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Abstract

This paper derives and discusses variational formulations for heat flows subject to physical constraints that involve the (generally)
non-conserved balance of internal energy and the entropy representation kinetics in the form of the Cattaneo equation of heat. Another
approach is also outlined which uses the (generally) non-conserved balance of the entropy and the energy-representation counterpart of
the Cattaneo equation called Kaliski’s equation. Results of nonequilibrium statistical mechanics (Grad’s theory) lead to nonequilibrium
corrections to entropy and energy of the fluid in terms of the nonequilibrium density distribution function, f. These results also yield
coefficients of the wave model of heat such as: relaxation time, propagation speed and thermal inertia. With these data a quadratic
Lagrangian and a variational principle of Hamilton’s type follows for a fluid with heat flux in the field representation of fluid motion.
For an irreversible heat transfer we show that despite of generally non-canonical form of the matter tensor the coefficients in source terms
of the variational conservation laws can be suitably adjusted, so that physical (source-less and canonical) conservation laws are obtained
for the energy and momentum. We discuss canonical and generalized conservation laws and show the satisfaction of the second law
under the constraint of canonical conservation laws.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we use the framework of extended thermo-
dynamics of fluids to discuss variational principles for irre-
versible energy transfer and help that can be obtained from
statistical theories when describing nonequilibrium ther-
modynamic systems and evaluating kinetic or flux-depen-
dent terms in energies and macroscopic Lagrangians.
Especially, we treat statistical aspects of thermodynamic
and transport properties of nonequilibrium fluids with heat
flow by applying an analysis that uses Grad’s results [1] to
determine nonequilibrium corrections Ds or De to the
energy e or entropy s in terms of the nonequilibrium den-
sity distribution function f. To find corrections to the
energy e or kinetic potential L we use corrections Ds and
a relationship that links energy and entropy representa-
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tions of thermodynamics. We also evaluate coefficients of
wave model of heat, such as: relaxation time, propagation
speed and thermal inertia factors, g and h. With these data
we formulate a variational principle of Hamilton’s or least
action-type for fluids with heat flux in the field or Eulerian
representation of fluid motion. Analyzing the variational
extremum we display an approach that adjoints a given
set of constraints to a kinetic potential L and transfers
the original variational formulation to the space of
associated Lagrange multipliers. By considering limiting
reversible process we evaluate canonical components of
energy-momentum tensor along with associated conserva-
tion laws. We show that despite of the generally
non-canonical form of conservation laws produced by
Noether’s theorem the approach that adjoints constraints
to given kinetic potential works efficiently. In fact, the
approach leads to exact imbedding of constraints in
the potential space of Lagrange multipliers, implying that
the appropriateness of the constraining set should be veri-
fied by physical rather than mathematical criteria. Our
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analysis shows that the approach is particularly useful in
the field (Eulerian) description of transport phenomena,
where equations of thermal field follow from variational
principles containing state adjoints rather than original
physical variables. Exemplifying process is hyperbolic heat
transfer, but the approach can also be applied to coupled
parabolic transfer of heat, mass and electric charge. With
various gradient or non-gradient representations of physi-
cal fields in terms of state adjoints (quantities similar to
those used by Clebsch in his representation of hydrody-
namic velocity) useful action-type criteria emerge. Symme-
try principles are effective, and components of the formal
energy-momentum tensor can be found. The limiting
reversible process, with ignored random effects, provides
a suitable reference frame. Focusing on heat flow, our work
represents, in fact, an approach that shows the methodo-
logical advantage of approaches borrowed from the opti-
mal control theory in variational descriptions of
irreversible transport phenomena.

2. Statistical data, constraints and composite performance

criteria

Statistical theories are useful [1] to evaluate nonequilib-
rium corrections to energy and other thermodynamic
potentials in situations when a continuum is inhomoge-
neous and this inhomogeneity is associated with presence
of irreversible fluxes. To illustrate benefits resulting from
suitable findings in the field of nonequilibrium statistical
thermodynamics, heat transfer in locally nonequilibrium
fluids is analyzed [2].

Quite essential in these analyses is the connection
between various representations of thermodynamics of
nonequilibrium fluids and a relationship (resembling the
Gouy–Stodola law) that links energy and entropy pictures.
Thanks to this relationship nonequilibrium corrections to
the energy can be found from those known for the entropy
of the Grad’s theory. These energy corrections will next be
used to construct suitable kinetic potentials L and formu-
late variational principles.

In this setting we work in the energy and Lagrangian
representations of thermodynamics and focus on formula-
tion of a linear variational description for heat transfer in
incompressible continua.

While the linearity of the theory is certainly an approx-
imation, it is simple and lucid enough to illustrate a (rela-
tively unknown) variational approach based on adjoining
known process equations as ‘‘constrains” to a ‘‘kinetic
potential L” (the integrand L of an action functional).

The present approach is optimization-type; it differs
from more conventional variational ones in that the action
functional is systematically constructed rather than
assumed from the beginning. Once a variational theory is
developed for an assumed L it may easily be modified for
improved kinetic potentials which take more subtle effects
into consideration. Equations of constraints (reversible or
irreversible) follow in the form of their ‘‘representations”
in the space of Lagrange multipliers; they are extremum
conditions for the action containing a composite (con-
straint involving) Lagrangian K or its gauge counterparts.
As long as representations describing physical variables
of state in terms of Lagrange multipliers are known in their
explicit form, the whole variational formalism can be trans-
ferred to the adjoint space of these multipliers, i.e. a varia-
tional principle can be formulated in this (adjoint) space.
The Lagrangian can also be used to obtain the matter ten-
sor for the continuum with heat flow and associated con-
servation laws.

