

Available online at www.sciencedirect.com

Applied Catalysis B: Environmental 50 (2004) 243-249

www.elsevier.com/locate/apcatb

Characterization and catalytic activity of Pd/V₂O₅/Al₂O₃ catalysts on benzene total oxidation

R.S.G. Ferreira, P.G.P. de Oliveira, F.B. Noronha*

Instituto Nacional de Tecnologia, Laboratório de Catálise, Av. Venezuela 82, CEP 20081-310, Rio de Janeiro, Brazil

Received 19 May 2003; received in revised form 29 December 2003; accepted 25 January 2004

Available online 21 March 2004

Abstract

The role of vanadium oxide and palladium on the benzene oxidation reaction over $Pd/V_2O_5/Al_2O_3$ catalysts was investigated. The $Pd/V_2O_5/Al_2O_3$ catalysts were more active than V_2O_5/Al_2O_3 and Pd/Al_2O_3 catalysts. The increase of vanadium oxide content decreased the Pd dispersion and increased the benzene conversion. A strong Pd particle size effect on benzene oxidation reaction was observed. Although the catalysts containing high amount of V⁴⁺ species were more active, the Pd particle size effect was responsible for the higher activity. © 2004 Published by Elsevier B.V.

Keywords: Benzene oxidation; Pd/V2O5/Al2O3 catalysts; VOC removal

1. Introduction

Industrial waste gases from chemical and petrochemical plants contain different types of hazardous volatile organic compounds (VOCs) [1]. Several VOCs are toxic and can also contribute to the photochemical formation of various secondary pollutants in the atmosphere [2]. Therefore, more stringent environmental regulations have been developed and implemented in order to reduce the VOC emissions [3,4]. One of the techniques available for destructive removal of VOCs is catalytic oxidation [1,5,6].

Benzene is a VOC present in different industries, such as chemical, petrochemical, paint and coating industries and steel manufacture [7]. Several catalysts have been used for the total oxidation of benzene [8–16]. Base metal oxides, supported noble metals and combinations have been employed.

In general, supported noble metal catalysts are preferred due to their higher activity, since large gas volumes have to be treated, and their greater resistance to deactivation [5,17]. Papaefthimiou et al. [11] studied the catalytic oxidation of benzene on different group VIII metals supported on alumina. Pt and Pd were the most active catalysts. Recently, we studied the effect of the nature of support on total benzene oxidation over Pd catalysts [18]. The catalytic activity depended on the nature of the palladium oxide species and thus on the strength of the Pd–O bond. The results strongly suggested that benzene oxidation mechanism should involve the Pd^0/Pd^{2+} pair. Lahousse et al. [10] compared the performances of MnO₂ (metal oxide) and Pt/TiO₂ on the total oxidation of different VOCs. Benzene was oxidized at lower temperatures over the Pt/TiO₂ catalyst.

However, metal oxides can be more active than noble metal catalyst in function of the nature of the VOC [10]. The oxidation of ethylacetate took place at lower temperature on MnO_2 than on the PtO₂ catalysts. Moreover, the metal oxide catalysts are more resistant to poisoning by compounds containing sulfur or chlorine [5].

Vassileva et al. [9] studied the benzene oxidation on 0.5% Pd/Al₂O₃, 30% V₂O₅/Al₂O₃ and 0.5% Pd/30% V₂O₅/Al₂O₃ catalysts. The 0.5% Pd/30% V₂O₅/Al₂O₃ catalyst presented higher conversions than the Pd/Al₂O₃ and V₂O₅/Al₂O₃ catalysts. These results were attributed to the modification of the vanadium oxidation state by the palladium addition. A redox mechanism was proposed to explain the catalytic behavior.

The aim of this work was to study the effect of palladium addition to V_2O_5/Al_2O_3 catalyst on the benzene total oxidation. The role of palladium and vanadium oxide species on benzene oxidation was proposed.

^{*} Corresponding author. Fax: +55-21-2206-1051.

E-mail address: fabiobel@int.gov.br (F.B. Noronha).

