mll

1
l þ mv

pl

qv

� pv

qv

� �
þ cAb þ cvpAp;

ð37Þ

l1v is the mass specific chemical potential of the (extensive)
vapor phase. Subtracting Eq. (35) from (37) and using
mv = qvVb reads:

DG2�1 ¼ qvV b l1v �l1l
� �

þðpl� pvÞV bþ cAbþðcvp� clpÞAp:

ð38Þ

Inserting the Laplace and the Young–Dupré equation as
in the derivation of Eq. (15):

DG2�1 ¼ qvV b l1v � l1l
� �

þ c Ab �
4

db

V b þ cos ðnsÞAp

� �
: ð39Þ

Using Eq. (16) and C = c/clv (Eq. (24)) and rearranging
provides

DG2�1

pd2
p0clv

¼ DG

¼ qvdp0

6clv

/3� 1
� �

l1v � l1l
� �

þC
3

/2þ 2

/

� �
þ cosðnsÞ:

ð40Þ

The Gibbs–Duhem equation for an extensive vapor
phase reads

dl1v ¼
dpv

qv

� svdT ð41Þ

Employing the ideal gas law:

qv ¼
pv

RvT SPH

; ð42Þ

and isothermal conditions leads after integration of Eq.
(41) to
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l1v ¼ l1v0 þ RvT SPH ln
pv

p1
: ð43Þ

Defining

l1v0 � l1l ¼ �RvT SPH ln
pv; eq

p1
; ð44Þ

and using the ideal gas law and the Laplace equation to
express the vapor density in Eq. (40) gives for pl � p1

DG ¼ p1dp

6clv

wð/3 � 1Þ½lnðwÞ � lnðweqÞ�

þ C
3

/2 þ 2

/

� �
þ cos ðnsÞ

w ¼ pv

p1
¼ 1þ qlv

2
0

p1

4

Wep

C
/
:

ð45Þ

The expression in the square brackets invokes the
change of the chemical potential due to a variation in
vapor pressure, assuming extensive phases. The term pro-
portional to the square of / is the equilibrium value for a
pure bubble [15], corrected for the presence of the particle
(term reciprocal to /). Eq. (45) provides the variation of
the bubble Gibbs energy at constant temperature. This
temperature is the equilibrium value computed with
Eqs. (24) and (25), hence it is DG ¼ f ð/;/eqÞ.

Fig. 10 shows the Gibbs energy evolution of the vapor
bubble with a variation of the bubble parameter (x-axis)
and as a function of the equilibrium bubble parameter (y-
axis) according to Eq. (45). Fig. 10a uses j = 10�5 whereas
in Fig. 10b the value j = 2 � 100 is employed. The static
contact angle is for both cases ns = 40�. The Gibbs energy
field for the first case is qualitatively identical to the one
found for a regular vapor bubble without a particle, i.e.
the Gibbs energy has a local maximum at the correspond-
ing equilibrium bubble parameter (unstable equilibrium).
The case with the large j-value behaves however com-
pletely different. Equilibrium conditions can only be found
in a narrow range of the bubble parameter (1.5 6 /eq

6 4.0); the bubble will collapse immediately after it has
been formed for all other values. This can be correlated
with the findings of Fig. 9: an equilibrium condition is only
Fig. 10. Variation of Gibbs energy for vapor bubble a
possible if the bubble parameter exceeds the value of the
local maximum, i.e. after the superheat decays exponen-
tially with a further increase of the bubble parameter.
Thus, the superheat shown in Fig. 9 does not reflect an
equilibrium condition for small bubble parameters and
short-range particle interaction parameters. This is rooted
in the derivation of Eq. (25), which skips the variation of
surface tension in the Gibbs–Duhem equation for the
vapor phase. The complete form reads:

