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Abstract

The capacitance evaluation of arbitrary-shaped conducting bodies is an important step for the estimation of spacecraft equivalent

circuit model for the prediction of electrostatic discharge. In this paper, an attempt has been made for the evaluation of charge

distribution and hence the capacitance of arbitrary-shaped conducting surfaces. Surfaces are modeled by planar rectangular subdomains

in which the charge density is assumed to be constant. The exact formulation for the matrix element is evaluated for rectangular

subsection. The Method of Moments with pulse basis function and point matching is employed to calculate the charge distribution on the

surface and hence the capacitance. This paper presents the results for capacitance of different conducting shapes, e.g., square,

rectangular, circular, annular circular disk, T-shaped, L-shaped, triangular, annular triangular, etc. The results have been compared with

other available results in literature wherever possible.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There has been considerable interest in the evaluation of
the capacitance and charge distribution of different
conducting structures such as rectangular plates, square
plates, circular and annular discs, hollow cylinder, etc.,
located in free space because their use in spacecraft. The
capacitance evaluation has an important application for
the determination of spacecraft equivalent circuit models
for the prediction electrostatic discharge. The earliest work
on the evaluation of capacitance of square plate appears to
have been carried out by Maxwell [1]. Smythe had derived
closed form/approximate expressions for computing capa-
citance of a few conducting objects such as bowl, cylinder,
circular disc, etc. [2]. There are some interesting publica-
tions on the capacitance calculation of three-dimensional
e front matter r 2007 Elsevier B.V. All rights reserved.
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multiconductor systems and different high voltage elec-
trode configurations [3–4]. In the work of Ruehli and
Brennan, the basic equations for the potential coefficients
of rectangular conducting element were derived and used
for the evaluation of capacitance of square plate, cube via
Method of Moments [3]. However, the resulting equations
for the potential coefficients are found to be complicated
and also these were mainly used for two-/three-dimensional
bodies with square/rectangular surfaces [3]. In Ref. [4], the
capacitance to ground of different high voltage electrode
configurations was evaluated, neglecting the influence of
other grounded or live structures. Also different methods
of calculation were used for different electrode geometries,
e.g., sphere, toroid, cylinder, circular disc, rectangular
plate, and box [4]. However, the authors had not noticed
any work on the evaluation of capacitance of arbitrary
planar conducting bodies with a more generalized and
simple elemental shape, which can be used for any planar
surface. Harrington evaluated data on the capacitance of a
square conducting plate employing square subdomain
regions, but did not present clearly the exact formulas for
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the evaluation of the matrix elements for the evaluation of
capacitance [5]. The triangular subdomains had been used
for more complex surfaces by Rao et al. [6]. Also,
Chakraborty et al. [7] had obtained a method of computing
the capacitance of a cylinder and a truncated cone
by employing cylindrical subsections. In the present
paper, the authors have concentrated on the numerical
evaluation of capacitance of conducting objects in free
space using Method of Moments and rectangular sub-
domain modeling. The rectangular shape is chosen because
of its ability to conform easily to any geometrical surface or
shape and at the same time maintaining the simplicity of
approach compared to the triangular patch modeling.
Here, the exact formulation for the evaluation of the
impedance matrix for rectangular subdomain is deter-
mined. The results are compared with other available data
in literature.
Fig. 2. Rectangular plate (2L ¼ 4m; 2w ¼ 1m; V ¼ 1V) divided into

4� 4 subsections; capacitance ¼ 54.73 pF.
2. Formulation

We consider a perfectly conducting surface is charged to
a potential V. The unknown surface charge density
distribution s(r0) may then be determined by solving the
following integral equation:

V ¼

Z Z
S

sðr0Þ
4p�jr� r0j

ds0. (1)

Here, r and r0 are the position vectors corresponding to
observation and charge source points, respectively, ds0 is an
element of surface S and e is the permittivity of free space.
The exact solution for the charge distribution can be
obtained only for a few very specialized geometries. In the
general case, the surface is discretized and the charge
distribution is found by solving Eq. (1) using numerical
methods. Here, the arbitrary-shaped bodies are approxi-
mated by planar rectangular subdomains (Fig. 1). The
Method of Moments with pulse basis function and point
matching is then used to determine the approximate charge
distribution. On each subdomain, a pulse expansion
function Pn(r) is chosen such that Pn(r) is equal to 1 when
r is in the nth rectangle and Pn(r) is equal to 0 when r is not
in the nth rectangle. With the above definition of expansion
function, the charge density, s(r0) may be approximated as
Fig. 1. Square plate divided into rectangular subsections.
follows:

sðr0Þ ¼
XN

n¼1

snPnðr
0Þ where Pn ¼

1 for nth subsection

0 elsewhere

�

(2)

Here, N is the number of rectangles modeling the surface
and sn’s are the unknown weights (charge density).
Substitution of charge expansion (2) in (1) and point

matching the resulting functional equation, by enforcing
equality of the two sides of the equation for observation
points located at the center of each rectangle, yields an
N�N system of linear equations which may be written in
the following form

