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Abstract

A description is given of the tool implemented in GESPECOR to process coincidence summing corrections and derive decay scheme

data. The method of analysis produces relevant decay scheme data and the joint emission probability for any group of photons (gamma

emissions, X-rays, annihilation photons resulting from b+ decay) emitted in the decay of any nuclide with less than 100 levels.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

A typical demand placed on many gamma-ray spectro-
metry laboratories is to maintain high spectral output while
ensuring low detection limits for each sample through the
use of high efficiency detectors in high efficiency measure-
ment geometries. But this solution is convenient only if a
practical method for the determination of coincidence
summing corrections is possible.

The evaluation of coincidence summing effects requires
an intricate combination of the decay data of the nuclide of
interest and adequate detection probabilities for the
emitted radiations (in the peak and in the entire spectrum).
The methods applied for this purpose differ in the way in
which the decay data are prepared and how the detection
probabilities are evaluated and combined with the decay
data. We present a complex tool applied within the
GESPECOR program (Sima et al., 2001; Sima and Arnold,
2000) for preparing the necessary decay data. By separating
the evaluation of the decay data from the evaluation of the
efficiencies, this tool is most useful when coupled with the
Monte Carlo method of efficiency evaluation, as in the case
of GESPECOR. But this method of analysis is also useful
in combination with other methods, because it provides
e front matter r 2008 Elsevier Ltd. All rights reserved.
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insight into the relative contribution of various sets of
photons to coincidence summing. The angular correlation
of the photons is not implicitly included, but can easily be
included if the appropriate values of the angular correla-
tion coefficients are available.

2. Methods for the computation of coincidence summing

corrections

The first general method for the evaluation of coin-
cidence summing effects was proposed in 1972 (Andreev et
al., 1972), and has been extended and implemented in
computer programs (McCallum and Coote, 1975; Debertin
and Schötzig, 1979). This approach is based on a set of
recursive formulae in which the decay data and the
detection efficiencies are intimately coupled. A matrix
formulation was proposed by Semkow et al. (1990) and
further developed by Korun and Martinčič (1993, 1995) in
which the peak count rates are related to the source
disintegration rate by a product of matrices that are
functions of the decay scheme parameters, peak and total
efficiencies. Another approach (Laedermann and Décom-
baz, 2000; Berlizov and Tryshyn, 2005) involves the
simulation of the decay and the detection processes by
means of Monte Carlo techniques. For each decay process
a set of photons is selected according to the transition
probabilities, and then each photon is traced through the
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measurement setup. The resulting number of counts
accumulated in each peak is suitably normalized and used
to obtain the peak efficiency in the presence of coincidence
summing effects.

The method applied in GESPECOR (Sima et al., 2001;
Sima and Arnold, 2000) replaces the random sampling of
the decay process by computing the joint emission
probability of the various groups of photons that can be
emitted simultaneously in the decay process. Then the
efficiencies are evaluated by a dedicated Monte Carlo
simulation. The advantages of using the computed joint
emission probabilities are twofold: first, these probabilities
are computed only once before the Monte Carlo simula-
tion, saving computing time; second, the spread of the
computed values of the coincidence summing corrections
due to the random sampling of the decay path is
eliminated. The implemented procedure represents the
application of a well-known variance reduction technique,
resulting in a smaller statistical spread of the results for the
same number of photon histories.
                  10     11 

1 0

134Ba

Fig. 1. 134Cs decay scheme with level and transition labeling according to

the convention adopted.
3. Formalism: the simplest case

Consider a nuclide with N levels l ¼ 1, 2, y N, where
l ¼ 1 represents the ground level and l ¼ N the highest
excited level. Let L be the set of all levels. Suppose that a
number of transitions labeled as j ¼ 1, 2, y can take place
between the levels. Let T be the set of all transitions. For
each transition jAT we use the notation li(j) and lf(j) to
represent the initial and final level of the transition. For
simplicity we shall also use the same symbol T to denote
the set of gamma photons emitted in the corresponding
transitions, being clear from the context whether we refer
to transitions or to gamma photons. The transitions (and
the photons) are numbered according to the following rule:
for any transitions j, kAT we have jok if li(j)4li(k) or if
li(j) ¼ li(k) and lf(j)4lf(k). This rule is exemplified in Fig. 1
for the decay scheme of 134Cs. According to this conven-
tion a transition k cannot start from a level higher than the
starting levels of all the transitions j with jok and cannot
have the final level higher than any transitions j that start
on the same level with transition k but have jok.