dlv ¼
dp
qv

� svdT � 6

dp0

/2

/3 � 1

dc
qv

ð46Þ

dlv is the variation of the vapor chemical potential and dc
is the variation of the surface tension. The latter is only a
function of the bubble parameter which is in turn corre-
lated to the pressure with Laplace‘s equation (neglecting
the flux terms in Eq. (A.7)) since isothermal variations of
the chemical potential are considered. With the ideal gas
law one can write:

dlv ¼ RvT 1� 6clv

dp0

d/C
d/p

/2

/3 � 1

� �
dp
p
: ð47Þ

The Laplace equation provides:

dp0

6clv

d/p
d/C
¼ 2

3/
1� 1

/
C

d/C

� �
ð48Þ

Eq. (47) can be transformed to

dlv ¼ RvT 1� 3

2

/3

/3 � 1
1� 1

/
C

d/C

� ��1
" #

dp
p
: ð49Þ

The stability behavior of a vapor bubble containing a
particle is qualitatively similar to that of a pure vapor bub-
ble if the term in the brackets equals a constant �c. A surface
tension function which conforms to this restriction can be
derived to

C ¼ Cj/¼1

ð1� �qÞð�q�1Þ=3
/ð/3 � �qÞð�q�1Þ=3
h i

; �q ¼ 1� �c
5=2� �c

ð50Þ
round nanoparticle (a) j = 10�5, (b) j = 2 � 100.
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Eq. (50) dictates the dependence of the surface tension
on / (i.e. the distance of the liquid–vapor interface to the
particle) in case the particle–bubble system shall have qual-
itatively the same stability behavior as a pure vapor bubble.

Inserting Eq. (24) into (49) yields:

dlv¼RvT 1�3

2

/3

/3�1
1þ 1

j/
1þC1 exp½�jð/�1Þ�

C1 exp½�jð/�1Þ�

� ��1
( )

dp
p
;

C1¼
clp

clv

�1: ð51Þ

The term in the curly braces approaches unity for j ? 0
(long-range interaction) and the variation of surface ten-
sion with the bubble parameter has no effect on the bubble
stability. However, for j ?1 (short-range interaction) it
is

dlv ¼ RvT 1� 3

2

/3

/3 � 1

	 

dp
p
: ð52Þ

Here, the term in the braces is not constant and the
stability of the particle–bubble system differs from the pure
vapor bubble system as observed in Fig. 10b.

The change of the Gibbs energy during the formation of
a bubble at thermodynamic equilibrium conditions,

DGeq ¼
C
3

/2
eq þ

2

/eq

 !
þ cos ðnsÞ ð53Þ

is usually positive, i.e. bubble formation requires an activa-
tion energy. However, for sufficiently hydrophobic particle
surfaces (large ns), the Gibbs energy change is negative and
the vapor bubble is in a stable thermodynamic equilibrium.
The limiting case is

cos ðnsÞ ¼ �Cj/¼1 � �C1; ð54Þ

which provides for the present case a wetting angle of
ns = 100�. Also it has to be noted that the formation of
an equilibrium vapor bubble around a nanoparticle re-
quires usually higher activation energy than a correspond-
ing pure vapor bubble since in most cases

DGeq;purebubble ¼
C
3

/2
eq <

C
3

/2
eq þ

2

/eq

 !
þ cos ðnsÞ

¼ DGeq;w=ptl: ð55Þ

However, the condition changes again for sufficient
hydrophobic surface, i.e. for

cos ðnsÞ < �
2

3

C
/eq

: ð56Þ

This is commonly experienced during bubble formation at
particles enclosing gas pockets on their (rough) surface
which degrade the wettability.

5. Conclusions

This work computed the characteristic time of bubble
formation around a heated nanoparticle in a liquid and
used this time to estimate the extent of particle coagulation
in the liquid phase. Three models of increasing complexity
were used to approximate the bubble meeting time and
a continuous monodispersed particle coagulation model
was used to judge the amount of particle coagulation in
the liquid phase. The simple models were seen to overpre-
dict the bubble growth rate but since the overall bubble
meeting time (heat-up and growth) is relatively short com-
pared to the characteristic particle coagulation time, all
models predict that only about 1% of the particles coagu-
late in the liquid phase for a monodispersed coagulation
kernel making liquid enclosures during the curing of nano-
particle ink unlikely.