In the final part of the paper we show that the accep-
tance of canonical conservation laws, constructed for a lim-
iting reversible process, along with variational extremum
conditions assures the satisfaction of the second law of
thermodynamics, the property that renders the variational
theory considered a candidate to be the physical one.

Moreover, formal conservation laws, evaluated from
Noether’s theorem, are the process integrals that provide
additional insight on the transformation of energy in the
irreversible system.

3. Energy and entropy representations in thermodynamics of
heat flow

Now our task is to recall some basic knowledge on the
thermodynamics of heat flow without local equilibrium.
A process description will be developed that will next be
used to construct suitable lagrangians, variational princi-
ples and conservation laws. We work in the framework
of extended thermodynamics of fluids [3]. We restrict our-
selves to incompressible, one-component continuum with
heat flow.

Consider a continuum with the heat flow at a nonequi-
librium state, say A, off but near the Gibbs surface, when
the local equilibrium assumption is inapplicable, Fig. 1.
The energy at the state A is the nonequilibrium internal
energy. This internal energy depends not only on the usual
state variables (wherever they have meaning), but also on
nonequilibrium variables such as heat flux or diffusive
entropy flux. Here we select the heat flux, q, as the nonequi-
librium variable of choice. It is treated as an unconstrained
internal variable which relaxes to equilibrium. Nonequilib-
rium energy density of a continum, qe, or its specific energy
e, is a function of density q, specific entropy s and diffusive
entropy flux js or heat flux q. For a continuum as a stable
macroscopic system, its equilibrium internal energy density
qeq

e is the minimum of qe with respect to unconstrained js or
q, at constant q and s. As q = v�1, the reciprocal of specific
volume, the minimum of qe (or e itself) with respect to js or
q occurs at constant entropy s and volume v which are
proper variables at which the energy attains minimum at
equilibrium. This is in agreement with basic thermodynam-
ics [4]. Since js or q are diffusive fluxes, the minimum occurs
for js = 0 or q = 0.

For a given nonequilibrium state at a point A, Fig. 1,
two equilibrium reference states, at points B and C, say,



Fig. 1. Diverse reference equilibria (B, D, C, etc.) for a given disequilibrium
state A. The line of constant nonequilibrium temperature linking states
A and D corresponds with a numerical value of T between TB and TC.
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correspond, respectively, to the energy and entropy repre-
sentation. Likewise the point D refers to the free energy
representation. A researcher knowing entropy s (e.g., from
distribution function f corresponding to A) formulates his
description of state A in terms of equilibrium parameters
at B, for a set of variables, here the components of the
entropy flux js. Yet, one who knows energy e can base
his view on the heat flux q and equilibrium at C. When
point A moves the equilibrium states (B, C and D) vary.

The conventional picture of motion in terms of Hamil-
ton’s principle corresponds to following the behavior of
B and the kinetic energy of entropy flux, whereas the
kinetic theory view corresponds to tracking of C and the
deviation of entropy from equilibrium. The transition from
one view to the other is possible [2].

It is important to realize that for a single nonequilibrium
state the use of the entropy representation and energy rep-
resentation establish two different equilibrium states
located on the Gibbs surface. This of course, is because
of the difference in what is held constant. The distance
between two reference equilibrium states (B and C)
increases with the distance of the state A from the Gibbs
surface. This distance can also be measured in terms of
the modulus of the flux js or in terms of the differences
De = AB or Ds = AC.

When the curvature of the Gibb’s surface can be
neglected, corresponding to the near-equilibrium situation,
the two disequilibrium excesses are linked by an equality
resembling the Gouy–Stodola law

ðe� eeqÞs;q ¼ �T ðs� seqÞe;q ð1Þ

This states that the energy released during the isoentro-
pic relaxation equals the product of the absolute tempera-
ture and the entropy deficiency in the system caused by the
presence of the heat flux q or the entropy flux, js.
4. Nonequilibrium corrections to energy or entropy in terms

of distribution function

It is essential that the entropy representation is assumed
in the Grad’s formalism of the kinetic theory [1]. Hence the
specific energy of an ideal gas or fluid with heat at the point
A is equal to the specific energy at equilibrium C in Fig. 1.
The reference temperatures and pressures that appear in
the expressions of kinetic theory are T(C) and P(C).
From the formalism one finds disequilibrium corrections
Ds or De in terms of the nonequilibrium density distribu-
tion function f. Here we recapitulate the results of several
different works [3–6] all using Grad’s [1] solution of the
Boltzmann equation in macroscopic predictions for dilute
gas of rigid spheres.

The molecular velocity distribution function, f, out of
equilibrium but close to it is given as

f ðCÞ ¼ f eqðCÞð1þ u1Þ ð2Þ
where feq is local equilibrium (Maxwell–Boltzmann) distri-
bution pertaining to the entropy representation equilibrium
(point C, Fig. 1). f and feq are scalars, but functions of the
peculiar velocity C = c � u, and u1 is a function of the
deviation from equilibrium. This deviation is expressed in
terms of the gradT in the Chapman–Enskog method and
in terms of the heat flux q in the Grad’s method. Using
Eq. (2) in the entropy definition, one integrates the expres-
sion f ln f over all of the space of the molecular velocity c,

qs ¼ �kB

Z
f ln f dc ð3Þ

Proceeding with development of qs up to second order in
u1, one expands qs ¼ qeq

s þ qð1Þs þ qð2Þs , with local equilib-
rium entropy

qeq
s ¼ �kB

Z
f eq ln f eq dc ð4Þ

and nonequilibrium correction

qð1Þs ¼ �kB

Z
f equ1 ln f eq dc ¼ 0 ð5Þ

Again, this proves that one deals with the entropy repre-
sentation where the entropy is maximum at equilibrium. A
counterpart of the above equation in the energy
representation

qð1Þe ¼ �
Z

f equ1mc2 dc ¼ 0 ð6Þ

would correspond to the minimum energy. The second or-
der correction to the entropy density (in entropy represen-
tation) is

qð2Þs ¼ qDs ¼ � 1

2
kB

Z
f equ2

1 dc ð7Þ

Hence, in view of the relation between De and Ds implied
by Fig. 1 or Eq. (1)

