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Abstract

The performance equations for cathodes of polymer electrolyte fuel cells (PEFCs) that describe the dependence of cathode potential
on current density are developed. Formulation of the performance equations starts from the reduction of a one-dimensional model that
considers, in detail, the potential losses pertinent to the limitations of electron conduction, oxygen diffusion, proton migration, and the
oxygen reduction reaction. In particular, non-uniform accumulation of liquid water in the gas diffuser, which partially blocks the gas channels
and imposes a greater resistance for oxygen transport, is taken into account. Reduction of the one-dimensional model is implemented by
approximating the oxygen concentration profile in the catalyst layer with a parabolic polynomial or a piecewise parabolic one determined
by the occurrence of oxygen depletion. The final forms of the equations are obtained by applying the method of weighted residuals over the
catalyst layer. The weighting function is selected in such a way that the weighted residuals can be analytically integrated. Potential losses
caused by the various limiting processes can be quantitatively estimated by the performance equations. Thus, they provide a convenient
diagnostic tool for the cathode performance. Computational results reveal that the performance equations agree well with the original
one-dimensional model over an extensive range of parameter values. This indicates that the present performance equations can be used as
a substitute for the one-dimensional model to provide quantitatively correct predictions for the cathode performance of PEFCs.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The polymer electrolyte fuel cell (PEFC) is an electri-
cal power generation device that operates with an ionomeric
membrane as its electrolyte layer. The overall behaviour of
PEFCs can be described by so-called ‘performance curves’,
which reveal the dependence of cell voltage on operating
current density. Such a characteristic curve is a conclusion
of the interplay among all the transport and electrochemical
processes that take place inside the PEFC. Since the domi-
nant mechanism for the performance of a PEFC may shift
from one to another, distinguished types of behaviour are
observed for different regimes of operating current densi-
ties. At low current densities, a sharp decay in cell voltage
is noted, which is caused by the limitations of the electro-
chemical reactions. These losses are also referred to as acti-
vation overpotential, which arises from the electrochemical
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reaction being driven from the equilibrium so as to generate
electric currents. As the current density increases, the in-
creasing rate of activation overpotential is alleviated and an
almost linear regime appears for intermediate current densi-
ties. Such behaviour basically reveals the characteristics of
ohmic losses due to proton migration in the membrane and
in the ionomer phase of the catalyst layers as well as elec-
tron conduction through the catalysts and the gas diffusers.
As the current density approaches its limiting value, poten-
tial losses due to mass-transport limitations take over. Under
this condition, the chemical reaction is limited by the rate at
which the reactants can be supplied and a fast decay of cell
potential is observed in the performance curve.

In order to elucidate the behaviour of such a complex
system, many research efforts in PEFC modelling have
been made and are based on electrochemical kinetics, phe-
nomenological transport, and the mass and energy conser-
vation laws. As reported in the literature, the complexity
of the PEFC models is extremely variable. Detailed con-
siderations on geometrical configuration in PEFCs lead to
three-dimensional models[1–4]. Two-dimensional models
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Nomenclature

a effective platinum surface area per unit
volume (cm2 cm−3)

A parameter in capillary pressure head
expression

b dimensionless coordinate at the diffuser
face

C parameter in capillary pressure head
expression

cO2 oxygen concentration (mol cm−3)
cO2,ref reference oxygen concentration (mol cm−3),

defined asP/HO2

d gas-diffuser thickness (�m)
D parameter in capillary pressure head

expression (cm)
Deff

i−j effective binary diffusion coefficient fori and
j species (cm2 s−1)

Di−j binary diffusion coefficient fori andj species
(cm2 s−1)

Deff
O2

effective diffusivity of dissolved oxygen in
the catalyst layer (cm2 s−1)

F Faraday’s constant (96487 C per equivalent)
HO2 Henry’s constant for oxygen (atm cm3 mol−1)
io,ref exchange current density at the reference

condition (A cm−2)
I cathode current density (A cm−2)
Io characteristic current density, defined by

Eq. (16f)(A cm−2)
keff

m effective protonic conductivity for the
ionomer phase (S cm−1)

keff
d effective electric conductivity for the gas

diffuser (S cm−2)
Kl,abs liquid water permeability at 100%

saturation (cm2)
lm membrane thickness (�m)
Ni mole flux of speciesi (mol per cm2 s)
Nw,m mole flux of water through the membrane|

catalyst-layer interface (mol per cm2 s)
nd electro-osmotic drag coefficient
mw molecular weight of water
p parameter defined byEq. (44)
P total pressure (atm)
qw liquid water flux (cm s−1)
r parameter, defined byEq. (32)
R the universal gas constant (8.314 J per mol K)
s liquid water saturation of diffuser, defined

as 1− ε/ε0
T cathode temperature (K)
V catalyst potential (V)
Vc cathode potential (V)
Vo open-circuit potential (V)
w dimensionless position where oxygen

depletion occurs

xi mole fraction of speciesi
xb
i xi in the bulk flow

xc
i xi at the catalyst-layer|gas-diffuser interface

xm
O2

xO2 at the catalyst-layer|membrane interface
z coordinate perpendicular to the face of the gas

diffuser (�m)

Greek letters
αi electrode transfer coefficient
β1 parameter, defined byEq. (16b)(S cm−2)
β2 parameter, defined byEq. (23)(S cm−2)
δ the catalyst-layer thickness (�m)
ε porosity of gas diffuser
ε0 porosity of gas diffuser at zero water

saturation
εw,m volume fraction of water in membrane
φ ionomer potential (V)
φc φ at the gas-diffuser|catalyst-layer

interface (V)
φ parameter, defined byEq. (16a)
Λ parameter, defined byEq. (41)
η parameter, defined byEq. (39)
λ water content of membrane (moles of water

per mole of sulfonic groups)
µw viscosity of liquid water (g per cm s)
ρw density of liquid water (g cm−3)
τw water mole flux driven by hydraulic

permeation, defined byEq. (6)
(mol per cm2 s)

ζ dimensionless coordinate, defined
by Eq. (2)

are formulated by considering the variations of state vari-
ables along the gas channel and along the direction normal
to the gas diffuser[5–10]. There are also two-dimensional
models with emphasis on the effects of local inhibition
of oxygen transport on the face of the gas diffuser by
ribbed carbon plates[11–13], or on the effects of interdigi-
tated flow fields[14]. Because the cell thickness in PEFCs
is orders of magnitude smaller than other dimensions,
one-dimensional models, though simplified ones, are still
able to provide a good account of the polarization behaviour
of PEFCs. With different foci in investigations, a wide va-
riety of one-dimensional models have also been proposed
[15–23]. In addition, empirical or semi-empirical models
characterized by algebraic equations have been suggested
[24–30].

