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Abstract

This work presents a computational study of the forced convection heat transfer around two circular cylinders in tandem. Axisym-
metric, steady, laminar flow around the cylinders was assumed. The temperature inside the cylinders is considered spatially uniform but
not constant in time. Numerical solutions have been obtained in bipolar cylindrical coordinates. The finite difference method was used to
discretize the equations of the mathematical model. The influence of the model parameters on the heat transfer rate was analysed for the
upstream cylinder Reynolds number, Re, varying from 1 to 30 and fluid phase Prandtl number equal to 0.1, 1, 10 and 100.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Compared with the isothermal flow past two cylinders in
tandem [1], there is only one publication [2], to our knowl-
edge, on the numerical solution of the heat transfer from
two circular cylinders in tandem. Buyruk [2] studied the
forced convection heat transfer for tandem, in-line and
staggered cylinders configurations. The computations were
carried out for constant fluid properties, incompressible
fluid, laminar flow and steady state conditions. The
ANSYS/Flotran CFD software was used. For equal size
cylinders in tandem, the influence of the center-to-center
distance on the heat transfer rate was analysed at
Re = 400 and Pr = 0.71.

Related problems that may be mentioned in this section
are (a) heat transfer around two spheres in tandem; (b) heat
transfer from an infinite or finite array of in-line cylinders
and (c) heat transfer from array of parallelepiped obstacles.
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The heat transfer around two spheres in tandem at mod-
erate Re numbers was investigated numerically in [3,4]. We
will not insist here on this subject. It is discussed and ana-
lysed in detail in [5].

The steady forced convection heat transfer in a laminar
flow field over an infinite (periodic) and finite in-line array
of cylinders was studied numerically in [6,7] (and the refer-
ences mentioned herein). In these numerical studies it is fre-
quently assumed that the flow is steady and symmetric with
respect to the centerline of the cylinders in the same row.
Owing to the symmetries of the system, it was assumed that
no momentum or energy transfer takes place in the cross-
flow direction at the streamwise equidistant planes between
rows of cylinders. Two truncated domains were studied in
[6]: a single cylinder cell and a five-cylinder cell. The first
was considered relevant for the developed regime while
the second for the developing regime.

Young and Vafai [8] analysed numerically the convec-
tive flow and heat transfer in a channel containing multiple
heated obstacles attached to one wall. The effects of varia-
tions in the obstacle height, width, spacing and number
along with obstacle thermal conductivity, fluid flow rate
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Nomenclature

Cp heat capacity
d cylinder diameter
k thermal conductivity
L distance from the center of the cylinder to the

origin of the coordinate system
Nu instantaneous Nusselt number
Pr fluid phase Prandtl number, Pr ¼ qf Cp;fmf=kf

Re Reynolds number based on diameter of the
upstream cylinder, Re ¼ U1d1=m

t time
T temperature
U1 free stream fluid velocity
V volume
Z dimensionless temperature defined by the rela-

tion, ZðcÞ ¼
T f ;ðcÞ�T f ;1
T c;0�T f ;1

Greek symbols

g bipolar cylindrical coordinate
k Nusselt numbers ratio (tandem cylinder)/

(isolated cylinder)

m kinematic viscosity
q density
n bipolar cylindrical coordinate
N volume heat capacity ratio ðqcCp;cÞ=ðqf Cp;fÞ
s dimensionless time or Fourier number, s ¼

4tkf=ðqf Cp;f d
2
1Þ

w stream function

Subscripts

c refers to the cylinders
f refers to the fluid phase
0 initial conditions
1 refers to the upstream cylinder
2 refers to the downstream cylinder
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and heating method were studied. The periodicity behav-
iour of the velocity components and temperature distribu-
tions were explicitly demonstrated. Conjugate heat transfer
for three-dimensional developing turbulent flows over an
array of cubes in cross-stream direction was studied numer-
ically in [9]. Yaghoubi and Velayati [9] presented the heat
transfer characteristics resulting from the recirculation
zone around the blocks for a wide range of Reynolds num-
bers, 4.2E03 6 Re 6 1.0E05, Pr = 0.7 and blockage ratios
from 10% to 50%.