De ¼ � 1

2
kBTq�1

Z
f equ2

1 dc ð8Þ
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Since the state A is close to the equilibrium surface, the
multiplicative factors containing conventional thermody-
namic variables can always be evaluated at arbitrary equi-
librium points (B or C in Fig. 1). However, in Eqs. (1), (9)
and (10), they were evaluated (in the kinetic theory) for the
case of the isoenergetic equilibrium (point C, Fig. 1). The
function u1, obtained in Grad’s method when the system’s
disequilibrium is maintained by a heat flux q is

u1 ¼
2

5
ðm=Pk2

BT 2Þ 1

2
mC2 � 5

2
kBT

� �
C � q ð9Þ

where m is the mass of a molecule ([1,3]). From Eqs. (7)–(9)
one obtains for the entropy deviation

Ds ¼ � 1

5
ðm=qPkBT 2Þq2 ð10Þ

and for the energy deviation, Eq. (1), with entropy flux
js = qT�1

De ¼ 1

5
ðm2=kBq2Þj2

s ¼
1

2
q�2gj2

s ð11Þ

Eqs. (10) and (11) hold to the accuracy of the 13th
moment of the velocity [1]. When passing from Eq. (10)
to (11) state equation P = qkBTm�1 is used and a constant
g is defined as

g � 2mT q
5PkB

¼ 2m2

5k2
B

ð12Þ

Here we abandoned the entropy representation. Pres-
sure in Eqs. (9) and (12) is that of an ideal gas, given by
the definition used in the kinetic theory ([1]). Eq. (11) with
constant g defined by Eq. (12) is the characteristic feature
of the ideal monoatomic gas (dilute Boltzmann gas com-
posed of hard spheres). For arbitrary fluids (polyatomic
gases, dense monoatomic gases and liquids) one can retain
the form of the last expression in Eq. (11) by using a gen-
eral definition of g obtained by noting that

gðq; sÞ � q2
eqðo

2e=oj2
s Þeq ð13Þ

In the ideal gas case the derivative o2e=oj2
s ¼ ð2=5Þ

ðm2=k2
Bq2Þ from Eq. (11) and the definition (12) is recovered

form definition (13). Eq. (13) is consistent with a hypothesis
about the equality of the kinetic and static nonequilibrium
energy corrections in a thermal shock-wave front [5]. The
hypothesis can be used to compute ðo2e=oj2

s Þ
eq for arbitrary

fluids as T/(qcpG) and hence g as Tq/(cpG), where G is the
shear modulus. Equilibrium values of thermodynamic
parameters can be applied in such expressions. For an ideal
gas the shear modulus is just the pressure P (the result of
Maxwell) and cp = 5kB/(2m). These results allow one to
recover definition (12) from the expression g = Tq/(cpG);
they support the hypothesis mentioned above. Yet, for
the purpose of general considerations the use of the implicit
dependence of g on the basic variables (q, s) is often
enough, i.e., the function g(q, s) will be used when passing
to arbitrary fluids. Use of some entropy flux adjoints, as

and is, is suitable. They are defined, respectively, by
equations

asðs; q; jsÞ ¼ oDeðs; q; jsÞq;s=ojs ¼ gq�2js ð14Þ

and

isðs; q; jsÞ ¼ gq�1js ¼ gsvs ¼ gsðus � uÞ ð15Þ

The entropy diffusion velocity vs = us � u = js/qs = js /qs

appears in Eq. (15). One may also introduce therein the
product kBgs which has the dimension of mass. For the
ideal gas this product is ms ¼ 2=5ðm2sk�1

B Þ which is a mea-
sure of heat inertia.

In the model of a constant g, nonequilibrium tempera-
ture T(B) is equal to the equilibrium temperature T(q, s)
which is both the measure of mean kinetic energy of an
equilibrium and the derivative of energy with respect to
the entropy. This equality emerges because, above, we have
chosen the entropy flux js, not the heat flux q, as the non-
equilibrium variable in energy function e. If one differenti-
ates the nonequilibrium entropys with respect to the energy
holding q constant, then a quantity T(C) of Jou et al. [3] fol-
lows, which differs from the reciprocal of the corresponding
equilibrium temperature Teq by a term quadratic in q. In
general, the ‘‘nonequilibrium temperatures” (understood
as the fifth moment of the nonequilibrium density func-
tions) are not the measures of mean kinetic energy.

The knowledge of inertial coefficients, such as g, from
statistical mechanics considerations helps to calculate two
basic quantities in the model of heat transfer with finite
wave speed. They are: thermal relaxation time s and the
propagation speed, c0. Of several formulae available that
link quantities s and g, probably the following expression

s ¼ kgðqT Þ�1 ð16Þ

is most useful ([6, p. 199]). It links thermal relaxation time s
with thermal conductivity k, inertia g and state parameters
of the system. As, by definition, the propagation speed of
the thermal wave c0 = (a/s)1/2, where a = k/(qcp) is thermal
diffusivity, the quantity c0 may be determined from the
formula

c0 ¼
a
s

� �1=2

¼ T
cpg

� �1=2

ð17Þ

Substituting to this expression the ideal gas data, i.e. g of
Eq. (12) and cp = 5kB/(2m), yields propagation speed in the
ideal gas

c0 ¼
T

cpg

� �1=2

¼ kBT
m

� �1=2

ð18Þ

(thermal speed). Thus the results of nonequilibrium statis-
tical mechanics help to estimate numerical values of
damped-wave model of heat transfer. The coefficients s
and c0 are used below in a variational principle for wave
heat transfer. One more coefficient that is quite useful in
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the wave theory of heat is that describing a thermal mass
per unit of entropy

h ¼ Tc�2
0 ð19Þ

[6]. For the ideal gas, Eq. (18) yields the coefficient h as

h ¼ mk�1
B ð20Þ

We can now set a variational description for linear wave
heat flow satisfying Cattaneo model.