2. Experimental

2.1. Catalyst preparation

 γ -Al₂O₃ (Engelhard, AL-3916P) was calcined in air at 823 K for 16 h (BET area = 180 m²/g). V₂O₅/Al₂O₃ samples were prepared by Al₂O₃ impregnation with an aqueous solution of ammonium methavanadate (Baker Analyzed) at room temperature during 1 h. The samples were dried at 353 K under vacuum and calcined under airflow at 773 K for 16 h. The Pd/Al₂O₃ and Pd/V₂O₅/Al₂O₃ samples were obtained by incipient wetness impregnation of Al₂O₃ and V₂O₅/Al₂O₃ samples with a solution of palladium chloride (Aldrich). Then, the samples were dried at 373 K, followed by calcination under airflow at 773 K for 2 h. The samples prepared and their metal contents determined by atomic absorption spectroscopy are given in Table 1.

2.2. X-ray diffraction (XRD)

XRD analysis were carried out in a Philips diffractometer PW 1410 using Cu K α radiation ($\lambda = 1.54050$ Å) and Ni filter. The X-ray tube was operated at 40 kV and 30 mA and the X-ray pattern was scanned with a step size of 0.02° (2 θ) from 10 to 80° (2 θ) and counting time of 2.5 s per step.

2.3. Diffuse reflectance spectroscopy (DRS)

The UV-Vis diffuse reflectance spectra were recorded between 200 and 800 nm on a UV-Vis-NIR spectrometer (Cary 5-Varian) equipped with an integrating sphere (Harrick). In the case of Pd/Al₂O₃ samples, Al₂O₃ was used as reference. For Pd/x% V₂O₅/Al₂O₃ (x% = 5, 10 and 20 wt.%), the corresponding references of x% V₂O₅/Al₂O₃ samples were used.

2.4. Temperature programmed reduction (TPR)

TPR experiments were performed in a conventional apparatus, as described previously [19]. Before reduction, the catalysts were heated at 423 K in flowing nitrogen for 0.5 h. Then, a mixture of 4.7% hydrogen in nitrogen flow was passed through the sample and the temperature was raised from 298 up to 1173 K at a heating rate of 10 K/min.

Table 1 Vanadium and palladium content for V_2O_5/Al_2O_3 and $Pd/V_2O_5/Al_2O_3$ samples

I III			
Catalysts	V (wt.%)	Pd (wt.%)	
5% V ₂ O ₅ /Al ₂ O ₃	4.0	_	
10% V ₂ O ₅ /Al ₂ O ₃	8.6	-	
20% V ₂ O ₅ /Al ₂ O ₃	20.4	-	
Pd/Al ₂ O ₃	_	0.81	
Pd/5% V2O5/Al2O3	3.3	0.89	
Pd/10% V2O5/Al2O3	8.8	0.80	
Pd/20% V2O5/Al2O3	19.6	0.90	

2.5. Hydrogen chemisorption

 H_2 uptakes were measured in an ASAP 2000C equipment (Micromeritics). Before the reduction, the catalysts were dried at 423 K for 0.5 h under vacuum. Then, the catalysts were reduced at 773 K (5 K/min) in flowing H_2 (30 cm³/min). Following reduction, the samples were evacuated for 1 h at reduction temperature and cooled down to adsorption temperature under vacuum. Irreversible uptakes were determined from dual isotherms measured for hydrogen (at 343 K) using the method described by Benson et al. [20].

2.6. Benzene oxidation

The oxidation of benzene was performed in a tubular fixed bed reactor (Pyrex) at atmospheric pressure. The sample (60 mg) was reduced under hydrogen at 773 K for 1 h. After reduction, the reaction was carried out from 373 to 773 K in intervals of 20 K. The reaction mixture consisted of air/benzene (AGA; 482 ppm of benzene) at a flow rate of 30 ml/min (space velocity: $30,000 h^{-1}$). Analyses of the products were carried out by on line gas chromatography (FID) with a column Porapak Q (6 m, carrier gas: H₂). A gas chromatograph equipped with a thermal conductivity detector and molecular sieve and Porapak QS columns were also used for CO and CO₂ analysis. It is important to stress that CO₂ and H₂O was the only product formed.

3. Results and discussion

3.1. The nature of vanadium oxide species on $Pd/V_2O_5/Al_2O_3$

The X-ray diffraction patterns of Al_2O_3 support and $Pd/V_2O_5/Al_2O_3$ sample are shown in Fig. 1. The diffraction patterns of 1 and 5% $Pd/V_2O_5/Al_2O_3$ sample displayed only the Bragg lines characteristics of Al_2O_3 phase. On the $Pd/10\% V_2O_5/Al_2O_3$ sample, the lines corresponding to V_2O_5 were detected. The peaks characteristic of V_2O_5 were well defined on the $Pd/20\% V_2O_5/Al_2O_3$ sample. These results are in agreement with the DRX analysis of the respective V_2O_5/Al_2O_3 sample [15]. Then, DRX analysis did not identify any modification of vanadium oxide structure in the presence of palladium.