Furthermore, for future convenience, we define ti(l)AT

for each level lAL as the first transition starting from level
l, i.e. ti(l) ¼ min{jAT|li(j) ¼ l}; e.g. ti(3) ¼ 9 in Fig. 1.

A gamma photon can be emitted or internal conversion
can take place in each transition, followed eventually by
the emission of X-rays or/and Auger electrons. In order to
emphasize the basic ideas, consider the simplest case,
namely that we disregard the X-ray contribution to
coincidence summing effects, the presence of metastable
states and b+ decay—these restrictions will be removed at
a later stage.

The true coincidence summing effects which are im-
portant for spectrum analysis can be classified as coin-
cidence losses from the peaks and coincidence
contributions to sum peaks. Below we shall consider them
in this order.
Let Ei be the energy of the ith photon (i.e. photon

emitted in transition iAT), with absolute emission prob-
ability pi. Denote by pi,j the probability of joint emission of
the ith and jth photons, by pi,j,k the joint emission
probability of the ith, jth and kth photon and so on. We
consider pi,j as being the probability of emission of the two
photons irrespective of other photons being emitted or not;
for example, in the case when the triplet {i,j,k} is emitted,
this event is counted both among the cases when the pair
{i,j} is emitted and among the cases when the pair {i,k} is
emitted. Denote by S(1)(i) the set of photons jAT for which
pi,j40:

Sð1ÞðiÞ ¼ fj 2 T jpi;j40g; (1)

i.e. S(1)(i) represents the set of photons which can be
emitted in the same decay act together with the ith photon.
Similarly,

Sð2ÞðiÞ ¼ ffj; kg 2 T jpi;j;k40g,

Sð3ÞðiÞ ¼ ffj; k; lg 2 T jpi;j;k;l40g, (2)

and so on. For example, in the case presented in Fig. 1,
S(1)(9) ¼ {1,3,6,11}, S(2)(9) ¼ {{1,6},{1,11},{3,11},{6,11}},
S(3)(9) ¼ {{1,6,11}}. All the photons from the sets S(1)(i),
S(2)(i), S(3)(i) y contribute to coincidence losses from the
peak associated with the ith photon. Indeed, if the nuclide
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activity is A, the count rate in the peak is

NðEiÞ ¼ Apidði 2 PÞ � A
X

j2Sð1ÞðiÞ

pi;jdði 2 P; j 2 IÞ

þ A
X

j;k2Sð2ÞðiÞ

pi;j;kdði 2 P; j 2 I ; k 2 IÞ � � � � , (3)

where d denotes the detection probability; for example
dði 2 P; j 2 I ; k 2 IÞ represents the probability that the
complete energy of the ith photon has been deposited in
the sensitive volume of the detector, while the jth and kth
photons interacted in the sensitive volume of the detector
and deposited some energy (but not necessarily their
complete energy). In other words, in the absence of
coincidence summing effects the ith photon would have
been registered in the peak P, while the jth and kth photons
would have been registered in the total (integral) spectrum
I. The

dði 2 PÞ ¼ �pðEiÞ (4)

is the usual peak efficiency for the energy of the ith photon,
but the detection probability for sets of photons is usually
different from the product of the corresponding peak (ep)
and total (et) efficiencies (Sima and Arnold, 2000; Arnold
and Sima, 2001).