5. An approach adjoining a given set of constraints to a
kinetic potential

For the heat conduction process described in the
entropy representation by the Cattaneo equation of heat
and the conservation law for internal energy, the set of con-
straints is

oq

c2
0ot
þ q

c2
0s
þrqe ¼ 0 ð21Þ

and

oqe

ot
þr � q ¼ 0 ð22Þ

where the density of the thermal energy qe satisfies
dqe = qcv dT, c0 is propagation speed for the thermal wave,
s is thermal relaxation time, and D ¼ c2

0s is the thermal dif-
fusivity. Eq. (22) assumes the conservation of the thermal
energy (rigid medium in which viscous dissipation is ig-
nored). In irreversible processes the paths of entropy or en-
ergy differ from those of the matter. For simplicity we
assume constant values of involved fields at the boundary.
We ignore the vorticity properties of the heat flux.

The energy-representation counterpart of the Cattaneo
equation,

ojs

c2
s ot
þ js

c2
s s
þrT ¼ 0 ð23Þ

uses diffusive entropy flux js instead of heat flux q. The
coefficient cs is defined as

cs � ðqcvh
�1Þ1=2

; ð24Þ
where h ¼ Tc�2

0 , and thermal diffusivity k � qcvc2
0s. Eq. (23)

is Kaliski’s equation [6,11]. For an incompressible medium
one may apply this equation in the form

ojs

c2
0ot
þ js

c2
0s
þrqs ¼ 0 ð25Þ

which uses the entropy density qs as a field variable.
Yet, in this paper we focus on action and extremum con-

ditions in entropy representation (Eqs. (21) and (22) in
variables q and qe). For Eqs. (23)–(25) a comprehensive
action approach will be developed in another paper. Action
approaches should be distinguished from entropy-produc-
tion approaches [6,7]. Here an action is assumed that
absorbs constraints (21) and (22) by Lagrange multipliers,
the vector w and the scalar /
A ¼
Z t2

t1;V
e�1 1

2

q2

c2
0

� 1

2
q2

e �
1

2
e2 þ w:

oq

c2
0ot
þ q

c2
0s
þrqe

� ��

þ u
oqe

ot
þr � q

� ��
dV dt: ð26Þ

As kinetic potentials can be very diverse, the conserva-
tion laws for energy and momentum substantiate the form
(26). In Eq. (26), e is the energy density at an equilibrium
reference state, the constant which ensures the action
dimension for A, but otherwise is unimportant. Yet we
assume that the actual energy density qe is close to e, so
that the variable qe can be identified with the constant e
in suitable approximations.

We call the multiplier-free term of the integrand of Eq.
(26)

L � 1

2
e�1 q2

c2
0

� q2
e � e2

� �
ð27Þ

the kinetic potential of Hamilton type for heat transfer. It
is based on the quadratic form of an indefinite sign, and it
has usual units of the energy density. Not far from equilib-
rium, where qe is close to e, two static terms of L yield alto-
gether the density of thermal energy, qe. Indeed, in view of
admissibility of the a posteriori approximation qe = e in Eq.
(27), the kinetic potential (27) represents – in the frame-
work of the linear heat theory – the Hamiltonian structure
of a difference between ‘‘kinetic energy of heat”, and the
nonequilibrium internal energy, qe. To secure correct con-
servation laws, no better form of L associated with a non-
linear model was found in the entropy representation. The
theory obtained in the present case is a linear one.

Vanishing variations of action A with respect to multi-
pliers w and / recover constraints, whereas those with
respect to state variables q and qe yield representations of
state variables in terms of w and /. For the accepted Ham-
ilton-like structure of L,

q ¼ ow

ot
� w

s
þ c2

0ru ð28Þ

and

qe ¼ �rw� o/
ot
: ð29Þ

These equations enable one to transfer variational formula-
tion to the space of Lagrange multipliers.

For the accepted structure of L, the action A, Eq. (26),
in terms of the adjoints w and / is

A ¼
Z t2

t1;V

e�1 1

2c2
0

ow

ot
� w

s
þ c2

0r/

� �2
(

� 1

2
r � wþ o/

ot

� �2

� 1

2
e2

)
dV dt: ð30Þ
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Its Euler–Lagrange equations with respect to w and u
are

o

ot
1

c2
0

ow

ot
� w

s
þ c2

0r/

� �� �
þ 1

sc2
0

ow

ot
� w

s
þ c2

0r/

� �

�r r � wþ o/
ot

� �
¼ 0 ð31Þ

and

� o

ot
r � wþ o/

ot

� �
þr � ow

ot
� w

s
þ c2

0ru

� �
¼ 0: ð32Þ

It is easy to see that (31) and (32) are the original equa-
tions of the thermal field, Eqs. (21) and (22), in terms of the
potentials w and /. Their equivalent form below shows
damped-wave nature of the transfer process. In fact,
Lagrange multipliers w and / of this (source-less) problem
satisfy certain inhomogeneous wave equations. In terms of
the modified quantities W and U satisfying W ¼ wsc2