In general, a mechanistic model, which takes into ac-
count spatial variations of reactant concentration and poten-
tial, provides better insight into the involved physical and
electrochemical phenomena, and hence better interpretation
of experimental data. Such models can also be employed as
a predictive tool since all model parameters have a precise
physical meaning. The dependencies of the various sources
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of polarization on the model parameters are described, how-
ever, by a set of coupled differential equations, and thus their
effects on the cell performance cannot be clearly revealed.
In addition, considerable efforts on modelling and compu-
tations, contingent upon the model complexity, are usually
required.

The overall loss of voltage in PEFCs can be viewed as
a summation of individual contributive terms that origi-
nate from limitations of reactant transport, proton migra-
tion, electron conduction, and the electrochemical reactions.
This observation forms the basis for the formulation of most
empirical and semi-empirical models[24–30]. In these for-
mulations, the overall loss of cell voltage is expressed as a
summation of a few terms that account for the characteristics
of the losses of the potentials of the various limiting pro-
cesses. Parameters without physical origin and significance
are incorporated, and have to be determined by fitting the
equations with experimental data. Consequently, empirical
and semi-empirical models are only data-fitting tools and
cannot be used for performance prediction, but they do pro-
vide simple algebraic expressions for the relation between
the cell voltage and current density.

In previous work[31], the performance equations for
PEFC cathodes were derived based on a mechanistic ap-
proach. The performance equations were formulated from
the reduction of a one-dimensional model through ap-
proximating the profiles of oxygen concentration, catalyst
potential and ionomer potential with appropriate parabolic
functions and lumping the electrochemical reaction at a
reaction centre. The analysis was further employed to for-
mulate the performance equations of a single cell that
included potential losses pertinent to its cathode, anode and
membrane electrolyte[32]. The derived performance equa-
tions were characterized in an algebraic form as empirical
models but with no appreciable degradation of accuracy.
Nevertheless, in the previous studies, the details of liquid
water transport in the gas diffuser were not considered. The
transport of oxygen in the gas diffuser was characterized
by a single value of the effective porosity of the diffuser,
which was assumed to be invariant with current density.
In practical situations, liquid water may accumulate in the
gas diffuser. In addition, the profile of water saturation in
the gas diffuser is not uniform, which also evolves with
operating current density. The accumulated water partially
obstructs the gas channels of the diffuser, and hence, im-
poses greater limitations for oxygen transport. The objective
of the present study is to develop performance equations
for PEFC cathodes that also take such phenomena into
consideration. In addition, the method of weighted resid-
uals [33,34] is applied over the catalyst-layer domain so
as to yield the final forms of the performance equations.
Compared with the performance equations developed pre-
viously, the ones presented here not only provide a deeper
insight into the processes involved at a PEFC cathode but
also allow for more accurate estimations of its overall
performance.

2. One-dimensional model

The cathode considered in the present work consists of
two parts, namely, a catalyst layer and a gas diffuser. These
are illustrated inFig. 1. The assumptions employed to derive
the model equations are delineated as following:

(i) an isothermal, steady-state model is considered;
(ii) pressure variations within the gas diffuser are negli-

gible;
(iii) the Stefan–Maxwell equations are employed for

multi-component gas transport in the gas diffuser,
and the Bruggeman expression[17], which includes
the effects of porosity and tortuosity, is applied to
evaluate the effective binary gas diffusivity;

(iv) as liquid water appears in the gas diffuser, the water
vapour is assumed to be saturated;

(v) the nitrogen mole flux is zero due to its inertness;
(vi) catalyst particles and conductive ionomers are ho-

mogeneously mixed in the catalyst layer; a macro-
homogeneous assumption is applied, which indicates
that the local physical and chemical properties are in-
variant with position inside the catalyst layer;

(vii) the oxygen reduction reaction follows a first-order re-
action rate expression with respect to oxygen con-
centration, and the reaction rate is described by the
Butler–Volmer expression[35,36];

(viii) Henry’s law holds for the phase equilibrium of oxygen
at the gas-diffuser|catalyst-layer interface;

(ix) Fick’s law is applied for the transport of oxygen within
the catalyst layer and the oxygen flux is zero at the
catalyst-layer|membrane interface;

(x) the loss in potential due to electron conduction in the
catalyst layer is negligible.

These assumptions are basic ones implied in the model
equations; others, which are not mentioned above, will be
stated as they are employed in formulation.

With the assumptions stated above, the Stefan–Maxwell
equations can be condensed to one single equation as liquid
water prevails in the gas diffuser, i.e.,[17]:

Fig. 1. Schematic of components and geometry considered for PEFC
cathode.
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P

RT

dxO2

δdζ
= −(1 − xb

w − xO2)NO2

[
1

Deff
N2–O2

+ xb
w

xO2D
eff
w–N2

+ (1 − xb
w − xO2)D

eff
O2–w

]
(1)

whereNi is the mole flux of speciesi; xi is its mole fraction;
Deff

i–j is the effective gas-pair diffusivity fori andj species in
the porous medium;R is the universal gas constant;P is the
total pressure;T is the cathode temperature;δ is the thick-
ness of the catalyst layer;ζ is the dimensionless coordinate
defined as:

ζ = z

δ
(2)

wherez is the coordinate perpendicular to the face of the
gas-diffuser.