The present research is dedicated to the analysis of forced
convection heat transfer from two tandem cylinders in a
steady, laminar flow. The temperature inside the cylinders
is considered spatially uniform but not constant in time.
The Reynolds number based on the diameter of the leading
cylinder, Re, takes value in the range 1 6 Re 6 30. For each
Re number, the values considered for the fluid phase Prandtl
number, Pr, are Pr = 0.1, 1, 10 and 100. The main aspect
investigated is the influence of Re, Pr and volume heat
capacity ratio on the heat transfer rate for cylinders with
the same diameter and identical physical properties.
2. Statement of the problem

The physical model of the present problem is discussed
in detail in the first part of this work. To model the heat
transfer between two cylinders in tandem the following
supplementary assumptions were considered (the assump-
tions made in [1] also remain valid):

(i) during the heat transfer, the volume and the shape of
the cylinders remain constant;
(ii) the cylinders have the same initial temperature;
(iii) the cylinders have the same physical properties;
(iv) the physical properties are constant;
(v) no phase change occurs during the heat transfer;

(vi) no chemical reaction inside the cylinders or in the sur-
rounding fluid;

(vii) the effects of free convection, viscous dissipation and
radiation are negligible;

(viii) at the interface, thermodynamic equilibrium is estab-
lished instantaneously.

Under the previous assumptions, the heat balance equa-
tions for an axisymmetrical flow field in a general orthog-
onal curvilinear coordinates a, b, / (axisymmetric versus
the coordinate /) are

� fluid phase

qfCp;f

oT f
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þ va

1

ha

oT f

oa
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1

hb
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� cylinder
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w is the stream function and ri the cylinder surfaces.
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As in [1], for a pair of cylinders in tandem, the ortho-
gonal bipolar cylindrical coordinate system [10] was used.
The relation between the Cartesian coordinates (x,y,z)
and the bipolar cylindrical coordinates (g,n,z) is,

x ¼ c sin n
cosh g� cos n

; y ¼ c sinh g
cosh g� cos n

; z ¼ z;

where c > 0 is a characteristic length. The surfaces of the
cylinders are located at g ¼ g1 ðg1 < 0Þ and g ¼
g2 ðg2 > 0Þ. The relations between gi, the diameters of the
cylinders di and the distances Li of their centers from the
origin of the coordinates system are

di

2
¼ c

sinh jgij
; Li ¼ c coth jgij; i ¼ 1; 2:

Note that if d1 ¼ d2 ¼ d, it results from the previous
relations that – g1 ¼ g2 and L1 ¼ L2 ¼ L. More discussions
about the bipolar cylindrical coordinate can be viewed in
Table 1
Steady state values of the Nusselt number for cylinders with constant
temperature at d1 ¼ d2 ¼ d and 2L=d ¼ 2

Re Pr Nu1 Nu2 Nu (isolated cylinder)

1 0.1 0.3384 0.2812 0.5031
1 0.6988 0.4525 0.8774
10 1.4749 0.8137 1.6672
100 3.0386 1.6224 3.3557

2 0.1 0.4252 0.3218 0.5988
1 0.9434 0.5490 1.110
10 2.0011 1.0304 2.1841
100 4.1320 2.0884 4.4736

5 0.1 0.6173 0.4011 0.7825
1 1.4210 0.7311 1.5611
10 3.0136 1.4307 3.1797
100 6.2572 2.9194 6.6051

10 0.1 0.8384 0.4846 0.9850
1 1.9383 0.9279 2.0560
10 4.1065 1.8459 4.2572
100 8.5924 3.7464 8.8741

15 0.1 1.0061 0.5477 1.1382
1 2.3199 1.0738 2.4252
10 4.9152 2.1456 5.0562
100 10.3914 4.3452 10.6215

20 0.1 1.1448 0.6005 1.2706
1 2.6321 1.1937 2.7297
10 5.5835 2.3917 5.7293
100 11.9411 4.8535 12.2314

25 0.1 1.2647 0.6469 1.3791
1 2.9007 1.2970 2.9932
10 6.1679 2.6092 6.3482
100 13.3229 5.3493 13.6324

30 0.1 1.3711 0.6886 1.4763
1 3.1390 1.3887 3.2290
10 6.6971 2.8109 6.9368
100 14.5790 5.8683 14.9396
[10]. The scale factors (metric coefficients) ha, hb, h/, for
the bipolar cylindrical coordinate system are

ha ¼ hg ¼
c

cosh g� cos n
; hb ¼ hn ¼

c
cosh g� cos n

;

h/ ¼ 1:

We define the following dimensionless variables and
groups (the radius of the upstream cylinder is considered
as the length scale and the free stream velocity U1 as the
velocity scale):

�c ¼ 2c
d1

; ZðcÞ ¼
T ðcÞ � T1
T c;0 � T1

; s ¼ 4tkf

qfCp;fd
2
1

; �w ¼ 4w

U1d2
1

Pr ¼ qfCp;fmf

kf

; Re ¼ U1d1

mf

; N ¼ qcCp;c

qfCp;f

:

After g and n are substituted for a and b in (1) and (2),
the non-dimensional governing equations for the thermal
energy are
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Fig. 1. Steady values of the Nu numbers function of Re for different Pr

values: (a) upstream cylinder and (b) downstream cylinder.