Suppose that between the initial and final levels of the ith
transition a sequence of several linked transitions can take
place, for example transitions qAT and rAT that satisfy
li(q) ¼ li(i), lf(r) ¼ lf(i) and lf(q) ¼ li(r); e.g. in Fig. 1 for
i ¼ 10 we have q ¼ 9 and r ¼ 11. Then Ei ¼ Eq+Er and the
cases when the qth and rth photons are completely
absorbed into the sensitive volume of the detector without
the detection of other photons add a pulse in the peak of
energy Ei;(i.e. sum peak contributions are included in the
peak count rate). We introduce the notation:

Sð1Þðq; rÞ ¼ fj 2 T jpq;r;j40g,

Sð2Þðq; rÞ ¼ ffj; kg 2 T jpq;r;j;k40g and so on: (5)

Then the sum peak contribution of the qth and rth
transition to the count rate is

NsumðEq þ ErÞ

¼ Apq;rdðq 2 P; r 2 PÞ

� A
X

j2Sð1Þðq;rÞ

pq;r;jdðq 2 P; r 2 P; j 2 IÞ

þ A
X

j;k2Sð2Þðq;rÞ

pq;r;j;kdðq 2 P; r 2 P; j 2 I ; k 2 IÞ � � � � (6)

Evidently, if there are more combinations of adjacent
transitions starting on li(i) and ending on lf(i), each
combination will add a contribution of the same type to
the sum peak. We denote the set of all these transitions by
U(2)(i), U(3)(i), y where U(2) contains all the pairs of linked
transitions, U(3) contains all triple linked transitions y

between li(i) and lf(i). For example, as presented in Fig. 1
U(2)(4) ¼ {{1,7},{2,8},{3,9}}, U(3)(4) ¼ {{1,5,8},{1,6,9}}.
The final count rate in the Ei peak is
NðEiÞ ¼ Apidði 2 PÞ � A
X

j2Sð1ÞðiÞ

pi;jdði 2 P; j 2 IÞ

þ A
X

j;k2Sð2ÞðiÞ

pi;j;kdði 2 P; j 2 I ; k 2 IÞ � � � �

þ
X

q;r2U ð2ÞðiÞ

NsumðEq þ ErÞ

þ
X

q;r;s2U ð3ÞðiÞ

NsumðEq þ Er þ EsÞ þ � � � , (7)

where each Nsum term is given by a formula similar to Eq.
(6).
In the absence of coincidence summing effects [either

because S(1)(i) ¼+ (consequently S(n)(i) ¼+ for any n)
and U(m)(i) ¼+, m ¼ 2, 3.., i.e. there are no photons
which can be emitted together with the ith photon and
there are no sum peak combinations, or because the
detection probabilities of the photons involved is negligi-
ble], the count rate in the same peak is

N0ðEiÞ ¼ Apidði 2 PÞ. (8)

The coincidence summing correction factor for the Ei

peak is finally defined by

FcðEiÞ ¼
NðEiÞ

N0ðEiÞ
. (9)

Clearly sum peaks can be produced by any set of
photons which can be emitted together, irrespective of the
final level of a transition being the same as the initial level
of the next transition or not and there being a single
photon transition contributing to the same peak or not.
The definitions in Eq. (5) are also valid in such cases, while
the definitions of U(n) should be extended in an obvious
way; under such circumstances, the count rate in the sum
peak is given by a formula similar to Eq. (6). Also, in order
to include these cases, we define M(n) as the set of all groups
of n photons (n ¼ 1, 2, y) which can be emitted together
in a decay process:

MðnÞ ¼ ffj1; j2 . . . jng 2 T jpj1;j2...jn
40g, (10)

where M(n)
¼ T for n ¼ 1; U(n)(i)CM(n) for any n. Sets S

and M are also related. As an example of this relationship,
consider {j1,j2,y,jn}AS(n)(q1,q2,y,qm); denote by
{i1,i2,y,in+m} the set obtained by ordering {j1,j2,y,jn,q1,-
q2,y,qm}. According to the definition of S(n) we have
i1,i2,y,in+mAT and pi1;i2;...;inþm

40. Consequently
{i1,i2,y,in+m}AM(n+m). On the contrary, if from a set
{i1,i2,y,in}AM(n) we extract a subset {q1,q2,y,qm}, the
photons {j1,j2,y,jn�m} which were not extracted represent
a set included in S(n�m)(q1,q2,y,qm).
From the above discussion it is evident that for the

evaluation of coincidence summing corrections it is
necessary to provide procedures: (i) to compute the joint
emission probability for any group of photons emitted by
the nuclide; (ii) to identify all the groups of photons which
belong to the sets of the type presented above; (iii) to
evaluate the detection probability for the group of photons.
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Items (i) and (ii) are presented below, while item (iii) can be
found elsewhere (Sima et al., 2001; Sima and Arnold,
2000).