The extent of particle coagulation is practically indepen-
dent of the particle interaction parameter, quantifying the
interaction range in which the particle affects the interfacial
energy of the bubble. However, the monodispersed colli-
sion kernel is known to be an underprediction compared
to a full polydispersed model. A sensitivity analysis using
the theoretically largest possible collision kernel (setting
the particle concentration to unity) revealed that the parti-
cle number concentration is decreased more than 35% in
this case. In addition, the effect of the particle interaction
parameter can be more than 5% for this case and is hence
significant for large collision kernels. This underpins the
importance of deriving a particle collision kernel explicitly
valid in a phase changing carrier fluid to make accurate
quantitative predictions possible.

It was seen that the particle coagulation itself (poten-
tially accelerating the onset of vapor formation) does not
have a crucial influence on the extent of particle coagula-
tion whereas a low particle concentration leads initially
to a continuous growth and collapse of the bubble.

It was shown that particles with a large interaction
parameter slightly hinder evaporation in weakly super-
heated liquids and widely change the stability behavior of
the vapor bubbles surrounding them.

Appendix A

The model used herein is based on the derivations made
in [9,19,20]. It solves numerically the one-dimensional
mass, momentum and energy equation, considers surface
tension and mass flux effects at the interface and incorpo-
rates the presence of the heated nanoparticle. Mass conser-
vation at the bubble interface dictates [9]:

_m00 ¼ qlðwi � wl;db
Þ; ðA:1Þ

where wi is the interface velocity, ql is the liquid density and
wl;db

is the liquid velocity at the interface. The evaporating
area-specific mass flux _m00 is according to the kinetic theory
of gases [26]:

_m00 ¼ ðpsat � pvÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRvT l;db

p
; ðA:2Þ

pv is the vapor pressure inside the bubble and T l;db
is the li-

quid temperature at the vapor–liquid interface. However,
preliminary simulations showed that the numerical system
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containing Eq. (A.2) is numerically ‘stiff’ and therefore
cumbersome to solve, which is a direct consequence of
the almost constant vapor density inside the bubble. If
set constant, relation (A.2) can be replaced with

_m00 ¼ qvwi; ðA:3Þ

where qv is the vapor density. Combining Eqs. (A.1) and
(A.3) provides for the radial liquid velocity at the interface:

wl;db
¼ ewi: ðA:4Þ

The density parameter is defined as

e ¼ 1� qv

ql

ðA:5Þ

The liquid velocity has to satisfy the one-dimensional
momentum equation (extended or modified Rayleigh equa-
tion [9]), which can be brought with w � wi into the follow-
ing form

db _wþ 3w2 ¼ 2

eql

ðpl;db
� pl;1Þ ðA:6Þ

Here, gl is the liquid dynamic viscosity, pl,1 is the liquid
pressure far away from the bubble and pl;db

is the liquid
pressure right at the vapor–liquid interface.

A momentum balance (i.e. Laplace’s equation) at the
interface provides for the latter [20,27,28]:

pl;db
¼ pv �

4c
db

� 8egl

w
db

þ e
qv

ð _m00Þ2: ðA:7Þ

The bubble vapor pressure is approximated with [15]:

pv � psatjT l;db
exp � 4

qlRvT l;db

c
db

� �
: ðA:8Þ

The assumption of a spherical symmetric flow made in
the derivation of Eq. (A.6) is strictly speaking not valid
for a bubble developing around a particle neighbored by
other particles. Eq. (A.6) will therefore only serve as a good
approximation if the interaction between the neighboring
flow fields can be considered to be weak, or, if the velocities
are generally small.