3.2. The nature and dispersion of the palladium in the presence of vanadium oxide

The DRS spectra of Pd/Al_2O_3 and $Pd/V_2O_5/Al_2O_3$ samples containing different vanadium contents are presented in Fig. 2. The spectrum of the Pd/Al_2O_3 sample exhibited three bands at 243, 280 and 405 nm. The band around 243 nm is attributed to a charge transfer transition from oxygen of the support to the d orbital of Pd [21]. The bands at 280 and

Fig. 1. X-ray diffraction patterns of: (a) Al_2O_3 ; (b) Pd/5% V_2O_5/Al_2O_3 ; (c) Pd/10% V_2O_5/Al_2O_3 ; (d) Pd/20% V_2O_5/Al_2O_3 ; (*) position of the Bragg peaks for V_2O_5 .

405 nm are due to metal-ligand charge transfer and d-d transition, respectively [22,23]. The DRS spectrum of Pd/5% V_2O_5/Al_2O_3 sample showed the band at 460 nm and a new one at 514 nm. On the Pd/10% V_2O_5/Al_2O_3 and Pd/20%

Fig. 2. DRS spectra of: (a) Pd/Al₂O₃; (b) Pd/5% V_2O_5/Al_2O_3 ; (c) Pd/10% V_2O_5/Al_2O_3 ; (d) Pd/20% V_2O_5/Al_2O_3 .

 V_2O_5/Al_2O_3 samples, it was observed the presence of a band and a shoulder at 500/558 and 504/557 nm, respectively.

The addition of vanadium modified significantly the spectra of the Pd/Al₂O₃ sample, leading to the disappearance of the band around 280 nm. The same result was observed in the literature for Pd/Al₂O₃ and Pd/SiO₂ catalysts calcined at different temperatures [18,22,24]. According to the authors, these results are due to the incorporation of oxygen into coordination sphere of Pd replacing chloride ions. Thus, the Pd^{2+} ions would be linked to surface oxygen atoms of the alumina support or would form small PdO particles. Noronha et al. [23] studied the effect of the addition of different Nb₂O₅ content on the Pd environment of Pd/Al₂O₃ sample through UV-Vis diffuse reflectance spectroscopy. Increasing the Nb₂O₅ content, the intensity of the charge transfer band around 287 nm decreased and this band was shifted towards higher wavelengths. This band was no more observed on the sample containing 20 wt.% of niobium oxide. The decrease of the intensity of the charge transfer band around 287 nm as the Nb₂O₅ loading increases suggested that less chloride ions were present on the Pd^{2+} coordination sphere.

Therefore, the addition of vanadium led to the complete removal of chloride ions from the coordination sphere of Pd in all $Pd/V_2O_5/Al_2O_3$ samples since the band at 280 nm disappeared. Furthermore, the bands around 450 and 550 nm correspond to d–d transition of PdO.

Table 2 shows the palladium dispersion calculated through H_2 chemisorption. The increase of vanadium oxide content strongly decreases the palladium dispersion. This result is in agreement with DRS analysis, which revealed the appearance of PdO particles in the presence of vanadium oxide. The PdO species is characteristic of catalysts with low Pd dispersion.

3.3. The effect of Pd addition on the reducibility of vanadium species

The presence of palladium also affected significantly the reduction of vanadium species. The TPR profile of $Pd/V_2O_5/Al_2O_3$ catalysts are presented in Fig. 3.

The Pd/Al₂O₃ catalyst exhibited one peak at 436 K (Fig. 3a). According to the literature [19,23,25–27], the peak around 436–465 K is attributed to the reduction of PdO_xCl_y species whereas the hydrogen consumption at low

Table 2

Palladium dispersion of the $Pd/V_2O_5/Al_2O_3$ catalysts calculated from the H_2 chemisorption measurements H_2 , benzene reaction rates and turnover frequencies at 450 K of the palladium-based catalysts

Catalyst	D (%)	Reaction rate (g mol/g _{Pd} min) $\times 10^{-4}$	TOF (s^{-1}) × 10 ⁻⁴
Pd/Al ₂ O ₃	40	0.20	0.9
Pd/5% V ₂ O ₅ /Al ₂ O ₃	25	0.57	5.8
Pd/10% V2O5/Al2O3	18	1.32	13.1
Pd/20% V ₂ O ₅ /Al ₂ O ₃	11	1.05	16.6

Reaction mixture: air/benzene (482 ppm of benzene).