3802 G. Juncu / International Journal of Heat and Mass Transfer 50 (2007) 3799–3808
where

A ¼ cosh g� cos n
�c

:

The appropriate boundary conditions are

� cylinder surfaces ðg ¼ gi; i ¼ 1; 2Þ
Z ¼ Zc;i; i ¼ 1; 2; ð4aÞ

� free stream ðg ¼ n ¼ 0Þ
Z ¼ 0; ð4bÞ

� symmetry axis (n ¼ 0 and g 6¼ 0, n ¼ p)

oZ
on
¼ 0: ð4cÞ
The dimensionless initial conditions are

s ¼ 0; Zc;i ¼ 1; Zðg 6¼ giÞ ¼ 0; i ¼ 1; 2: ð5Þ
The quantities of interest used to characterize the heat

transfer are

� cylinder dimensionless temperature, Zc;1 and Zc;2;
� instantaneous local Nusselt number, NuiðnÞ, i ¼ 1; 2;
� overall (surface average) instantaneous Nusselt number,

Nui; i ¼ 1; 2.
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Fig. 2. The variation of the Nu numbers ratio with Re for different Pr

values: (a) upstream cylinder and (b) downstream cylinder.
Considering as driving force the temperature difference
ðT c;i � T1Þ and the diameters of the cylinders as character-
istic length, NuiðnÞ and Nui were calculated in bipolar cylin-
drical coordinates by the relations:

NuiðnÞ ¼ �
di
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dn; i ¼ 1; 2: ð6bÞ
3. Method of solution

The values of the dimensionless stream function were
calculated numerically. The numerical solution of the
Navier–Stokes equations is presented in [1].

The energy balance equations were solved numerically.
The mathematical model equations (3) is a system formed
by a 2D parabolic partial differential equation (PDE) that
describes the heat transfer in the fluid phase and two ordin-
ary differential equations (ODEs) that describe the energy
balance of the cylinders. The 2D domain ½g1; g2� � ½0; p�
was transformed into the unit square. Eq. (3a) was discret-
ized with the exponentially fitted scheme [11]. The discrete
parabolic equation was solved by the implicit ADI method.
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Fig. 3. The influence of the gap between cylinders on the Nu numbers
ratio of the leading cylinder: (a) Re = 1 and (b) Re = 10.
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Numerical experiments were made on spatial meshes with
65 � 65, 129 � 129, 257 � 257 and 513 � 513 points.

The ODEs were integrated by an explicit modified Euler
algorithm. The integral from relations (3b) was calculated
by the Newton–Simpson 3/8 rule. The time step was vari-
able and changed from the start of the computation to
the final stage. The initial and final values of the time step
depend on the parameter values.

4. Results

The dimensionless groups of the present mathematical
model are Re, Pr, N, 2L1/d1, and d1/d2. Numerical solutions
of the Navier–Stokes equations were obtained in [1] for 1 6
Re 6 30, d1 ¼ d2 ¼ d and 2L/d 2 [2,5] (for d1=d2 ¼
0:5 and 2, we obtained numerical solutions in [1] only for
2L1=d1 ¼ 2Þ. Under these conditions, the values used in this
work for Re, 2L=d, and d1=d2 are 1 6 Re 6 30, 2L/d 2
[2,5], d1=d2 ¼ 1. In all computations, the Prandtl number
of the fluid phase, Pr, was considered equal to 0.1, 1, 10
and 100. Values of the volume heat capacity ratio, N,
between 0.01 and 100 cover the situations of practical inter-
est. The results presented were obtained on a 513 � 513
mesh point.
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Fig. 4. The influence of the gap between cylinders on the Nu numbers
ratio of the trailing cylinder: (a) Re = 1 and (b) Re = 10.
Due to the lack of any data about the heat transfer from
two cylinders in tandem at small Re numbers, we consid-
ered it useful to begin our investigation with the case of
cylinders with constant temperature.