The steady-state assumption requires:

dNO2

dζ
= 0 (3)

Generally, three different transport mechanisms are re-
sponsible for liquid water transport through the membrane|
catalyst-layer interface; namely, electro-osmotic drag, hy-
draulic permeation by the pressure difference between two
sides of the membrane, and back diffusion by the gradients
of water concentration within the membrane. In the present
work, the membrane is considered to be well hydrated and
consequently the contribution attributed to back diffusion is
neglected. Accordingly, the mole flux of liquid water trans-
ported through the membrane|catalyst-layer interface, de-
noted asNw,m, is expressed as[17,22]:

Nw,m = nd
I

F
− εw,mρwkp,m

mwµw

$Pm

lm
(4)

where

nd = 2.5
λ

22
(5)

For brevity, we assign

τw = εw,mρwkp,m

mwµw

$Pm

lm
(6)

In the above expressions,nd is the electro-osmotic drag co-
efficient; λ is the water content in membrane;kp,m is the
membrane permeability;lm is the membrane thickness;I is
the current density;F is Faraday’s constant;µw is the wa-
ter viscosity;ρw is the water density;mw is the molecular
weight of water;εw,m is the volume fraction of water in the
membrane;$Pm is the pressure difference between the two
sides of membrane. Based on the above definitions, the value
of Nw,m may be positive or negative contingent upon the
combined contributions of these two mechanisms. A posi-
tive value implies that a net water flow is transported from
the membrane to the catalyst layer, while a negative flow
indicates that liquid water passes in the opposite direction.

Darcy’s law is applied to describe the liquid water trans-
port in the gas diffuser. Because it is postulated that the vari-
ations of gas pressure within the gas diffuser are negligible,
the gradients of capillary pressure of the liquid phase be-
come the only driving forces for water flow. Thus, the liquid
water flux,qw, is expressed as:

qw = −[(2 + 4nd)NO2 + Nw + τw]

(
mw

ρw

)

= −K(s)ρwg

µw

(
−dψ

ds

)(
ds

δdζ

)
(7)

whereK(s) is the diffuser permeability;ψ is the capillary
head of liquid water;g is the gravitational acceleration;s is
the water saturation of the diffuser. Taking the local satura-
tion into account, the effective gas-pair diffusivity is evalu-
ated as:

Deff
i–j = ε1.5

0 (1 − s)1.5Di–j (8)

With the stated assumptions, the Stefan–Maxwell equations
can be rearranged to give

Nw = NO2

[
Deff

N2–wxb
w

Deff
N2–wxO2 + Deff

O2–w(1 − xb
w − xO2)

]

= NO2

[
DN2–wxb

w

DN2–wxO2 + DO2–w(1 − xb
w − xO2)

]
(9)

K(s) and dψ/ds are expressed as[11]:

dψ

ds
= −AD[e−A(s−C) + eA(s−C)] (10)

K(s) = Kl,abs(s + 0.01) (11)

InsertingEqs. (9)–(11)into Eq. (7)results in[
2 + 4nd + DN2–wxb

w

DN2–wxO2 + DO2–w(1 − xb
w − xO2)

]
NO2

+ τw + Kl,absρ
2
wgAD(s + 0.01)[e−A(s−C) + eA(s−C)]

µwmwδ

×
(

ds

dζ

)
= 0 (12)

In the catalyst layer (0< ζ <1), the equations of mass
conservation, electro-neutrality and Ohm’s law can be ex-
pressed in a partially dimensionless form as:

d2xO2

dζ2
− ϕ{exp[fc(V0 − V + φ)]

− exp[−fa(V0 − V + φ)]}xO2 = 0 (13)

d2xO2

dζ2
− β1

Io

d2φ

dζ2
= 0 (14)

dV

dζ
= 0 (15)
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The model parameters appearing in the above expressions
are defined by:

ϕ = aio,refHO2δ
2

4FPDeff
O2

(16a)

β1 = keff
m

δ
(16b)

fc = αcF

RT
(16c)

fa = αaF

RT
(16d)

xO2 = cO2

cO2,ref
= cO2

P/HO2

(16e)

Io = 4FPDeff
O2

HO2δ
(16f)

whereαi is the electrode transfer coefficient;a is the ef-
fective platinum surface area per unit volume;io,ref is the
exchange current density at the reference condition;cO2 is
the dissolved oxygen concentration in the ionomer phase;
keff

m is the effective protonic conductivity for the ionomer
phase;Deff

O2
is the effective diffusivity of dissolved oxygen

in the catalyst layer;Vo is the open-circuit potential;V is
the catalyst potential;φ is the ionomer potential; andHO2 is
Henry’s constant for gaseous oxygen and its dissolved form
in the ionomer phase at the cathode temperature. It should be
noted thatxO2 stands for the oxygen mole fraction in the gas
phase of the diffuser, but represents the dimensionless con-
centration of dissolved oxygen in the ionomer phase within
the catalyst layer as defined byEq. (16e). The same symbol
was used in both of the two regions because, by such defini-
tions, thexO2 profiles are continuous across their boundary.

At the face of the gas diffuser (ζ = b), Eq. (3) is also
applied. Other boundary conditions are:

xO2 = xb
O2

(17)

s = 0 (18)

At the gas-diffuser|catalyst-layer interface (ζ = 1), in addi-
tion to Eq. (3), other conditions are written as

xO2(catalyst layer) = xO2(gas diffuser) (19)

Io

4F

dxO2

dζ
(catalyst layer) = −NO2 (20)

dφ

dζ
= 0 (21)

The cathode potential (denoted asVc) is equivalent to the
catalyst potential deducted by the ohmic loss of the diffuser.
Thus, one has:

Vc = V(catalyst) −
(

−4FNO2

β2

)
(22)

and

β2 = keff
d

d
(23)

wherekeff
d is the effective electric conductivity of the gas

diffuser andd is its thickness.
At the membrane|catalyst-layer interface(ζ = 0), in ad-

dition to Eq. (15), the boundary conditions are formulated
as:

φ = 0 (24)

dxO2

dζ
= 0 (25)

The one-dimensional model derived above forms a
three-point boundary value problem with three govern-
ing equations and three state variables in each domain.
Eqs. (1), (3) and (12)are applied for the diffuser where
state variablesxO2, NO2 and s are present.Eqs. (13)–(15)
are employed for the catalyst layer, and in the region state
variablesxO2, φ and V appear. The method of collocation
on finite elements based on cubic B-spline interpolation was
used to solve the model equations[37]. Forty sub-intervals
with equal size were arranged in the domain of the gas
diffuser. The domain of the catalyst layer was also divided
into the same number of sub-intervals; but the size of the
sub-intervals was decreased along theζ direction with a
common ratio of 0.7 to account for the extremely high oxy-
gen concentration gradients that develop in a narrow region
near the gas-diffuser|catalyst-layer interface at high current
densities. Two points were collocated in each sub-interval,
which thus transform the model equations into a set of al-
gebraic equations. Newton’s method was employed for the
solutions of the discretized equations.