0 and
U ¼ �/sc2

0 these equations are

r2w� o2w

c2
0ot2
þ ow

sc2
0ot
¼ q ð33Þ

and

r2U� o2U
c2

0ot2
þ oU

sc2
0ot
¼ qe: ð34Þ

As both original state variables (q, qe) and adjoints (w, /)
appear in these equations, they represent, in fact, mixed
formulations of the theory. Still they are interesting as they
show that for given densities q and qe thermal energy trans-
fer can be broken down to potentials. The situation is sim-
ilar to that in electromagnetic theory or in gravitation
theory, where the specification of sources (electric four-cur-
rent or matter tensor, respectively) defines the behavior of
the field potentials. An important case is the reversible
‘‘ballistic” process with s ?1. In this process undamped
thermal waves propagate with the speed c0 and satisfy d’
Alembert’s equation for potentials, energy density and
temperature T.
6. Source term in internal energy equation

However, the construction of a suitable action A in the
space of potentials by the direct substitution of the repre-
sentation equations to the accepted kinetic potential L is
generally incorrect. In fact, the method of direct substitu-
tion of representations into L is valid only for linear con-
straints that do not contain sources. This may be
exemplified when the internal energy balance contains a
source term a0q2, where a0 is a positive constant. The aug-
mented action integral (26) should now contain the nega-
tive term �a0q2 in its / term. The energy density
representation remains unchanged, whereas the heat flux
representation follows in a generalized form
q ¼ ð1� 2a0/c2
0Þ
�1 ow

ot
� w

s
þ c2

0r/

� �
ð35Þ

Substituting Eqs. (29) and (35) into action A of Eq. (26)
(L of Eq. (27)) shows that the action based on the accepted
kinetic potential L in terms of the potentials acquires the
form

A ¼
Z t2

t1;V

e�1 1

2c2
0

ð1� 2a0/c2
0Þ
�2 ow

ot
� w

s
þ c2

0r/

� �2
( )

dV dt

�
Z t2

t1;V

e�1 1

2
r � wþ o/

ot

� �2

þ 1

2
e2

( )
dV dt:

ð36Þ

However the Euler–Lagrange equations for this action
are not process constraints in terms of potentials, i.e. L
itself fails to provide a correct variational formulation for
constraints with sources. It is the vanishing term with con-
straints that contributes to the properties of the functional
extremum in the augmented action A, Eq. (26). The way to
improve the situation is to substitute the obtained represen-
tations to a transformed augmented action in which the
only terms rejected are those that constitute total time or
space derivatives. The latter can be selected via partial dif-
ferentiation within the integrand of the original action A.
(As we know from the theory of the functional extrema
the addition of subtraction of terms with total derivatives
and divergences do not change extremum properties of a
functional.) When this procedure is applied to the consid-
ered problem and total derivatives are rejected, a correct
action follows in the form

A ¼
Z t2

t1;V

e�1 1

2c2
0

ð1� 2a0/c2
0Þ
�1 ow

ot
� w

s
þ c2

0r/

� �2
( )

dV dt

�
Z t2

t1;V

e�1 1

2
r � wþ o/

ot

� �2

þ 1

2
e2

( )
dV dt

ð37Þ
This form differs from that of Eq. (36) only by the power

of the term containing the constant a0, related to the source.
With the representation Eqs. (29) and (35), action (37)
yields the proper Cattaneo constraint (21) and the general-
ized balance of internal energy which extends Eq. (22) by
the positive source term a0q2. Eq. (37) proves that the
four-dimensional potential space (w, /) is sufficient to
accommodate the exact variational formulation for the
problem with a source. Yet, due to the presence of this
source, the variational formulation does not exist in the
original four-dimensional original space (q, qe), and, if
somebody insists to exploit this space plus possibly a nec-
essary part of the potential space, the following action is
obtained from Eqs. (21), (29), (35) and (37)

A ¼
Z t2

t1;V
e�1 ð1� 2a0/c2

0Þ
q2

2c2
0

� 1

2
q2

e þ
1

2
e2

� �
dV dt ð38Þ
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This form of A shows that, when original state space is
involved, the state space required to accommodate the var-
iational principle must be enlarged by inclusion of the
Lagrange multiplier / as an extra variable. In fact, Eq.
(38) proves that original state space (‘‘physical space”) is
lacking sufficient symmetry (Vainberg’s theorem [6]). Yet,
as Eq. (38) shows, the adjoint space of potentials (w, /),
while also four-dimensional as space (q, qe), can accommo-
date the variational formulation. Why is this so? Because
the representation equations do adjust themselves to the
extremum requirement of A at given constraints, whereas
the given constraints without controls cannot exhibit any
flexibility.
7. Canonical tensor and conservation laws

The validity of the constraint-adjoining variational
approach rests crucially on inclusion of all physically rele-
vant relationships treated as ‘‘constraints”. As they are
‘‘physical” they must satisfy or constitute physical laws
by assumption. For example, the Cattaneo model includes
the conservation law for thermal energy; this law is an
implicit ingredient of the variational formulation. For an
applied K formal conservation laws may, however, be
determined from Noether’s theorem; some of them may
constitute relationships of the physical interest.

In general, K used to describe irreversible processes are
not suitably gauged to assure physical (canonical) compo-
nents of the formal energy–momentum tensor. Addition to
Lagrangians K gauge terms does not change their stationa-
rity conditions, but does change the components of the
energy–momentum tensor. Because the gauging does not
change the stationarity conditions of the original Lagrang-
ian K, physical (canonical) conservation laws are secured
for gauged K (some are recovered from the variational
model as ‘‘constraints”).

As the formal components of the energy–momentum
tensor (obtained via Noether’s theorem for an irreversible
K’s) may have no physical meaning and hence may be of
little interest, its physical components and correct conser-
vation laws can be derived at the reversible limit of
s ?1 (undamped wave process). A basic postulate for
this procedure is that nontruncated physical components
of the matter tensor and conservation laws are the same
for reversible and irreversible processes (the postulate
which is, in fact, applied in the Onsager’s theory [6]).