½V � ¼ ½K�½Q�. (3)

Here, [K] is an N�N matrix and [Q] and [V] are column
vectors of length N.
Fig 3. Circular disc (radius ¼ 1m, N ¼ 24); capacitance ¼ 68.36 pF

agrees with analytical value ¼ 70.73 pF [11].
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Fig. 6. Annular triangular plate with sides of 1m and inner triangle with

sides of 0.25m divided into 16 subsections; capacitance ¼ 26.97 pF.
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The elements of [K], [Q], and [V] are given as follows:

Kmn ¼

ZZ
rectangle

1

4p� rm � r0j j
dA0

Qn ¼ sn ¼ unknown charge density in subdomain n

V n ¼ V ð4Þ

where rm denotes the position vector of the center
of the mth rectangle. A0 is the area of the source
rectangle.

rm � r0
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xm � x0ð Þ
2
þ ym � y0
� �2q

.

Here, we have considered the conducting surface at z ¼ 0
plane.

Since the numerical formulation of (1) via the Method
of Moments is well known [5], we consider only the
evaluation of the element of the moment matrix as given
by Eq. (4). Each element corresponds to the potential
at some point in space, r ¼ (x, y, z), due to a rect-
angular patch of surface charge of unit charge density. In
Fig. 5. Equilateral triangular plate with sides each of 1m divided into 15

subsections; capacitance ¼ 23.1 pF.

Fig. 4. Annular disk (inner radius ¼ 1m, outer radius ¼ 2m, N ¼ 8);

capacitance ¼ 33.86 pF agrees with Ref. [12].
general, the patch is arbitrarily positioned and oriented in
space.
The integration of Eq. (4) is quite tedious, but the final

result is relatively simple [8].
Fig. 7. Annular square (side ¼ 1m, side of annulus ¼ 0.5m, no. of

subsections ¼ 24, C ¼ 36.66 pF).

Fig. 8. Trapezoidal plate (sides ¼ 1, 0.6, 0.3m; N ¼ 12; C ¼ 20.41 pF).
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For the diagonal elements of the matrix, the integration
is evaluated as follows:

Knn ¼
1

p�
a ln

b

a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

a2
þ 1

s0
@

1
Aþ b ln

a

b
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

b2
þ 1

s0
@

1
A

0
@

1
A.

(5)

Here, a and b are the sides of each rectangular subsection.
Using the standard integral formula the non-diagonal

elements are evaluated as follows:
Kmn ¼ � xm � x0
�� �� ln ym � yn þ b

�� ��þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xm � x0ð Þ

2
þ ym � yn þ b
� �2q� �

ym � yn � b
�� ��þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xm � x0ð Þ
2
þ ym � yn � b
� �2q� �

2
664

3
775

xnþa

xn�a

� ym � y0
�� �� ln xm � xn þ aj j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ym � y0
� �2

þ xm � xn þ að Þ
2

q� �

xm � xn � aj j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ym � y0
� �2

þ xm � xn � að Þ
2

q� �
2
664

3
775

ynþb

yn�b

ð6Þ
Here, the source point is (xn, yn) and the field point is
(xm, ym). The x0 and y0 of Eq. (6) are replaced by their
respective limits. Solution of the matrix Eq. (3) yields
values for the surface charge density at the centers of the
subdomains. The capacitance, C, of the body is obtained
Fig. 9. T-shaped plate (L1 ¼ 3m; L2 ¼ 3

Fig. 10. L-shaped plate (L1 ¼ 1m; L2 ¼ 2
from the following equation:

C ¼
Q

V
¼

1

V

XN

n¼1

snAn. (7)

Here, N is the total number of rectangular subsections.
3. Numerical results and discussions

A computer program based on the preceding formula-
tion has been developed to determine the charge distribu-
tion and hence capacitance for the following conducting
surfaces: square plate, rectangular plate, T-shaped plate,
L-shaped plate, circular disc, annular circular disc,
trapezoidal plate, triangular plate, annular triangular plate,
etc. The corresponding figures are shown in Fig. 2–10. The
m; L3 ¼ 1m; N ¼ 12; C ¼ 98.53 pF).

m; L3 ¼ 4m; N ¼ 20; C ¼ 94.04 pF).
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results have been compared with other available results in
literature. The result for a rectangular plate agrees with the
available data in literature [9–11]. The result for a circular
disc (radius=1m, N=24, capacitance=68.36 pF) agrees
with analytical value =70.73 pF [12]. Also the capacitance
of an annular disk (inner radius ¼ 1m, outer radius ¼ 2m,
N ¼ 8, C ¼ 33.86 pF) shows well matching with the data
available in literature [13].

4. Conclusion

A simple and efficient numerical procedure is presented
for treating electrostatic problem involving complex
geometrical shaped planar conducting bodies. This method
of capacitance evaluation by dividing the conducting
surface into rectangular subsection may be extended for
non-planar geometrical bodies, e.g., satellite structure.
Also this method may find important application for the
determination of equivalent circuit models of multicon-
ductor or multiwire arrangements used in electronic
systems.
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