4.1. Cylinders with constant temperature

Table 1 summarizes our computations for 2L=d ¼ 2.
The values calculated for the isolated cylinder are pre-
sented in the last column of Table 1. Figs. 1 and 2 show
the influence of Re and Pr on Nu1, Nu2 (Fig. 1) and k1,
k2 (Fig. 2). The influence of the gap between cylinders on
the Nu numbers ratio is plotted in Figs. 3 and 4.

The following observations can be made from the data
presented in Table 1 and Figs. 1–4:

� the values of the Nu number for both cylinders in tan-
dem are smaller than the value of the Nu number for
the isolated cylinder; the interaction effects are stronger
for the downstream cylinder;
� for a given Pr number value, the increase in Re increases

Nu for both cylinders; for a given Re, the increase in Pr
increases Nu for both cylinders; the difference between
k1 and k2, increases with the increase in Re and/or Pr;
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� the increase in the distance between the two cylinders
decreases the interaction effects.

Thus, we may conclude that the forced convection heat
transfer between two in-line circular cylinders with con-
stant temperature follows the general rules of the tandem
interactions.
4.2. Cylinders with variable temperature

The key quantities that influence the thermal interaction
between two spheres in tandem in creeping flow at moder-
ate Peclet numbers are the gap between spheres and the
volume heat capacity ratio [5]. As we mentioned previ-
ously, we could not obtain numerical solutions of the
Navier–Stokes equations for small gaps between cylinders.
For this reason, the present analysis is focused on the influ-
ence of Re, Pr and N on the heat transfer rate for 2L/d P 2.

We begin our analysis with the influence of Re, Pr and N
on the heat transfer rate for 2L/d = 2 (the gap between cyl-
inders is equal to the diameter of the cylinders). Four cases
were selected for presentation: (a) Re = 10, Pr = 100 (high
convection rate; convection is the dominant mechanism of
transport – Figs. 5 and 6); (b) Re = 1, Pr = 10 (moderate to
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Fig. 8. Time variation of the average Nu numbers and dimensionless
temperature of the cylinders for Re = 1, Pr = 10 and N < 1.
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low convection rate; convection is the dominant mecha-
nism of transport – Figs. 7 and 8); (c) Re = 1, Pr = 1 (equal
rates of convection and conduction – Figs. 9 and 10) and
(d) Re = 1, Pr = 0.1 (conduction is the dominant mecha-
nism of transport – Figs. 11 and 12). For each Re and Pr

value, the values of the average Nu numbers and the
dimensionless temperature of the cylinders are plotted for
N = 100, 10, 1, 0.1 and 0.01.

The time evolution of the average Nu numbers for cylin-
ders with constant temperature has the same characteristics
independent of Re and Pr values (we considered that it is
not necessary to plot here this time evolution). At short
times, the two Nu numbers coincide. For large times, the
average Nu numbers separate and reach two distinct steady
state values (see Table 1). The increase in Re and/or Pr

increases the steady Nu values.
Figs. 5–12 show that the influence of convection on the

thermal interaction between two cylinders with uniform
temperature does not reduce only to the traditional aspects,
i.e. the increase in Re and/or Pr increases the heat transfer
rate. With regard to the Re and Pr values, the time evolu-
tion of the average Nu numbers is different. The main
aspect that expresses this effect is the Nu numbers separa-
tion. For high to moderate values of the product RePr,
the separation point occurs very clearly for all N values.
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Fig. 9. Time variation of the average Nu numbers and dimensionless
temperature of the cylinders for Re = 1, Pr = 1 and N P 1.
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Fig. 10. Time variation of the average Nu numbers and dimensionless
temperature of the cylinders for Re = 1, Pr = 1 and N < 1.
The cylinders exhibit different average Nu values and have
different dimensionless temperatures. It must be mentioned
that for N = 0.01, the separation of the Nu numbers occurs
for Zc;i � 10�2. For Re Pr = 1, the separation of the Nu

numbers is present but its influence on the heat transfer
is less significant. When the thermal conduction is the dom-
inant mechanism of transport, the Nu numbers and the
dimensionless temperatures of the two cylinders are
approximately equal. The relative difference between Nu1

and Nu2 does not exceed 3%. When s!1, Nui ! 0.
Another aspect that seems to be important is the conver-