Here we determine conservation laws for the energy and
momentum for Noether’s theorem for our model at its
reversible limit. The energy-momentum tensor also called
the matter tensor is defined as

Gjk �
X

l

ovl

ovj

oK
o ovl=ovkð Þ

� 	
� djkK ð39Þ

where djk is the Kronecker delta and v = (x, t) comprises
the spatial coordinates and time. The conservation laws
are valid in absence of external fields; they describe then
the vanishing four-divergences ($, o/os) of Gjk. Our ap-
proach here follows those in [8,9], accordingly components
of Gjk are calculated for a reversible K whose gauge form is
obtained from the reversible limit of Eq. (26) at w = 0 and
s ?1 by use of the divergence theorem along with differ-
entiation by parts. In our problem

K ¼ e�1 1

2

o/
ot

� �2

� 1

2
ðc0r/Þ2 � 1

2
e2

( )
ð40Þ

In terms of the physical variables

K ¼ e�1 1

2
q2

e �
1

2

q2

c2
0

� 1

2
e2

� �
ð41Þ

The matter tensor G = Gjk has the following structure

G ¼
T �C

Q E

� 	
; ð42Þ

where T is the stress tensor, C is the momentum density, Q

is the energy flux density, and E is the total energy density.
When external fields are present, the kinetic potential L

contains explicitly some of coordinates vj. Then the balance
equations are satisfied rather than conservation laws

X
k

oGjk

ovk

� �
þ oK

ovj
¼ 0 ð43Þ

for j, k = 1,2,. . . , 4. Eq. (43) is the formulation of balance
equations for momentum (j = 1,2,3) and energy (j = 4).

We recall the assumption of small deviation from equi-
librium at which that model is physically consistent. With
this assumption and for the gauged reversible limit of Eq.
(26) at w = 0 and s ?1, gauge action assures that compo-
nents of the energy-momentum (matter) tensor are multi-
plier-independent. These components are given below.
They describe: momentum density Ca, stress tensor Tab,
total energy density E, and density of the total energy flux,
Qb, which approximately equals qb.

The momentum density for the mass flow of the medium
at rest is, of course, J = 0, where J is the mass flux density.
The momentum component of heat flow can be determined
from Lagrangian (40) and Eq. (39) for j = 4

Ca ¼ �Ga4 ¼ � ou
oxa

oK
o ou=otð Þ ¼ �e�1 ou

ot
ðruÞa ð44Þ

Using ‘‘reversible” representations q ¼ c2
0ru and

qe = �o//ot leads to the momentum density of heat in
physical variables

Ca ¼ �Ga4 ¼ c�2
0

qe

e
qa ffi c�2

0 qa ð45Þ

In a vector form, C ¼ qc�2
0 . Clearly, the momentum of heat

vanishes in the Fourier’s case (c0 ?1).
The stress tensor Tab has the form

T ab ¼ �e�1c2
0ðruÞaðruÞb � dabK ð46Þ

or in physical variables

T ab ¼ �e�1c�2
0 qaqb � dabK ð47Þ
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After substituting stationary Lagrangian into Tab we
obtain

T ab ¼ �e�1c�2
0 qaqb � dabe�1 1

2
q2

e �
1

2
q2c�2

0 �
1

2
e2

� �
ð48Þ

This quantity represents stresses caused by the pure heat
flow; it vanishes at equilibrium.

Canonical energy density follows as the Legendre trans-
form of the Lagrangian K with respect to rate change of /
in time

E ¼ e�1 1

2

o/
ot

� �2

þ 1

2
ðc0r/Þ2 þ 1

2
e2

( )
ð49Þ

or in terms of the physical variables

E ¼ G44 ¼ e�1 1

2

q2

c2
0

þ 1

2
q2

e þ
1

2
e2

� �
ffi 1

2

q2

ec2
0

þ qe ð50Þ

The energy of resting medium with heat flux is the sum
of the kinetic energy of heat and equilibrium thermal
energy.

Finally, we find density of energy flux in both frames

G4b � o/
ot

oK
o o/=oxbð Þ ¼ qee

�1c2
0ðr/Þb ð51Þ

G4b ¼ Qb ¼ e�1qeq
b ffi qb: ð52Þ

In the quasi-equilibrium situation qe is very close to e,
then the formal density of the energy flux G4b coincides
with the heat flux density, q. As the heat flux, q, is both
the process variable and the entity resulting from the vari-
ational procedure, the fact that it is recovered here may be
regarded as a positive test for the self-consistency of the
procedure.

The associated conservation laws for the energy and
momentum have the form

o
1

2
e�1c�2

0 q2 þ qe

� �

ot ¼ �r � e�1qeq

� �
ð53Þ

oðc�2
0 e�1qeq

aÞ
ot

¼ r

� e�1 �c�2
0 qaqb þ dab 1

2
q2c�2

0 �
1

2
q2

e þ
1

2
e2

� �� �� �
ð54Þ

As they were derived for reversible paths we call them
canonical conservation laws. The energy conservation law
(53), which stems from Eqs. (50) and (52), refers to non-
equilibrium total energy E that differs from the nonequilib-
rium internal energy qe by the presence of the ‘‘kinetic
energy of heat”, explicit in L of Eq. (27) or in Eq. (50).
The necessity of distinction between E and qe is caused
by the finite thermal momentum (45) in the frame of sta-
tionary skeleton of rigid solid. The results stemming from
the quadratic kinetic potential (27) seem acceptable when
the system is close to equilibrium.