Fig. 3. TPR profiles of the $Pd/V_2O_5/Al_2O_3$ samples: (a) Pd/Al_2O_3 ; (b) $Pd/5\% V_2O_5/Al_2O_3$; (c) $Pd/10\% V_2O_5/Al_2O_3$; (d) $Pd/20\% V_2O_5/Al_2O_3$.

temperature is due to PdO reduction. Frusteri et al. [27] investigated the influence of the Pd precursor on the nature of Pd oxides species. The Pd/Al₂O₃ catalysts were prepared using two different precursors: PdCl₂ and Pd(NH₃)₄(NO₃)₂. TPR analysis revealed two distinct peaks, which were correlated to the reduction of different PdO species. The TPR profile of Pd/Al₂O₃ chlorine-free catalyst exhibited one peak at low temperature (333 K) due to the reduction of PdO particles. The TPR analysis of the Pd/Al₂O₃ prepared from the PdCl₂ precursor displayed one peak at 393 K, which was assigned to the reduction of Cl-containing Pd²⁺ oxo-complexes strongly interacting with the alumina.

On the Pd/V₂O₅/Al₂O₃ catalysts, it is noted a peak around 400 K and a shoulder at 460 K on the catalysts containing a high vanadium loading. In accordance to the literature, the low-temperature peak could be attributed to the reduction of PdO particles over vanadium oxide. However, the hydrogen consumption at low-temperature reduction peak was significantly higher than the amount corresponding to the complete palladium oxide reduction (Table 3). This result suggested that vanadium oxide reduction also take place at this temperature range. In fact, it is no more observed a hydrogen uptake at high temperature, typical of the reduction of V_2O_5/Al_2O_3 samples [15]. Recently, we reported the characterization results of V2O5/Al2O3 samples by using TPR [15]. The reduction profile of 5% V₂O₅/Al₂O₃ catalyst showed a peak around 791 K. The TPR profile of 10% V_2O_5/Al_2O_3 catalyst exhibited a peak at 819 K while the 20% V₂O₅/Al₂O₃ catalyst displayed a peak around 869 K. Therefore, the addition of palladium strongly promoted the reduction of vanadium oxide at lower temperature.

Tal	ble	3
	· · ·	~

 H_2 consumption and reduction degree of vanadium oxide obtained from the TPR analysis of the Pd/V₂O₅/Al₂O₃ samples

Catalyst	H_2 consumption (µmoles H_2/g_{cat})	Reduction degree (%) ^a	Reduction degree (%) ^b
Pd/Al ₂ O ₃	64	-	_
Pd/5% V2O5/Al2O3	568	183	92
Pd/10% V2O5/Al2O3	1328	154	77
Pd/20% V ₂ O ₅ /Al ₂ O ₃	2701	137	68

The reduction degree of vanadium oxide was calculated from the total hydrogen uptake taking into account the hydrogen consumption due to palladium oxide.

 a Reduction degree calculated considering the following reaction: $V_2O_5+H_2\rightarrow V_2O_4+H_2O.$

 b Reduction degree calculated considering the following reaction: $V_2O_5+2H_2 \rightarrow V_2O_3+2H_2O.$

Dancheva et al. [28] studied 30% V_2O_5/Al_2O_3 and Pd/30% V_2O_5/Al_2O_3 catalysts by TPR. The TPR profile of 30% V_2O_5/Al_2O_3 exhibited a peak at 803 K, whereas the Pd/30% V_2O_5/Al_2O_3 catalyst showed a peak at lower temperature (413 K). TPR analyses of Pd/Nb₂O₅/Al₂O₃ [23], Pd/CeO₂/Al₂O₃ [29] and Pd/MoO₃/Al₂O₃ [30] systems also revealed a strong promoting effect of palladium on the metal oxide reduction. According to the authors, hydrogen is activated on metallic palladium through dissociative adsorption to atomic hydrogen, which promotes the reduction of metal oxide. Therefore, our results agree very well with the literature and show the presence of a strong interaction between palladium and vanadium oxide on these catalysts.