At low current densities, where liquid water has not yet
appeared within the diffuser, the Stefan–Maxwell equations
take the forms:

P

RT

dxN2

δdζ
= xN2

[
NO2

Deff
N2–O2

+ NW

Deff
w–N2

]
(26)

P

RT

dxO2

δdζ
= xO2

Deff
O2–w

(NO2 + Nw) + xN2NO2

×
(

1

Deff
O2–w

− 1

Deff
N2–O2

)
− NO2

Deff
O2–w

(27)

Under such a condition,qw = 0 andEq. (7)becomes:

(2 + 4nd)NO2 + Nw + τw

= −(2 + 4nd)
I

4F
+ Nw + τw = 0 (28)

andNw can be expressed as:

Nw = (2 + 4nd)
I

4F
− τw (29)
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Eq. (26)can be solved to give

xN2 = xb
N2

exp

[
δRT

P

(
NO2

Deff
N2–O2

+ NW

Deff
w–N2

)
(ζ − b)

]
(30)

After insertingEq. (30), Eq. (27)can be solved to give:

xO2 =
[
xb

O2
− xb

N2
NO2

−NO2 + rNw
− NO2

NO2 + Nw

]

× exp

[
δRT

PDeff
O2–w

(NO2 + Nw)(ζ − b)

]

+ xb
N2

NO2

−NO2 + rNw
exp

[
δRT

P

(
NO2

Deff
N2–O2

+ NW

Deff
w–N2

)

× (ζ − b)

]
+ NO2

NO2 + Nw
(31)

where:

r = Deff
O2–N2

(Deff
O2–w − Deff

N2–w)

Deff
N2–w(Deff

N2–O2
− Deff

O2–w)
(32)

With the employment ofEq. (29)and assigningζ to 1, the
value ofxO2 at the gas-diffuser|catalyst-layer interface, de-
noted asxc

O2
, can be obtained as:

xc
O2

= −xb
N2

I

I + r[(4nd + 2)I − 4Fτw]

× exp

{
− dRT

4FP

[
−I

Deff
N2–O2

+ (4nd + 2) I − 4τwF

Deff
w–N2

]}

+
{
xb

O2
+ xb

N2
I

I + r[(4nd + 2)I − 4Fτw]

+ I

(4nd + 1)I − 4τwF

}

× exp

{
−dRT[(4nd + 1)I − 4τwF ]

4FPDeff
O2–w

}

− I

(4nd + 1)I − 4τwF
(33)

By similar procedures, the value ofxN2 at the gas-diffuser|
catalyst-layer interface, represented asxc

N2
, is calculated as:

xc
N2

= xb
N2

exp

{
− dRT

4FP

[
−I

Deff
N2–O2

+ (4nd + 2)I − 4τwF

Deff
w–N2

]}

(34)

Under such a condition, the model equations for the gas dif-
fuser can be solved analytically. Consequently, the numeri-
cal approach described above is applied for the catalyst-layer
domain only. Starting fromI = 0, xc

w (= 1 − xc
O2

− xc
N2

) is

lower thanxb
w due to hydraulic permeation of liquid water

through the membrane. Under this condition,xc
O2

is evalu-
ated by usingEq. (33). As I is increased,xc

w increases also.
When it reachesxb

w, liquid water starts to appear in the dif-
fuser. Then, the three-point boundary value problem formu-
lated above has to be solved to construct the remainder of
the polarization curve of the PEFC cathode.

3. Formulation of performance equations

With the approximationDeff
N2–w

∼= Deff
O2–w, Eq. (12)can

be simplified to:[
2 + 4nd + xb

w

1 − xb
w

]
NO2 + τw

+ Kl,absρ
2
wgAD(s + 0.01)[e−A(s−C) + eA(s−C)]

µwmwδ

×
(

ds

dζ

)
= 0 (35)

Then, integrating over the diffuser domain leads to:

{I[2 + 4nd + xb
w/(1 − xb

w)] − 4τwF }mwµwd

4FKl,absρ2
wgAD

= −exp[−AC]

(
0.01

A
− 1

A2

)
+ exp[AC]

(
0.01

A
+ 1

A2

)

+ exp[A(sc − C)]

(
sc + 0.01

A
− 1

A2

)

− exp[−A(sc − C)]

(
sc + 0.01

A
+ 1

A2

)
(36)

wheresc represents the value ofs at the gas-diffuser|catalyst-
layer interface. Using the same approximation,Eq. (1) is
simplified to:

P

RT

dxO2

δdζ
= −(1 − xb

w − xO2)NO2

×
[

1

Deff
N2–O2

+ xb
w

(1 − xb
w)Deff

O2–w

]
(37)

InsertingEq. (35)into Eq. (37)results in

dxO2

(1 − xb
w − xO2)

= −η
(s + 0.01)

[
e−A(s−C) + eA(s−C)

]
ds

(1 − s)1.5

(38)

where:

η = Kl,absRTADgρ2
w

Pmwµwε1.5
0 [2 + 4nd + xb

w/(1 − xb
w) − 4τwF/I]

×
[

1

DN2–O2

+ xb
w

(1 − xb
w)DO2–w

]
(39)
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Integration ofEq. (38)over the diffuser yields:

xc
O2

= xb
O2

− xb
N2

[exp(ηΛ) − 1] (40)

in which

Λ = −
∫ 0

sc

(s + 0.01)[e−A(s−C) + eA(s−C)]