We shall now show how the above canonical conserva-
tion laws follow directly from the reversible equations of
motion. In the reversible ‘‘ballistic” case Cattaneo equation
(21) assumes a truncated form

oq

c2
0ot
þrqe ¼ 0 ð55Þ

Its scalar multiplication by q yields

oq2

2c2
0ot
þ q � rqe ¼ 0 ð56Þ

or, after performing the differentiation by parts

oq2

2c2
0ot
þr � ðqqeÞ � qer � q ¼ 0 ð57Þ

Using the energy conservation (22), Eq. (57), yields

oq2

2c2
0ot
þr � ðqqeÞ þ qe

oqe

ot
¼ 0 ð58Þ

Dividing this equation by the equilibrium energy e we can
put the above result into the form

oq2

2ec2
0ot
þ qe

e
oqe

ot
þr � ðe�1qqeÞ ¼ 0 ð59Þ

Closely to the equilibrium, i.e. when qe is close to e, we find
the vanishing four-divergence

o

ot
q2

2ec2
0

þ qe

� �
þr � ðe�1qqeÞ ¼ 0 ð60Þ

which is equivalent with the energy balance (53).

8. Irreversible motions satisfying Cattaneo and Kaliski’s

equation

In the irreversible case we multiply by q the non-trun-
cated Cattaneo formula, Eq. (21),

oq

c2
0ot
þ q

c2
0s
þrqe ¼ 0 ð21Þ

and obtain a generalization of formula (59)

oq2

2ec2
0ot
� qe

e
r � qþr � ðe�1qqeÞ ¼ �

q2

ec2
0s

ð61Þ

Yet, the combination of this equation with energy balance
(22)

oq2

2ec2
0ot
þ qe

e
oqe

ot
þr � ðe�1qqeÞ ¼ �

q2

ec2
0s

ð62Þ

yields not a conservation law but another balance equa-
tion, a differential result with an energy source

o

ot
q2

2ec2
0

þ qe

� �
þr � ðe�1qqeÞ ¼ �

q2

ec2
0s

ð63Þ

This shows the violation of the energy conservation for the
Cattaneo equation (21), and leads to the strange conclusion
that (21) constitutes a physically admissible model only in
the reversible case of an infinite s. This is certainly not a
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property that is commonly attributed to the Cattaneo mod-
el, thus a further analysis is required.

Admitting an energy source in balance (22), i.e.

�r � q ¼ oqe

ot
� a0q2 ð64Þ

and using such extended balance in Eq. (61) we find

oq2

2ec2
0ot
þ qe

e
oqe

ot
� qe

e
a0q2 þr � ðe�1qqeÞ ¼ �

q2

ec2
0s

ð65Þ

From this formula we observe that for a0 satisfying

a0 ¼ 1

qec
2
0s

ð66Þ

the conservation of total energy is assured in the form of
Eqs. (59) and (60). The positive value of a0 in Eq. (66)
means the generation of the internal energy in the dissipa-
tive system, as described by Eq. (64).

Likewise, after multiplying by js the nontruncated Kali-
ski’s equation (23)

ojs

c2
s ot
þ js

c2
s s
þrT ¼ 0 ð23Þ

we find

oj2
s

2c2
s ot
þr � ðT jsÞ � Tr � js ¼ �

j2
s

c2
s s

ð67Þ

Under the assumption of the entropy conservation Eq.
(67) would yield an equation

oj2
s

2c2
s ot
þr � ðT jsÞ þ T

oqs

ot
¼ � j2

s

c2
s s

ð68Þ

thus leading to the following energy balance

o

ot
j2
s

2c2
s

þ qe

� �
þr � ðT jsÞ ¼ �

j2
s

c2
s s

ð69Þ

This result means that the assumption of the conserved en-
tropy would result in the violation of the energy conserva-
tion law.

Yet, for a ‘physical’ entropy satisfying the non-con-
served balance

�r � js ¼
oqs

ot
� aj2

s ð70Þ

the total energy balance follows from Eqs. (67) and (70) in
the form

o

ot
j2
s

2c2
s

þ qe

� �
þr � ðT jsÞ � Taj2

s ¼ �
j2
s

c2
s s

ð71Þ

This form shows the satisfaction of the energy conservation
for

a ¼ 1

Tc2
s s

ð72Þ
Importantly, even when the conservation laws are satis-
fied in irreversible processes in their canonical form the
related extremum action and potential representations of
physical variables do explicitly contain potentials not only
their derivatives.

We may thus claim that whenever a irreversible process
occurs with the coefficient a satisfying Eq. (72), canonical
conservation laws can be obtained from the Noether’s the-
orem. In other cases, perhaps non-physical, this theorem
yields generalized non-canonical conservation laws. These
laws may be seen as extensions of the canonical conserva-
tion laws of Section 7, these extensions including varia-
tional adjoints and their derivatives besides of the
original state variables. In fact, non-canonical conservation
laws can be evaluated for any irreversible action, gauged or
not. Yet, one must expect the following:

(1) Components of the energy-momentum tensor may
depend on both state variables and adjoints
(Lagrange multipliers). In particular, this may also
apply to Lagrangian K in any form, i.e. no gauging
will exist which would lead to K dependent only on
the state variables.

(2) Extended energy and momentum balances may con-
tain both state variables and adjoints (Lagrange mul-
tipliers). For many processes no gauging will exist
leading to K that would depend on state variables
only.

(3) Lagrange multipliers cannot generally be eliminated
from equations of irreversible motion (irreducible
problem). An analogous situation is known in the
Pontryagin’s principle, where the adjoint variables
cannot generally be eliminated except of some special
cases, such as in the Horn’s method of eliminating
adjoints, where the dimensionality of state and con-
trol vectors is the same [10].