The hydrogen consumption and the reduction degree during the TPR are presented in Table 3. After TPR, the average oxidation state of Pd/V₂O₅/Al₂O₃ catalysts was a function of vanadium oxide content. On the catalysts containing 5 wt.% of vanadium, the vanadium was mainly on the 3+ state whereas on the Pd/10% V₂O₅/Al₂O₃ and Pd/20% V₂O₅/Al₂O₃ there was a mixture of V⁴⁺ and V³⁺ ions.

3.4. The role of vanadium oxide and palladium on benzene oxidation

Fig. 4 exhibited the curves of benzene conversion as a function of reaction temperature on $Pd/V_2O_5/Al_2O_3$ catalysts. The catalysts containing a higher vanadium oxide content ($Pd/10\% V_2O_5/Al_2O_3$ and $Pd/20\% V_2O_5/Al_2O_3$) showed higher conversion of benzene. Table 2 presented the reaction rates of the benzene oxidation at 450 K. At this temperature, the conversion was lower than 10% and allows a comparison with catalytic data of the literature [11]. Increasing the vanadium content led to an increase of reaction rate. It is important to stress that the activity of V_2O_5/Al_2O_3 catalysts was negligible at this temperature [15].

The turnover frequency (TOF) of $Pd/V_2O_5/Al_2O_3$ catalysts on the benzene oxidation was calculated through both dispersion and reaction rates obtained by using conversion data taken at 450 K from the light off curves shown in Fig. 4. It is important to stress that the activity of V_2O_5/Al_2O_3

Fig. 4. Benzene conversion as a function of reaction temperature: (\blacksquare) Pd/Al₂O₃; (\bullet) Pd/5% V₂O₅/Al₂O₃; (\bullet) Pd/10% V₂O₅/Al₂O₃; (\bigtriangledown) Pd/20% V₂O₅/Al₂O₃.

catalysts was practically null between 300 and 500 K [15] (Table 2). The TOF values of Pd/V₂O₅/Al₂O₃ catalysts presented the same order of magnitude of the ones observed in the literature on Pd/Al₂O₃ catalysts ((1–2) × 10^{-3} s⁻¹) [11]. The increase of dispersion strongly decreased the TOF (Fig. 5), which suggested the presence of a particle size effect on the benzene oxidation reaction.

There is a controversy about the effect of the particle size on the catalytic hydrocarbon oxidation. Several authors have not observed a correlation between the particle size and TOF [31–34]. On the other hand, some works have shown a strong dependence between the activity and the particle size [35–40].

Papaefthimiou et al. [11] studied the effect of metal dispersion on the intrinsic activity of benzene oxidation on Pt/Al₂O₃ and Pd/Al₂O₃ catalysts. In the case of Pt/Al₂O₃ catalysts, the TOF of benzene oxidation enhanced significantly as the particle size increased. These results were attributed to the presence of chloride ions on the catalyst surface inhibiting the activity of Pt/Al₂O₃ catalysts. This inhibiting effect was more important on the highly dispersed catalysts. Otherwise, the TOF of benzene oxidation was independent of dispersion on Pd/Al₂O₃ catalysts.

Garetto and Apesteguía [16] studied the structure sensitivity of benzene combustion on Pt/Al₂O₃ catalysts. The benzene oxidation turnover rates were promoted on large Pt particles. According to the authors, the increase of Pt particle size increased the density of reactive Pt–O species, i.e., the number of Pt–O bonds of lower binding energy.

Fig. 5. Turnover frequency at 450 K of the total benzene oxidation over catalysts of this work: (\blacksquare) Pd/Al₂O₃; (\blacklozenge) Pd/5% V₂O₅/Al₂O₃; (\bigstar) Pd/10% V₂O₅/Al₂O₃; (\bigstar) Pd/20% V₂O₅/Al₂O₃. Catalysts from Ref. [18]: (\bigcirc) Pd/Al₂O₃ calcined at 873 K; (\triangle) Pd/Al₂O₃ calcined at 1073 K. Reaction mixture: air/benzene (482 ppm of benzene).

Pinto et al. [18] observed an increase of TOF of benzene oxidation reaction as the dispersion of Pd/Al₂O₃ catalysts calcined at different temperatures decreased. This particle size effect was associated to the nature of palladium oxide species and the strength of Pt–O band.