gence of the two Nu numbers at large times. This aspect can
be easily explained. After the separation point, Nu1 is
greater than Nu2 and the dimensionless temperature of
the leading cylinder decreases faster than the dimensionless
temperature of the trailing cylinder. When the difference
between Zc;1 and Zc;2 becomes significant, i.e. Zc;1 �
10�1Zc;2, the impact of the leading cylinder on the trailing
cylinder decreases significantly and the heat transfer rate
of the trailing cylinder increases. At high convection rates
this process is very fast. The heat transfer rate of the trail-
ing cylinder may reach values greater than those of the
leading cylinder, Nu2 > Nu1, the reverse process begins
and so on. It must be mentioned that these phenomena
take place at very small values of Zc;i, Zc;i 6 10�3.
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Concerning the numerical simulations made at 2L/d =
2, the following aspects should be also mentioned:

� for given Re and N values, the increase in Pr increases
the heat transfer rate;
� for given Pr and N values, the increase in Re increases

the heat transfer rate;
� for given Re and Pr values, the increase in N increases

the heat transfer rate;
� negative values of the average Nu numbers were not

obtained;
� the asymptotic values of the average Nu numbers are

smaller than the asymptotic average Nu number of the
isolated cylinder.

The influence of the distance between cylinders on the
heat transfer rate is presented in Fig. 13 (Re = 10,
Pr = 100) and Fig. 14 (Re = 1, Pr = 0.1). We thought that
these two cases express the salient features of the process.
Two N values were considered necessary for Re = 10 and
Pr = 100, N ¼ 100 and N ¼ 1.

Fig. 13 shows that when convection is the dominant
mechanism of transport, the increase in the gap between
cylinders does not increase the average Nu numbers. This
aspect is less evident for N = 100 and very clear at N = 1.
The discontinuities in Nu2 in Fig. 13b are due to the fact
that Nu2 takes negative values. The situation depicted in
Fig. 13 is similar to that presented in [5]. Fig. 14 shows that
when conduction is the dominant mechanism of transport,
the gap between cylinders does not influence significantly
Nui.

We think that the interaction mechanism presented in [5]
remains valid for the present problem. The differences
between the hydrodynamic regimes (Stokes flow in [5]
and low Re numbers flow here) influence the heat transfer
but do not change the salient features of the interaction.
For this reason, we consider that it is not necessary to
repeat here all the facts discussed in [5].

The heat transfer rate of the tandem cylinders with uni-
form temperature depends on the values of the cylinders’
dimensionless temperature and temperature gradients.
High heat transfer rates are obtained when the interaction
takes place at high values of the cylinders’ dimensionless
temperature (i.e. values closed to one) and temperature
gradients. The values of the cylinders’ dimensionless tem-
perature and temperature gradients during the interaction
depend on Re, Pr, N and the gap between cylinders. The
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interaction occurs and develops at high values of the cylin-
ders’ dimensionless temperature and temperature gradients
for high values of volume heat capacity ratio, small gaps
between cylinders and high convection rates. Two supple-
mentary aspects should be taken into consideration in
order to explain the behaviour of the system for Re Pr 6 1:
(i) for low and very low convection rates, even for cylin-
ders with constant temperature (see Table 1), the dif-
ference between Nu1 and Nu2 is not high (note that
for Re = 0, Nu1 ¼ Nu2);

(ii) in conjugate heat transfer, the average Nu number
tends to zero when Peclet number tends to zero.
5. Conclusions

The objective pursued in this work was to obtain a bet-
ter understanding of unsteady heat transfer from tandem
cylinders in low Reynolds numbers flow. The values
assumed for the Prandtl number of the fluid phase are
0.1, 1, 10 and 100. The analysis was directed toward the
influence of the product Re Pr on the heat transfer rate at
different values of volume heat capacity ratio. The cylin-
ders have the same diameter and identical physical proper-
ties. The gap between cylinders was considered equal or
greater than the diameter of the cylinder.

The numerical results presented in the previous section
show that the heat transfer from tandem cylinders with uni-
form temperature has its own specific rules. In almost all
situations the average Nu numbers do not reach a frozen
asymptotic value. High heat transfer rates were obtained
when the interaction begins and develops at high values
of the cylinders’ dimensionless temperature. High convec-
tion rate, small gaps between cylinders and high values of
the volume heat capacity ratio lead to high heat transfer
rates. The influence of convection rate on the heat transfer
of tandem cylinders is the most important result obtained
in this work. The evolution of the system for Re Pr > 1
(convection dominates conduction) is completely different
in comparison with RePr < 1 (conduction dominates
convection).
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