Canonical conservation laws, obtained for reversible
paths, involve only state variables and are believed to be
physical relationships satisfied by any natural process,
reversible or not. As shown below the physical consequence
of satisfaction of canonical conservation laws in the realm of
irreversible processes is the second law of thermodynamics.
9. Satisfaction of second law of thermodynamics

In the variational theory of heat the satisfaction of the
second law is not explicit, thus we shall derive it by consid-
ering entropy properties. The entry of G we need to apply
now is G44 = E as it is the total energy which is both global
and exact conservative property. The density of the con-
served energy, E, is a basic variable in the Gibbs relation
that links the entropy density qs with E and the current
q. The equality

1

2
e�1c�2

0 q2 þ qeðqsÞ ¼ E ð73Þ
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shows that entropy density qs is a function Sv of E and q of
the following structure

qsðqeÞ ¼ Sv E � 1

2
e�1c�2

0 q2

� �
ð74Þ

Thus at the constant mass density the differential of Sv

satisfies an extended Gibbs equation

dSv ¼ ðoqs=oqeÞd E � 1

2
e�1c�2

0 q2

� �
¼ T�1 dE � T�1e�1c�2

0 q � dq ð75Þ

Taking into account that c0 = (a/s)1/2 = (k/qcvs))1/2,
where k is the thermal conductivity, one finds c�2

0 ¼
qcvs=k ¼ eT�1sk�1, and the above differential expressed in
terms of k is

dSv ¼ T�1 dE � T�2sk�1q � dq ð76Þ

Calculating the four-divergence of the entropy flow ($,
o/ot) and using the global conservation law for the energy
E, in fact, the canonical energy of Eqs. (53) and (60), we
obtain in terms of expressions containing k or c0

oSv

ot
þr � q

T

� �
¼ q � rT�1 � 1

eTc2
0

oq

ot

� �

¼ q

kT 2
� �krT � s

oq

ot

� �
ð77Þ

But, since Eq. (21) is a simple transformation of the origi-
nal Cattaneo equation

s
oq

ot
þ q ¼ �esc2

0T�1rT ¼ �krT ð78Þ

we arrive at the expression

oSv

ot
þr � q

T

� �
¼ q2

esc2
0T
� q2

kT 2
¼ aj2

s ð79Þ

where a = k�1 is the thermal resistivity. This equation de-
scribes the second law of thermodynamics in the identically
satisfied form; it holds in both classical irreversible thermo-
dynamics (CIT) and extended irreversible thermodynamics
(EIT; [3]). Keeping in mind that Eq. (78) is, as Eq. (21), the
result of the variational approach, we have obtained confir-
mation that the approach yields the results in agreement with
the second law of thermodynamics. This seems to prove that
the accepted kinetic potential (27) has properties of admissi-
ble physical entity to describe the heat flow not far from equi-
librium. Yet, far from equilibrium an appropriate L may not
exist in the present approach that is consistent with the Cat-
taneo theory. A complementary approach involving the
Kaliski equations [11] can be more fruitful.

Possessing a kinetic potential that produces only suit-
able variational equations is by no means sufficient to
ascertain that a field theory is sufficient as a whole from
the physical viewpoint. This is, in fact, the main reason
to test Noether integrals, conservation laws and entropy
production stemming from the kinetic potential (27). The
positive result of these tests proves that total energy den-
sity, thermal momentum and all remaining values of the
energy-momentum tensor, Gjk, are physically admissible
in the range of admissibility of linear Cattaneo model
(21) and (22). Thus, we can accept kinetic potential (27)
as the entity leading to physical results. In fact, from an
infinite variety of kinetic potentials possible in the heat flux
framework we accept the sole kinetic potential (27) to res-
titute both the Cattaneo equations and associated extended
thermodynamic theory (Eqs. (45)–(54) and (75)–(79), in
agreement with EIT [3]).

10. Conclusions

We have shown the reality of expectation that equations
of nonequilibrium heat transfer may be described by vari-
ational principles of least action-type in which equations
of conservation and kinetics are adjoined to a given kinetic
potential, as in optimization approaches. Variational for-
mulations based on action-type functionals used here differ
substantially from formulations encountered in thermody-
namics of Onsager and Prigogine. The method of varia-
tional potentials (applicable to various L) may provide a
relation between these two types of variational settings.
Consistency of applied constraints, formal and physical,
is always an important issue.

The theory of a limiting reversible process serves as a basis
and indicator when evaluating canonical conservation laws
that involve only state variables and are believed to be phys-
ical relationships constraining any natural process, revers-
ible or not. The physical consequence of satisfaction of
these canonical conservation laws in the realm of variational
irreversible processes is the second law of thermodynamics.

The changes caused by the irreversibility imply the
necessity to adjoint to the kinetic potential both sort of
equations: those describing kinetics and those representing
conservation laws. Unnecessity of adjoining kinetic expres-
sions seems to be valid only in limiting reversible process,
where the physical information does not decrease. Yet, in
irreversible situations, more constraints seems necessary
in the action functional. In fact, the thermodynamic irre-
versibility complicates potential representations of physical
fields in comparison with the representations describing the
reversible evolution.

The problem of thermal energy transfer can be broken
down to the problem of potentials, as in the case of electro-
magnetic and gravitational fields. We have displayed inho-
mogeneous equations describing heat transfer in terms of
thermal potentials and sources of the field. These equations
contain the sources of the thermal field: heat flux q and
energy density qe.

In the heat transfer theory, these results describe a situ-
ation similar to that in the electromagnetic and gravita-
tional field theories, where the specification of sources
(electric four-current or the matter tensor, respectively)
defines the behavior of the potentials.

In view of the approximations contained in the linear
structure of the Cattaneo kinetics, Lagrangian (27) and
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energy conservation (60) it is worth stressing that the theory
based on the variational formulation of Kaliski’s kinetics,
Eq. (23) or Eqs. (25) and (70), may require less approxima-
tions because the related kinetic potential L can be formu-
lated without the restrictive notion of equilibrium reference
energy e. The variational formulation of Kaliski’s equations
will, therefore, be the subject of a further effort.
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