(1 − s)1.5
ds (41)

With a given value ofsc, Λ can be evaluated using the
formula of Gauss quadrature[34]. The number of interior
points required to yield an accurate estimation ofΛ strongly
depends on the value ofsc. Only two points are required for
a value ofsc close to zero. For a larger value ofsc, more
points must be considered. As it will be shown in the base
case in the following section,sc is increased to 0.95 while
the limiting current is approached. Under this condition, the
employment of 10 interior points is able to yield an estimate
with desired accuracy. Accordingly, the formula of Gauss
quadrature with 10 interior points is used to evaluateΛ in
all calculations of the present work. If liquid water has not
yet appeared in the diffuser (low current densities), using
the approximationDeff

N2–w
∼= Deff

O2–w (r = 0), Eq. (33)can
be simplified to:

xc
O2

= −xb
N2

exp

{
−dRT

4FP

[
−I

Deff
N2–O2

+ (4nd + 2)I−4τwF

Deff
w–N2

]}

− I

(4nd + 1)I − 4τwF

+
{
xb

O2
+ xb

N2
+ I

(4nd + 1)I − 4τwF

}

× exp

{
−dRT[(4nd + 1)I − 4τwF ]

4FPDeff
O2–w

}
(42)

It is further assumed that the dimensionless oxygen con-
centration profile in the catalyst layer be approximated by a
parabolic function, which has the form:

xO2 = pζ2 + xc
O2

− p (43)

Eq. (43)automatically satisfies the boundary conditions re-
quired by the profile ofxO2 at ζ = 0 and 1. Because the
current density is equivalent to the flux of dissolved oxy-
gen at the catalyst-layer|gas-diffuser interface multiplied by
−4F, p can be expressed as:

p = I

2Io
(44)

Integration ofEq. (14)along theζ direction twice leads to:

φ = Io

β1

(
xO2 − xm

O2
− I

Io
ζ

)
(45)

where xm
O2

stands for the oxygen concentration at the
membrane|catalyst-layer interface and is evaluated as:

xm
O2

= xc
O2

− I

2Io
(46)

Neglecting the anodic rate inEq. (13), insertingEq. (45),
multiplying (dxO2/dζ)exp(fcIζ/β1) and then integrating
over the catalyst-layer domain, one eventually arrives at:∫ 1

0

d2xO2

dζ2

dxO2

dζ
exp

(
fcI

β1
ζ

)
dζ

−ϕexp

[
fc

(
Vo − V − Io

β1
xc

O2
+ I

2β1

)]

×
∫ xc

O2

xm
O2

exp

(
fcIo

β1
xO2

)
xO2dxO2 = 0 (47)

With the incorporation ofEqs. (43)–(46), Eq. (47)can be an-
alytically integrated. After certain algebraic rearrangements,
the cathode potential is expressed as

Vc = Vo − I

2β1
− I

β2

− 1

fc
ln




I + β1/fc
[
exp(−Ifc/β1) − 1

]
ϕ[Iox

c
O2

− (β1/fc) + exp(−Ifc/2β1)

× ((β1/fc) − Iox
c
O2

+ (I/2))]




(48)

The above derivation procedures basically follow the princi-
ples of the method of weighted residuls[33,34]. The weight-
ing function (dxO2/dζ)exp((fcI/β1)ζ) is used in order to
fulfil analytical integration of the weighted residual.

The overall potential loss in a PEFC cathode is a sum-
mation of the individual contributive terms, which include
diffusion overpotential and ohmic overpotential for electron
conduction in the diffusion layer, diffusion overpotential and
ohmic potential loss for proton migration in the catalyst
layer, and activation overpotential for the electrochemical re-
action. Remember, the ohmic potential loss caused by elec-
tron conduction in the catalyst layer is not taken into account
in the present study due to its negligible value. The activa-
tion overpotential is referred to as the potential loss required
to generate the desired current density under the condition
without any transport limitations and ohmic losses. Thus, it
is quantified as:

activation overpotential for electrochemical reaction

= 1

fc
ln

(
I

ϕxb
O2

Io

)
(49)

The diffusion overpotential of the gas diffuser arises from the
difference in oxygen concentration at the diffuser face and at
the catalyst-layer|gas-diffuser interface, which is expressed
as:

diffusion overpotential in gas diffuser= 1

fc
ln

(
xb

O2

xc
O2

)
(50)

The ohmic loss caused by proton migration in the cata-
lyst layer is calculated as the difference of ionomer po-
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tential at the membrane|catalyst-layer interface and at the
catalyst-layer|gas-diffuser interface, which has the form:

ohmic loss(protonic) in catalyst layer= I

2β1
(51)

The potential loss due to electron conduction in the gas
diffuser is determined by Ohm’s law as:

ohmic loss(electronic) in gas diffuser= I

β2
(52)

The remaining part ofEq. (48)is attributed to the diffusion
overpotential in the catalyst layer, which is calculated as:

diffusion overpotential in catalyst layer

= 1

fc
ln




1 + β1/Ifc[exp(−Ifc/β1) − 1]

[1 − (β1/fcIox
c
O2

) + exp(−Ifc/2β1)

× ((β1/fcIox
c
O2

) − 1 + (I/2Iox
c
O2

))]




(53)

Eq. (43)is physically meaningful only for the condition that
xm

O2
is greater than zero, which indicates:

I ≤ 2Iox
c
O2

(54)

As the current density exceeds the critical value,Eq. (43)
is no longer applicable andEq. (48)is not valid either. Un-
der such a condition, we propose to employ a piecewise
parabolic function for the dimensionless oxygen concentra-
tion profile within the catalyst layer, which is:

xO2 = xc
O2

(
ζ − w

1 − w

)2

, for w ≤ ζ ≤ 1 and

xO2 = 0, for 0 ≤ ζ ≤ w (55)

wherew is the dimensionless position in the catalyst layer
where oxygen depletion takes place. Relating the transport
rate of dissolved oxygen at the catalyst-layer|gas-diffuser
interface to the electric current density of the cathode gives:

w = 1 − 2xc
O2

Io

I
(56)