3.1. Preliminary step

The decay data required by GESPECOR are saved in a
library called KORDATEN that is automatically compiled
from the NUCLEIDE database (Bé et al., 2004) or from
ENSDF. For each level l several quantities are read from
the KORDATEN library: the energy E(l), the decay
probability on that level B(l), the K and L electron capture
probability PK(l), PL(l) in the case of electron capture
decay, and the level half life t(l).

Consider each transition iAT: levels l and m between
which the transition takes place (l ¼ li(i) and m ¼ lf(i), with
l,mAL, l4m), the photon energy Ei, the photon emission
probability pi, the total, the K and L conversion coefficients
a(i), aK(i) and aL(i) are also read from KORDATEN. Then
the total transition probability by photon emission and
internal conversion, pt(l,m) ¼ pi[1+a(i)], where l ¼ li(i) and
m ¼ lf(i) is calculated.

Next the transition probability wt(l,m) from level l to
level m if the nucleus is already in the state l is computed:

wtðl;mÞ ¼
ptðl;mÞPl�1
n¼1ptðl; nÞ

. (11)

The gamma emission probability of the ith transition
between the states l ¼ li(i) and m ¼ lf(i), if the nucleus is
already in the initial state l is given by the equation:

wðiÞ ¼ wðl;mÞ ¼
wtðl;mÞ

1þ aðiÞ
. (12)

It is also useful to compute the transition probability
v(l,m) from level l to level m if the nucleus is already in the
initial state l by all possible sequences of transitions, i.e. by
a direct transition v1(l,m), by a sequence of two linked
transitions v2(l,m), by a sequence of three linked transitions
v3(l,m) and so on up to the longest sequence, composed at
most from l–m transitions. The matrix v(l,m) can be easily
computed by simple recurrence relations, based on the
following formulae:

v1ðl;mÞ ¼ wtðl;mÞ, (13a)

v2ðl;mÞ ¼
Xmþ1

n¼l�1

v1ðl; nÞwtðn;mÞ, (13b)

vkðl;mÞ ¼
Xmþ1

n¼l�ðk�1Þ

vk�1ðl; nÞwtðn;mÞ; k ¼ 3; . . . ; ðl �mÞ.

(13c)

The above equations are the Chapman–Kolmogorov
equations for the Markov chain with nuclear levels as
states and wt as transition matrix between the states. It is
easily seen that the matrix vk is equal to the kth power of
matrix wt and consequently

v ¼ wt þ ðwtÞ
2
þ ðwtÞ

3
þ � � � þ ðwtÞ

l�m. (14)

The matrix v is triangular, with 0 values on the diagonal.
The total feeding probability F(l) of a level, both directly

by the decay and by transitions from higher levels is
determined by

F ðlÞ ¼ BðlÞ þ
XN

n¼lþ1

BðnÞvðn; lÞ. (15)

3.2. Computation of the joint emission probability of groups

of photons

Consider the group of photons emitted in the transitions
i1, i2,y,im, with i1oi2oy oim. According to the rule for
numbering the transitions, the group cannot be emitted in
decay if there is a transition index k ¼ 1, 2,y,m�1 such
that lf(ik)oli(ik+1). The emission probability of the group
of photons (irrespective of the fact that other photons are
emitted or not in the same decay process) is:

pi1;i2;...;im ¼ F ðliði1ÞÞwði1Þ½dlf ði1Þ;liði2Þ þ vðlf ði1Þ; liði2ÞÞ�

� wði2Þ½dlf ði2Þ;liði3Þ þ vðlf ði2Þ; liði3ÞÞ� . . .

wðim�1Þ½dlf ðim�1Þ;liðimÞ þ vðlf ðim�1Þ; liðimÞÞ�

� wðimÞ½dlf ðimÞ;1 þ vðlf ðimÞ; 1Þ�. (16)