The energy equation for the liquid in spherical symmet-
ric coordinates reads:

DtT l ¼
k

qlcl

o2
r T l þ

2

r
orT l

� �
þ _Q000rad;l;loss ðA:9Þ

_Q000rad;l;loss is the heat absorbed by the liquid from the irradi-
ative heat loss generated by the particle. With the law of
Lambert–Beer it is

_Q000rad;l;loss ¼ 2athrB T 4
p � T 4

l;db

� �
exp½�athð2r � dbÞ� ðA:10Þ

where ath ¼ âth=dp0 is the (low frequency) absorption coef-
ficient empirically set to ath = 106m�1. rB is the Stefan–
Boltzmann-constant (rB = 5.67 � 10�8 W/m2 K4) and
T l;db

the liquid temperature at the interface. An energy bal-
ance around the particle and the vapor phase provides as a
boundary condition for Eq. (A.9) at the interface:
orT ljdb
¼ 1

k
_m00hlv þ _c�

_Qloss

pd2
b

 !
: ðA:11Þ

The energy loss _Qloss coming from the heated particle has
to be calculated with the energy equation for the particle
(disregarding phase change or expansion):

1

6
qpcpdp0

_T p ¼ _I 00o �
_Qloss

pd2
p0

; ðA:12Þ

_I 000 is the source term due to laser irradiation with an area-
specific heat flux. The heat loss to the liquid can be
expressed with

_Qloss

pd2
p0

¼ rB T 4
p � T 4

l;db

� �
þ

_Qloss;cond

pd2
p0

: ðA:13Þ

The first term on the RHS is the loss due to thermal
radiation and the second is the loss due to conduction.
The latter is defined as

_Qloss;cond

pd2
p0

¼ �klorT lj/¼1; / ¼ 1

_Qloss;cond

pd2
p0

¼ �2kv

T lj/ � T p

db � dp0

; / > 1 ðA:14Þ

The following dimensionless time, temperature, pressure
and radial velocity are introduced.

s ¼ t
v0

dp0

; H ¼ T
T1

; P ¼ p
qlv

2
0

; W ¼ wi

v0

ðA:15Þ

The governing equations change with this to

_/ ¼ 2 W ðA:16Þ
_m00

qlv0

¼ qv

ql

W ðA:17Þ

_W ¼ 2

e/
Pv �

4

Wep

C
clv

1

/
�Pl;1

� �

þ ql

qv

2

/
_m00

qlv0

� �2

� 3
W 2

/
� 16

Rep

W

/2
ðA:18Þ

Pl;db
¼

pl;db

qlv
2
0

¼ Pv �
4

Wep

C
clv

1

/
� e

8

Rep

W
/
þ e

ql

qv

_m00

qlv0

� �2

ðA:19Þ

Pv ¼ Psat;Hl;/
exp � v2

0

RvT1

4

Wep

C
/Hl;/

� �
ðA:20Þ

_Hp ¼ 6
ql

qp

cl

cp

LHP� � _Qloss

h i
ðA:21Þ

_Qloss ¼
_Qloss

qlclv0T1pd2
p0

¼ rBT 3
1

qlclv0

H4
p �H4

l;/

� �
þ

_Qloss;cond

qlclv0T1pd2
p0

ðA:22Þ
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_Qloss;cond

qlclv0T1pd2
p0

¼ � oRHlj/¼1

RepPr
; / ¼ 1

_Qloss;cond

qlclv0T1pd2
p0

¼ � 2

RepPr
kv

kl

Hlj/ �Hp

/� 1
; / > 1 ðA:23Þ

Ds
_Hl ¼

1

RepPr
o2

RHl þ
2

R
oRHl

� �
þ _Qrad;l;loss ðA:24Þ

_Qrad;l;loss ¼
_Q000rad;l;loss

qlclT1v0=dp0

¼ 2âth

rBT 3
1

qlclv0

H4
p �H4

l;/

� �
� exp½�âthð2R� /Þ� ðA:25Þ

oRHl;/ ¼ RepPr
_m00

qlv0

hlv

clT1
þ v2

0

clT1

_C
Wep

�
_Qloss

/2

 !
: ðA:26Þ
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