Based on the proposed profile function forxO2 within the
catalyst layer,Eq. (48)has to be reformulated as:

∫ 1

w

d2xO2

dζ2

dxO2

dζ
exp

(
Ifc
β1

ζ

)
dζ − ϕexp[fc(Vo − V)]

×
∫ xc

O2

0
exp

(
Iofc

β1
xO2

)
xO2dxO2 = 0 (57)

After insertingEqs. (55) and (56), Eq. (57)can be analyti-
cally integrated. With certain algebraic operations, the cath-
ode potential has the form:

Vc = Vo − I

β1
+ xc

O2
Io

β1
− I

β2

− 1

fc

ln




I2[2xc
O2

Iofc − β1

+β1exp(−2xc
O2

Iofc/β1)]

4ϕ(xc
O2

)2I2
o[xc

O2
Iofc − β1

+β1exp(−xc
O2

Iofc/β1)]




(58)

The diffusion overpotential and the ohmic loss of the gas
diffuser, as well as the activation overpotential for the oxygen
reduction reaction, all have the same forms as the previous
case. Other contributive terms for potential loss are modified
as

diffusion overpotential of catalyst layer

= 1

fc
ln




I[2xc
O2

Iofc − β1

+β1exp(−2xc
O2

Iofc/β1)]

4xc
O2

Io[xc
O2

Iofc − β1

+β1exp(−xc
O2

Iofc/β1)]




(59)

ohmic loss(protonic) in the catalyst layer= I

β1
− xc

O2
Io

β1

(60)

4. Validation of performance equations

In order to investigate the validity of the parabolic approx-
imation employed in formulation, polarization curves based
on the one-dimensional model and the performance equa-
tions derived previously have been calculated over an exten-
sive range of the values of the model parameters. Since an
analytical form of the exact solutions of the one-dimensional
model is not available, we consider its numerical solutions
as exact ones in comparisons. In order to carry out the com-
parisons over a wide parameter range, the parameter values
listed inTable 1are taken as a base case. Calculations were
implemented by adjusting the value of a particular param-
eter in the table while keeping other ones unchanged. It is
noted that the effective oxygen diffusivity in the catalyst
layer (Deff

O2
) listed inTable 1is larger than the value for fully

hydrated Nafion® 117 [17]. Such a selection was based on
the consideration of the presence of small amounts of gas
pores in the catalyst layer that might greatly enhance oxy-
gen transport. The parameter values related to the capillary
pressure of the gas diffuser were taken from the work of
Natarajan and Nguyen[11], in which the cathode operating
temperature is 60◦C. Due to the weak temperature depen-
dence of these parameters[11], they were directly used for
the base case without any modifications.

The polarization curves calculated using the performance
equations and the one-dimensional model for the base case
are illustrated inFig. 2. As it shows, these two curves
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Table 1
Values of model parameters for the base case

Effective ionic conductivity of ionomer,keff
m (S cm−1) 3 × 10−2

Effective electric conductivity of gas diffuser,keff
d (S cm−1) 1

Effective diffusivity of dissolved oxygen in the catalyst layer,Deff
O2

(cm2 s−1) 1 × 10−5

Gas-pair diffusivity,DO2–N2 (cm2 s−1) 5.58 × 10−2

Gas-pair diffusivity,DN2–w (cm2 s−1) 7.74 × 10−2

Gas-pair diffusivity,DO2–w (cm2 s−1) 7.40 × 10−2

Gas-diffuser thickness,d (�m) 200
Catalyst-layer thickness,δ (�m) 10
Porosity of gas diffuser at zero water saturation,ε0 0.6
Product of platinum surface area and reference exchange current,aio,ref (A cm3) 1 × 10−2

Pressure,P (atm) 5
Bulk oxygen mole fraction,xb

O2
0.190

Bulk nitrogen mole fraction,xb
N2

0.716
Bulk mole fraction of water vapor,xb

w (relative humidity, 100%) 0.094
Temperature,T (◦C) 80
Henry’s constant,HO2 (atm cm3 per mol) 2.0 × 105 [17]
Open-circuit potential,Vo (V) 1.197 [17]
Cathodic transfer coefficient,αc 1.0
Anodic transfer coefficient,αa 0.5
Membrane thickness,lm (�m) 230 [17]
Pressure difference between two sides of membrane,$Pm (atm) 2
Hydraulic permeability of membrane,kp,m (cm2) 1.58× 10−14 [17]
Water viscosity,µw (g cm−1 s−1) 3.565× 10−3

Volume fraction of water in membrane,εw,m 0.28 [17]
Density of liquid water,ρw (g cm−3) 0.972
Liquid water permeability of diffuser 100% saturation,Kl,abs (cm2) 3 × 10−10

Constants in capillary head expression A, C and D in cm 3.7, 0.494 and 0.0173[11]
Water content in membrane under saturated water vapor (moles of water per mole of sulfonic groups),λ 14 [22]

are well matched. For the parameter values employed in
calculations, liquid water starts to appear in the gas dif-
fuser atI = 0.26 A cm−2. The profiles of liquid satura-
tion in the gas diffuser for four selected current densities
are illustrated inFig. 3. As shown, when the current den-
sity approaches its limiting value, the water saturation at
the gas-diffuser|catalyst-layer interface reaches the value of
0.95. Such an observation is consistent with the low value of

Fig. 2. Polarization curves for base case: (�) one-dimensional model and
(�) performance equations.

the limiting current observed inFig. 2. For the sake of sim-
plicity, a single value of ionic conductivity for the ionomer
phase of the catalyst layer was employed in calculations
for the entire range of current density. In fact, the value of
keff

m depends on the degree of hydration of the ionomer phase.
The computational results reveal that the mole fraction of
water vapour at the catalyst-layer|gas-diffuser interface is
19% lower than the saturated value atI = 0 due to hydraulic

Fig. 3. Profiles of water saturation within diffuser at various current densi-
ties: (�) I = 0.30 A cm−2; (�) I = 0.58 A cm−2; (�) I = 0.89 A cm−2;
and (�) I = 1.17 A cm−2.
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Fig. 4. Polarization curves of individual contributive terms for base case
calculated using performance equations: (�) activation overpotential for
oxygen reduction reaction; (�) diffusion overpotential of catalyst layer;
(�) diffusion overpotential of gas diffuser; (�) ohmic potential loss of
ionomer phase in catalyst layer; and (�) ohmic potential loss of gas
diffuser.

permeation of liquid water through the membrane. This fact
also leads to a lower degree of hydration and, hence, a lower
ionic conductivity of the ionomer phase in the catalyst layer.
As the current density becomes higher,xc

w is increased and
the value ofkeff

m also becomes larger. Because such phenom-
ena only exist in the region of low current densities, the er-
rors caused by ignoring the variations ofkeff

m in calculations
would not be significant as long as the difference between
xb

w andxc
w at I = 0 is not large.