In the above equations we used the Kronecker symbol:

di;j ¼ 1 if i ¼ j, (17a)

di;j ¼ 0 if iaj. (17b)

3.3. Selection of groups of photons

All possible groups of photons that can be emitted in the
decay process can be easily enumerated for a nuclide with
few levels. The task is much more difficult in the case of
complex decay schemes: the abstract structure of the decay
scheme should be considered in order to solve this problem
in an efficient way, i.e. the abstract relation between the
levels connected by transitions. Then the decay scheme can
be represented by a graph and the methods developed in
graph theory can be applied in defining the various sets of
photons that can be emitted together in the decay process
of the nucleus.
A graph is a mathematical object G ¼ {V, E} where

V ¼ {vi} is the set of vertices (or nodes) and E ¼ {ek} is the
set of edges (Bondy and Murty, 1982; Gross and Yellen,
2003). Each edge e is represented by a pair of vertices; if
e ¼ (u,v) where eAE, u,vAV, the vertices u and v are linked
or related by the edge e. The existence of the edge e ¼ (u,v)
means that there exists a relation between the vertices u and
v. Each edge can be represented by an ordered pair (u,v) in
a type of the graph which is called a directed graph or
digraph; the pair (u,v) represents an arc from u to v in a
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digraph. Under these circumstances, if e is an arc,
e ¼ (u,v)AE, and as a result u is in relation with v, but v

is not necessarily in relation with u. A walk in G is defined
as a sequence of vertices linked by edges (or by arcs in the
case of a digraph). A walk in which no vertex is included
more than once is called a trail; a trail in which no edge is
included more than once is called a path in G. Finding
walks, or trails or paths with specific properties are typical
problems solved by graph theory.

The decay scheme of a nuclide can be represented by a
digraph with L as the set of vertices and T as the set of arcs.
Each level is considered a vertex, labeled by the level
number. The transition from level l to level m is represented
by an arc (l,m) from vertex l to vertex m. The arcs are
labeled by the corresponding transition numbers. Any
sequence of transitions in the decay process is represented
by a path in the graph. The problem of finding the sets of
photons emitted in a single decay act is equivalent to
finding the paths in G that satisfy specific conditions. We
solved this problem by an algorithm of the breadth-first
search type in which the M(n) sets are found consecutively
in ascending order of n. Each valid set is consecutively
numbered and the emission probability of the set is
evaluated as presented in the previous section.

As an example of the algorithm we present the case of
sets with three photons M(3). The set containing the
transitions with the lowest numbers is clearly that
composed from transition 1, then the first transition
starting on the final level of transition 1 [this is the
transition with number ti(lf(1))], followed by the first
transition starting on the final level of this second
transition; this set is fi

ð1Þ
1 ; i

ð1Þ
2 ; i

ð1Þ
3 g, with i

ð1Þ
1 ¼ 1,

i
ð1Þ
2 ¼ tiðlf ði

ð1Þ
1 ÞÞ, i

ð1Þ
3 ¼ tiðlf ði

ð1Þ
2 ÞÞ, e.g. {1,5,8} in Fig. 1. The

next set containing three photons is searched by replacing
i
ð1Þ
3 with the smallest i

ð2Þ
3 4i

ð1Þ
3 ; set fi

ð1Þ
1 ; i

ð1Þ
2 ; i

ð2Þ
3 g is a valid set if

in the graph the initial vertex of i
ð2Þ
3 is the same as the initial

vertex of i
ð1Þ
3 or if there is a path from the final vertex of i

ð1Þ
2

to the initial vertex of i
ð2Þ
3 ; the last condition is equivalent

with vðlf ði
ð1Þ
2 Þ; liði

ð2Þ
3 ÞÞ40; this is {1,5,11} in Fig. 1. The next

set is searched by replacing i
ð2Þ
3 with the smallest i

ð3Þ
3 4i

ð2Þ
3

that satisfies the same conditions. The procedure is
repeated until no additional set can be obtained by
increasing the transition number of the third photon. Then
backtracking is applied, i.e. the second photon i

ð1Þ
2 is

replaced by the smallest i
ð2Þ
2 4i

ð1Þ
2 that either starts on the

same level as i
ð1Þ
2 or there is a path in the graph from the

final level of transition i
ð1Þ
1 to the initial level of transition

i
ð2Þ
2 ; the first trial for the third photon is i

ð1Þ
3 ¼ tiðlf ði

ð2Þ
2 ÞÞ, e.g.