Generally, two types of PdO species are identified: bulk PdO and palladium oxide interacting with the support. The bulk PdO is characteristic of catalysts with low Pd dispersion. The second Pd specie is found on catalysts with high metal dispersion. Each of these Pd species has a different oxygen adsorption/desorption behavior. It has been observed that the strength of the Pd–O bond depends on the crystallite size [40–43]. The Pd–O bond strength increases as the particle size decreases.

Pinto et al. [18] identified the presence of two different states of Pd by XPS experiments. Pd/Al_2O_3 catalysts calcined at high temperature exhibited one peak at Pd $3d_{5/2}$ BE of 336.0 eV, which is characteristic of bulk PdO. These catalysts were reduced to metallic palladium at room temperature under hydrogen. On the samples calcined at low temperature, a peak and a shoulder were observed with Pd $3d_{5/2}$ BE at 336.1 and 337.0 eV. The high BE was attributed to the existence of small palladium clusters in interaction with the alumina support, which agrees well with the literature [42]. Widjaja et al. [43] observed the same results on Pd catalysts supported on Al_2O_3 -based mixed oxides with different particle sizes. The core level BE of palladium (Pd $3d_{5/2}$) increased with decreasing crystallite size. The higher BE values are consistent with an increase in the Pd–O bond strength as the Pd particle size decreases [39]. Therefore, Pinto et al. [18] attributed the variation of the TOF of the benzene total oxidation as a function of the Pd dispersion to changes on the electronic structure with the particle size.

It has been reported in the literature that the presence of chlorine has a poisoning effect on the activity of supported metallic catalysts on the oxidation of hydrocarbons. Therefore, the higher activity of $Pd/V_2O_5/Al_2O_3$ catalysts could be attributed to the absence of chlorine ions on these catalysts. However, in our work, the inhibiting effect of chlorine ions on the benzene oxidation can be rule out since the DRS results demonstrated that on alumina impregnated by vanadium oxide this ions were not present. Therefore, the benzene oxidation on $Pd/V_2O_5/Al_2O_3$ catalysts is a structure sensitive reaction.

However, it is important to determine the role of vanadium oxide on the $Pd/V_2O_5/Al_2O_3$ catalysts on the benzene oxidation.

Recently, we studied the performance of V₂O₅/Al₂O₃ catalysts on the benzene oxidation [15]. The following order of activity was observed: 20% V₂O₅/Al₂O₃ > 10% V₂O₅/Al₂O₃ > 5% V₂O₅/Al₂O₃. The reaction rates increased as the vanadium content increased. From DRS results after reaction, it was noted the presence of V⁴⁺ species on the 20% V₂O₅/Al₂O₃ catalyst, which exhibited the higher benzene activity. On the other hand, the 5% V₂O₅/Al₂O₃ catalyst did not show the band characteristic of V⁴⁺ species. Therefore, the higher activity to the total benzene oxidation on the catalyst containing high vanadium content was attributed to the high amount of V⁴⁺ species.

In order to analyze the role of vanadium oxide on $Pd/V_2O_5/Al_2O_3$ catalyst activity, the influence of the particle size have to be isolated. Therefore, the benzene conversions of $Pd-V_2O_5$ and Pd-only catalyst with the same particle size were compared. The data of two Pd/Al_2O_3 catalyst were obtained from Ref. [18]. The dispersion and the benzene conversion on Pd/Al_2O_3 , $Pd/V_2O_5/Al_2O_3$ and V_2O_5/Al_2O_3 catalysts are listed in Table 4. A comparison between the activity of Pd/Al_2O_3 and $Pd/V_2O_5/Al_2O_3$ catalysts with the same dispersion shows that the benzene conversion on $Pd/V_2O_5/Al_2O_3$ catalysts corresponds approximately to the sum of benzene conversion on Pd/Al_2O_3 and V_2O_5/Al_2O_3 catalysts. These results suggests that there is no synergetic effect on the catalytic performance

Table 4

Benzene conversion at 525 K of the $V_2O_5/Al_2O_3,\ Pd/V_2O_5/Al_2O_3$ Pd/Al_2O_3 (from Ref. [18]) catalysts