The individual potential losses caused by the limitations
of oxygen reduction kinetics, oxygen transport, proton mi-
gration, and electron conduction for the base case are pre-
sented inFig. 4. These were calculated based on the derived
performance equations. As illustrated, the activation overpo-
tential for the oxygen reduction reaction increases sharply as
the current density is driven away from zero. Its increasing
rate is alleviated as the current density is further increased.
Such a behaviour can be clearly revealed by the logarith-
mic dependence of the activation overpotential on current
density, as shown byEq. (49). The potential losses caused
by proton migration in the ionomer phase of the catalyst
layer and by electron conduction in the gas diffuser form
the major part of the overall ohmic loss of the cathode. The
potential loss of the gas diffuser is linear with current den-
sity, as revealed by Ohm’s law. Up to the occurrence of
oxygen depletion in the catalyst layer, the potential loss of
ionomer phase is also linear with current density as shown
by Eq. (51). After this point, its expression becomes a func-
tion of xc

O2
[Eq. (60)]. The diffusion overpotential evolves

with the current density in a more complicated fashion. It in-
creases with the current density and goes sharply to infinity
as the limiting current is approached. Such a phenomenon
is also noted for the diffusion overpotential of the gas dif-

Fig. 5. Polarization curves for cathodes with different catalyst-layer thick-
nesses: (A)δ = 1�m; (B) δ = 20�m; (�) one-dimensional model; and
(�) performance equations.

fuser and stems from the depletion of oxygen concentration
at the catalyst-layer|gas-diffuser interface.

The thickness of the catalyst layer may vary by some
orders of magnitude, as dictated by the preparation meth-
ods and by the amounts of catalysts and ionomers used. A
thickness of less than 1�m is achievable by sputtering[38].
When a catalyst layer is prepared by printing or brushing
an ionomer|carbon-supported-platinum ink on to a mem-
brane, the thickness of the layer formed is much larger. The
results displayed inFig. 5 were calculated for two cath-
odes with two different values of catalyst-layer thickness,
namely, 1 and 20�m. These two values were selected with
an intention to cover the wide variations in catalyst-layer
thickness that result from the different nature of fabrication
techniques. As shown, the polarization curves obtained us-
ing the performance equations agree well with those from
the one-dimensional model. At low current densities, where
oxygen is able to reach the membrane|catalyst–layer inter-
face, a thicker catalyst layer implies that larger space is avail-
able to accommodate the oxygen reduction reaction. Conse-
quently, a lower activation overpotential is needed to gener-
ate the required electric current. In other respects, a higher
ohmic loss for proton migration is formed for a thicker cat-
alyst layer due to a longer travel distance. Besides, a higher
diffusion overpotential is expected due to a lower value of
the average oxygen concentration over the catalyst layer. At
low densities, where the oxygen depletion has not yet oc-
curred, the effect of the first factor overshadows the other
two, and thus results in better performance for the cathode
with a thicker catalyst layer. Nevertheless, after the onset of
oxygen depletion, the influence of the first factor diminishes
and the other two take over. Accordingly, the cathode with
a thinner catalyst layer exhibits a higher cathode potential
at intermediate and high current densities.
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Fig. 6. Polarization curves for the cathodes with different product values
of aio,ref: (A) aio,ref = 3× 10−2 A cm−3; (B) aio,ref = 1× 10−3 A cm−3;
(�) one-dimensional model; and (�) performance equations.

Investigation of the discrepancies between the polariza-
tion curves calculated based on the derived performance
equations and on the one-dimensional model was carried out
for two cathodes with different products values ofaio,ref,
i.e., 3× 10−2 and 1× 10−3 A cm−3. The results are pre-
sented inFig. 6. A rather good agreement is also found
between these two models, as in the previous case. In the
model equations, the product value ofaio,ref quantifies the
overall reactivity of the catalyst layer, which includes the
intrinsic activity of the catalysts and the active surface area
available for the occurrence of the oxygen reduction reac-
tion. For a cathode with a lower value ofaio,ref, a higher
activation overpotential is required to generate the identical
electric current; thus, a lower cathode potential results. As
shown inFig. 6, the cathode with a higher product value of
aio,ref outperforms the one with a loweraio,ref value for the
entire range of current density.

For all model parameters appearing in the performance
equations,Deff

O2
is practically the one that exerts the major

influence on the diffusion overpotential of the catalyst layer.
The value ofDeff

O2
is greatly influenced by the presence of a

small amount of gas pores in the layer. In order to take this
factor into consideration, twoDeff

O2
values that differed by a

factor of 200, namely,Deff
O2

= 1×10−4 and 5×10−7 cm2 s−1

were employed for calculations. The results are presented in
Fig. 7. As seen, a fairly good agreement is found between
the results from the performance equations and from the
one-dimensional model. A higherDeff

O2
suggests that oxygen

is able to diffuse into the inner part of the catalyst layer and,
consequently, a lower diffusion overpotential results. This,
in turn, yields a better performance for the cathode. Since
the limiting current is determined by the oxygen transport in
the diffuser, it is not influenced by the value of the effective
diffusivity in the catalyst layer. As shown, the polarization

Fig. 7. Polarization curves for cathodes with different values of effective
oxygen diffusivity in catalyst layer: (A)Deff

O2
= 1 × 10−4 cm2 s−1; (B)

Deff
O2

= 5 × 10−7 cm2 s−1; (�) one-dimensional model; and (�) perfor-
mance equations.

curves for these two cases exhibit the same limiting value
of current density.