{1,6,9} in Fig. 1. Additional sets are found by replacing
consecutively the third photon by photons emitted in
higher number transitions ({1,6,10}, {1,6,11}) until all the
possibilities are exhausted—the second photon from the set
is then replaced {1,7,11} and the procedure is repeated until
no additional set can be obtained (in Fig. 1 the last case
possible is {1,9,11}). Backtracking is again applied, i.e. the
first photon is replaced by a new photon with the smallest
i
ð2Þ
1 4i

ð1Þ
1 , the second and third are re-initialized to
i
ð1Þ
2 ¼ tiðlf ði

ð2Þ
1 ÞÞ, i

ð1Þ
3 ¼ tiðlf ði

ð1Þ
2 ÞÞ; this is the first set

({2,8,11}) with the new photon at the first position. The
procedure is repeated until all the possibilities are
exhausted. At this point all the M(3) sets have been
discovered and the search for M(4) sets begins.
After the sets M(n) have been found, fast algorithms are

applied for finding the S(n) and U(m) sets for the peaks of
interest.
4. Formalism: the general case

When the nuclide has a metastable state l, after the total
transition probabilities wt(l,m) were evaluated, the transi-
tion probabilities during the coincidence resolving time tC

are computed:

wCðl;mÞ ¼ wtðl;mÞf1� exp½�tC=tðlÞ�g. (18)

The photon emission probabilities from the same level
are adjusted in a similar way. Also the Kronecker symbol
in Eq. (16) is multiplied by f1� exp½�tC=tðlÞ�g. In all
calculations of the joint emission probabilities pi,j, pi,j,k,y
the quantity wt(l,m) is replaced by wC(l,m) and all
w(i) ¼ w(l,m) are adjusted accordingly if l is a metastable
state.
Special procedures are implemented to deal with the

X-rays and with the annihilation photons. More exactly, in
the case of X-rays for each group of gamma photons
besides the joint emission probability of the group, the
emission probabilities of the group of gamma photons
together with one X-ray, together with two X-rays, three
X-rays and so on (up to 10 X-rays) are also evaluated. The
sum of such probabilities is computed over the cases in
which the photons can be emitted, e.g. the emission
probability of the group of gamma photons together with
X-rays emitted following electron capture decay (when
appropriate) is added to the emission probability of the
same group together with X-rays produced in any possible
internal conversion transitions not corresponding to the
gamma photons included in the group. For each group
associated with n X-rays, all the combinations of na Ka and
nb Kb X-rays (na+nb ¼ n) are separately evaluated. Thus,
the quantities pi,j(na,nb), pi,j,k(na,nb) and so on are
computed.
Consider the case of annihilation photons: above each

level l fed by b+ decay two levels are added in the first step
with energies E(l)+511 and E(l)+1022 keV, where E(l) is
the energy of the level l. The transformed decay scheme is
analyzed on the basis of the annihilation photons feeding
different levels being different; so groups of photons that
include annihilation quanta associated with different levels
are considered as different and the probability of each
group is evaluated separately. A second step involves the
groups that differ only by the fact that the annihilation
photons are associated with different levels being combined
into a single equivalent group.
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5. Conclusions

The tool implemented in GESPECOR to process decay
scheme data and incorporate computation of coincidence
summing corrections has been described. The main features
of this tool are: (a) the possibility to analyze exactly decay
schemes of arbitrary complexity, the only restriction being
the study of nuclides with less than 100 levels; (b) the
computation of the joint emission probability of any group
of photons resulting from the decay (de-excitation gamma
photons, Ka and Kb photons from electron capture decay
or from internal conversion and 511 keV annihilation
photons from b+ decay); (c) the possibility to read the
decay data from the NUCLEIDE database (Bé et al., 2004)
or from the ENSDF database. The output of this tool is
ideal for providing the decay scheme data for the
evaluation of coincidence summing corrections by Monte
Carlo simulation methods.
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