Catalyst	Dispersion (%)	Benzene conversion (%)
Pd/Al ₂ O ₃	22	43
5% V ₂ O ₅ /Al ₂ O ₃	_	6
Pd/5% V2O5/Al2O3	25	56
Pd/Al ₂ O ₃	17	61
10% V ₂ O ₅ /Al ₂ O ₃	_	12
Pd/10% V2O5/Al2O3	18	80

of Pd/V₂O₅/Al₂O₃ catalysts on the benzene oxidation. On the other hand, if we compare the conversions of Pd/Al₂O₃ (D = 22%) and Pd/10% V₂O₅/Al₂O₃ catalyst (D = 18%), we can be induced to misleading conclusions. Actually, this result is mainly due to the lower dispersion of Pd/10% V₂O₅/Al₂O₃ catalyst. Then, the effect of Pd particle size outperforms the influence of the higher amount of V⁴⁺ species on the Pd/V₂O₅/Al₂O₃ catalysts containing 10 and 20 wt.% of vanadium.

Vassileva et al. [9] reported a promoting effect of Pd addition to a 30% V₂O₅/Al₂O₃ catalyst. The results were attributed to a modification of oxidation state of vanadium atoms by the palladium. The authors proposed a redox mechanism to explain the catalytic behavior. This mechanism involves the following steps: (i) oxidation of V^{4+} to V^{5+} and Pd^0 to Pd^{2+} by the oxygen; (ii) reduction of V^{5+} to V^{4+} and Pd^{2+} to Pd^{0} by the hydrocarbon. The ion V^{3+} is relatively stable and should hardly participate of the reaction. However, the palladium dispersion of Pd/Al₂O₃ and Pd/V₂O₅/Al₂O₃ catalysts and the reaction rates are not supplied by the authors. Thus, a comparison between catalyst activity is not possible due to the strong influence of particle size effect on benzene total oxidation as previously described. It means that the redox mechanism proposed is probably taking place but it is not the main reason for the better catalytic behavior observed on the Pd/V₂O₅/Al₂O₃ catalyst.

4. Conclusions

The Pd/V₂O₅/Al₂O₃ catalysts were more active than V₂O₅/Al₂O₃ and Pd/Al₂O₃ catalysts. The Pd/V₂O₅/Al₂O₃ catalysts containing a higher vanadium oxide content presented lower dispersion and higher activity on the benzene oxidation reaction. The TOF of Pd/V₂O₅/Al₂O₃ catalysts increased as the dispersion decreased suggesting that the benzene oxidation on Pd/V₂O₅/Al₂O₃ catalysts is a structure sensitive reaction. In spite of the higher amount of V⁴⁺ species on the Pd/V₂O₅/Al₂O₃ catalysts containing 10 and 20 wt.% of vanadium, the effect of palladium particle size plays a role much more important on the benzene combustion.

Acknowledgements

The authors would like to thank Leila Meirat and Ricardo Aderne (NUCAT/PEQ/COPPE/UFRJ) for the analyses of H₂ chemisorption and DRS, respectively. F.B. Noronha and R.S.G. Ferreira thank CNPq for financial support.

References

^[1] J.N. Armor, Appl. Catal. B: Environmental 1 (1992) 221.

^[2] A.P. Altshuller, Atmos. Environ. 27 (1993) 21.