Polarization curves are shown inFig. 8 for two cathodes
that were constructed with different values of the effective
ionomer conductivity in the catalyst layer. As illustrated,
the results are almost identical. Moreover, the cathode with
keff

m = 0.05 S cm−1 always exhibits a better performance
than the one withkeff

m = 0.01 S cm−1 for the same cur-
rent density. It should be noted that both the ohmic loss by
proton migration and the oxygen diffusion overpotential are
influenced by the value ofkeff

m , as revealed byEqs. (51),

Fig. 8. Polarization curves for cathodes with different values of ef-
fective proton conductivity of ionomer phase in catalyst layer: (A)
keff

m = 0.05 S cm−1; (B) keff
m = 0.01S cm−1; (�) one-dimensional model;

and (�) performance equations.
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Fig. 9. Polarization curves for cathodes with different values ofKl,abs:
(A) Kl,abs = 5 × 10−10 cm2; (B) Kl,abs = 1.5 × 10−10 cm2; (�)
one-dimensional model; and (�) performance equations.

(53), (59) and (60). The former appears as the outcome of
Ohm’s law, while the latter arises from the participation of
the ionomer potential in the oxygen reduction reaction.

As liquid water starts to appear in the gas-diffuser|catalyst-
layer interface, it leaves the catalyst layer via the gas diffuser
by a slow capillary process. The liquid water that accumu-
lates in the gas diffuser partially obstructs the gas channels
and hence imposes a greater resistance for oxygen transport.
In addition to the gradients of capillary pressure head, the
permeability of the diffuser plays an important role in liq-
uid water transport. The polarization curves for the cathodes
with two differentKl,absvalues were calculated based on the
one-dimensional model and the performance equations. As
shown inFig. 9, the result obtained from the two models are
nearly same. At low current densities, where there is no liq-
uid water in the diffuser, the performances of the two cath-
odes are identical. After the onset of water accumulation in
the diffuser, the cathode withKl,abs= 5×10−10 cm2 yields
a higher potential than that withKl,abs= 1.5 × 10−10 cm2.
This is because the former allows a greater transport rate
of liquid water. It is also noted that the value ofKl,abs sig-
nificantly influences the magnitude of the limiting current
density, and the limiting values can be accurately estimated
usingEqs. (36) and (40).

In contrast to the performance equations developed pre-
viously [31], those present here provide a detailed phys-
ical insight into the liquid water transport within the gas
diffuser. As to the approximation method employed in the
catalyst-layer domain, it is also necessary to address the
discrepancies between the present approach based on the
method of weighted residuals and the previous ones that
employed a lumping technique. This is because both yield
highly accurate estimations of the cathode performance for
the range of parameters under investigation. Compared with

the ones derived previously using a piecewise linear ap-
proximation for the profile of the ionomer potential, the
first notable feature is that these two approaches yield quite
different forms for the diffusion overpotential of the cata-
lyst layer. The previous approach gives rather simple ex-
pressions, which are independent ofkeff

m . By contrast, much
more complex functions of effective ionomer conductivity
are generated by the present analysis. In order to resolve
such dissimilarity, we consider the following identity:

Vc = Vo + φc − I

β2

+ 1

fc
ln

{
I

xc
O2

ϕIoexp[fc(Vo − Vc − I/β2 + φc)]

}

− 1

fc
ln

(
xb

O2

xc
O2

)
− 1

fc
ln

(
I

xb
O2

ϕIo

)
(61)

whereφc denotes the ionomer potential at the gas-diffuser|
catalyst-layer interface. With the aid ofEq. (61), the physi-
cal significance of the diffusion overpotential of the catalyst
layer can be clearly revealed, that is equal to−1/fc multi-
plied by the logarithm of the effectiveness factor of the cat-
alyst layer. The latter factor is defined as the ratio of actual
current density to that evaluated based on the condition at
the catalyst-layer|gas-diffuser interface. Due to the partici-
pation ofφc in the expression for the catalyst-layer diffusion
overpotential, it is expected that its value will also vary with
keff

m . Such a dependency is eliminated, however, by the lin-
ear approximations that have been employed in the previous
work. Another discrepancy in the expressions of ohmic loss
of the ionomer phase in the catalyst layer stems from the
different ionomer potential profiles employed in theses two
approaches. In another model reported in the previous work,
the parabolic profiles for ionomer potential only serve as a
vehicle for evaluating the ionomer potential at the reaction
centre, and the potential loss of the ionomer phase of the cat-
alyst layer is calculated as the difference of ionomer poten-
tial at the reaction centre and at the catalyst-layer|membrane
interface. In addition to a better revelation of parameter de-
pendencies, the present performance equations also yield
more accurate results than those developed earlier.

5. Summary and conclusions

In the present study, the performance equations for
PEFC cathodes are formulated from the reduction of a
one-dimensional model that takes into account the trans-
port and electrochemical processes within the catalyst layer
and the gas diffuser. In particular, the transport of liquid
water in the gas diffuser and its effects on the polariza-
tion characteristics of the PEFC cathodes are considered.
The reduction procedures are performed by employing a
parabolic approximation or a piecewise parabolic one for
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the oxygen concentration profile within the catalyst layer
depending on the occurrence of oxygen depletion. Through
the use of these approximations and an appropriate weight-
ing function, analytic integration over the catalyst layer can
be carried out, which leads to final expressions of the per-
formance equations. Individual overpotential terms, which
result from the limiting processes considered in the original
one-dimensional model, can be quantitatively estimated by
the equations. Computational results have shown that the
polarization curves created by the performance equations
and by the one-dimensional model agree well for the exten-
sive parameter range investigated. With a clear revelation
of parameter dependencies and a great reduction in compu-
tational efforts, the present performance equations provide
an efficient tool for performance prediction and diagnosis
of PEFC cathodes.
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