- [3] G. Parkinson, Chem. Eng. (1991) 37.
- [4] I.D. Dobson, Prog. Org. Coat. 24 (1994) 55.
- [5] R.M. Heck, R.J. Farrauto, Catalytic Air Pollution Control: Commercial Technology, Van Nostrand Reinhold, New York, 1995, p. 147.
- [6] J.J. Spivey, Ind. Eng. Chem. Res. 26 (1987) 2165.
- [7] J.N. Armor, Appl. Catal. 78 (1991) 141.
- [8] S.K. Gangwal, M.E. Mullins, J.J. Spivey, P.R. Caffrey, B.A. Tichenor, Appl. Catal. 36 (1988) 231.
- [9] M. Vassileva, A. Andreev, S. Dancheva, N. Kotsev, Appl. Catal. 49 (1989) 125.
- [10] C. Lahousse, A. Bernier, P. Grange, B. Delmon, P. Papaefthimiou, T. Ionnides, X. Verykios, J. Catal. 178 (1998) 214.
- [11] P. Papaefthimiou, T. Ioannides, X.E. Verykios, Appl. Catal. B: Environmental 13 (1997) 175.
- [12] P. Papaefthimiou, T. Ioannides, X.E. Verykios, Appl. Catal. B: Environmental 15 (1998) 75.
- [13] K.T. Chuang, A.A. Davydov, A.R. Sanger, M. Zhang, Catal. Lett. 49 (1997) 155.
- [14] L. Becker, H. Forster, Appl. Catal. B: Environmental 17 (1998) 43.
- [15] R.S.G. Ferreira, P.G.P. de Oliveira, F.B. Noronha, Appl. Catal. B: Environmental 29 (2001) 275.
- [16] T.F. Garetto, C.R. Apesteguía, Appl. Catal. B: Environmental 32 (2001) 83.
- [17] W. Chu, H. Windawi, Chem. Eng. Prog. (1996) 37.
- [18] M.F.C. Pinto, F.B. Noronha, L.E.P. Borges, Proceedings of the 17th North American Catalysis Society Meeting, Toronto, Canada, 2001, p. 295.
- [19] F.B. Noronha, M. Primet, R. Frety, M. Schmal, Appl. Catal. 78 (1991) 125.
- [20] J.E. Benson, H.S. Hwang, M. Boudart, J. Catal. 30 (1973) 46.
- [21] W. Zou, R.D. Gonzalez, Catal. Lett. 12 (1992) 73.
- [22] A. Rakai, D. Tessier, F. Bozon-Verduraz, New J. Chem. 16 (1992) 869.
- [23] F.B. Noronha, D.A.G. Aranda, A.P. Ordine, M. Schmal, Catal. Today 57 (2000) 169.

- [24] D. Lomot, W. Juszczyk, J. Pielaszek, Z. Kaszkur, T.N. Bakuleva, Z. Karpinski, New J. Chem. 19 (1995) 263.
- [25] G. Chen, W.T. Chou, C.T. Yeh, Appl. Catal. 8 (1983) 389.
- [26] T.C. Chang, J.J. Chen, C.T. Yeh, J. Catal. 96 (1985) 51.
- [27] F. Frusteri, F. Arena, A. Parmaliana, N. Mondello, N. Giordano, React. Kinet. Catal. Lett. 51 (1993) 331.
- [28] S. Dancheva, L. Ilieva, N. Kotsev, A. Andreev, Collect. Czech. Chem. Commun. 59 (1994) 1922.
- [29] R.S. Monteiro, F.B. Noronha, L.C. Dieguez, M. Schmal, Appl. Catal. A: General 131 (1995) 89.
- [30] M. Schmal, M.A.S. Baldanza, M.A. Vannice, J. Catal. 185 (1999) 138.
- [31] K. Muto, N. Katada, M. Niwa, Appl. Catal. 134 (1996) 203.
- [32] T.R. Baldwin, R. Burch, Appl. Catal. 66 (1990) 337.
- [33] T.R. Baldwin, R. Burch, Appl. Catal. 66 (1990) 359.
- [34] Y. Yazawa, H. Yoshida, N. Takagi, S. Komai, A. Satsuma, T. Hattori, J. Catal. 187 (1999) 15.
- [35] R.F. Hicks, H. Qi, M.L. Young, R.G. Lee, J. Catal. 122 (1990) 280.
- [36] P. Briot, M. Primet, Appl. Catal. 68 (1991) 301.
- [37] C.A. Muller, M. Maciejewski, R.A. Koeppel, A. Baiker, J. Catal. 166 (1997) 36.
- [38] N.M. Rodriguez, S.G. Oh, R.A. Dalla-Beta, R.T.K. Baker, in: B. Delmon, G.F. Froment (Eds.), Catalyst Deactivation, Elsevier, Amsterdam, 1994, p. 417.
- [39] Y.H. Chin, D.E. Resasco, in: J.J. Spivey (Ed.), Catalysis, The Royal Society of Chemistry, vol. 14, 1999, p. 3.
- [40] K. Fujimoto, F.H. Ribeiro, M. Avalos-Borja, E. Iglesia, J. Catal. 179 (1998) 431.
- [41] P. Chou, M.A. Vannice, J. Catal. 105 (1987) 342.
- [42] K. Otto, L.P. Haack, J.E. de Vries, Appl. Catal. B: Environmental 1 (1992) 1.
- [43] H. Widjaja, K. Sekizawa, K. Eguchi, H. Arai, Catal. Today 35 (1997) 197.