
ARTICLE IN PRESS
Available at www.sciencedirect.com
WAT E R R E S E A R C H 4 2 ( 2 0 0 8 ) 2 7 8 7 – 2 7 9 5
0043-1354/$ - see fro
doi:10.1016/j.watres

�Corresponding au
E-mail address:
journal homepage: www.elsevier.com/locate/watres
A new approximate solution for chlorine concentration
decay in pipes
Hund-Der Yeha,�, Shi-Bin Wena, Ya-Chi Changa, Chung-Sying Lub

aInstitute of Environmental Engineering, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 300, Taiwan
bDepartment of Environmental Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan
a r t i c l e i n f o

Article history:

Received 13 September 2007

Received in revised form

4 February 2008

Accepted 13 February 2008

Available online 21 February 2008

Keywords:

Analytical solution

Chlorine

Pipes

Simulated annealing

Transport equation

Wall decay
nt matter & 2008 Elsevie
.2008.02.012

thor. Tel.: +886 3 5731910;
hdyeh@mail.nctu.edu.tw
a b s t r a c t

Biswas et al. (1993. A model for chlorine concentration decay in pipes. Water Res. 27(12),

1715–1724) presented an analytical solution of a two-dimensional (2-D) steady-state

chlorine transport equation in a pipe under the turbulent condition and employed

fractional error function and regression technique to develop an approximate solution.

However, their approximate solution may not give a good result if the wall decay parameter

is large. This paper provides a more accurate approximate solution of the 2-D steady-state

chlorine transport equation under the turbulent condition. This new approximate solution

has advantages of easy evaluation and good accuracy when compared with the

approximate solution given by Biswas et al. (1993). In addition, this paper also develops a

methodology that combines simulated annealing (SA) with this new approximate solution

to determine the wall decay parameter. Two cases are chosen to demonstrate the

application of the present approximate solution and methodology. The first case is to use

this new approximate solution in simulating chlorine decay in pipes with the experiment-

observed data given by Rossman (2006. The effect of advanced treatment on chlorine decay

in metallic pipes. Water Res. 40(13), 2493–2502), while the second case presents the

determination of the wall consumption at the end of the pipe network.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The Safe Drinking Water Act and its Amendments in the US

commanded the establishment of maximum contaminant

level goals for some harmful material that appears in the

outlet of treatment plants to ensure secure quality of drinking

water. This requirement led to more care for water quality

aggravation in the distribution system. Before treated water

enters the water distribution systems, disinfection is com-

monly performed to retain residual chlorine in a distribution

system for avoiding microbiological growth in the pipe. In

addition to cheapness, chlorine is a strong and sustained

disinfection. The studies of chlorine residuals in the water

distribution systems reported in the literature included the
r Ltd. All rights reserved.

fax: +886 3 5726050.
(H.-D. Yeh).
development of the model for chlorine disappearance in the

transport process and described the mechanism for distribu-

tion of chlorine concentration in the network (e.g., Clark et al.,

1991, 1993, 1995).

The model for chlorine transport in the pipes may include

the first-order decay kinetics in bulk liquid and chlorine

consumption at the pipe wall. The consumption process at

the pipe wall is similar to the process of mass transfer from

the bulk liquid phase to the pipe surface. LeChevallier et al.

(1988) indicated that the transport of chlorine from the bulk

liquid phase to the biofilm at the pipe wall is an important

factor affecting the chlorine decay rate. In order to inactivate

bacterial populations, higher chlorine concentrations are

required in the biofilm as compared to those suspended in

dx.doi.org/10.1016/j.watres.2008.02.012
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Nomenclature

A0 dimensionless chlorine radial diffusivity (LDr/r0
2U

¼ pLDr/Q)

A1 dimensionless chlorine decay rate in the bulk

water (kL/U)

A2 dimensionless wall decay rate (Vdr0/Dr)

c point value of chlorine concentration in any

location of the pipe (mg L�1)

c0 inlet chlorine concentration (mg L�1)

C dimensionless chlorine concentration (c/c0)

C0 average chlorine concentration in the pipe under

no wall consumption condition

Cav dimensionless cup-mixing average concentration

of the pipe at any cross-section

Dr radial effective diffusivity of chlorine in the water

(m2 s�1)

f(r) flow parameter term on the flow regime

F(R) dimensionless flow parameter term on the flow

regime

J0 Bessel function of the first kind of order zero

J1 Bessel function of the first kind of order one

k first-order chlorine decay rate constant in the

bulk water (s�1)

L pipe length (m)

r radial distance from the center of the pipe (m)

r0 pipe radius (m)

rh hydraulic radius of pipe

R dimensionless radial distance from the center of

the pipe (r/r0)

U average flow velocity throughout the distribution

system (m s�1)

Vd pipe wall surface reaction constant (m s�1)

x axial distance from the inlet along the pipe (m)

X dimensionless axial distance from the inlet along

the pipe

ln the nth root of eigenfunction

e fractional error
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the bulk liquid phase. In addition, the pipe material strongly

affects the wall decay and could generally be grouped into

two different types, that is, the reactive pipes such as unlined

iron and unreactive pipes, e.g., PVC, MDPE, and cement-lined

iron (Hallam et al., 2002). Therefore, the decay of chlorine at

the pipe wall is usually considered as the first-order reaction

parameter in relation to the degree of reactivity of the pipe

material.

In order to simulate chlorine transport and decay behavior

in a pipe, Biswas et al. (1993) considered a two-dimensional

(2-D) steady-state chlorine transport equation. The equation

includes the convective transport in axial direction, the

diffusion in radial direction, and the consumptions by a

first-order reaction in the bulk liquid phase and pipe wall.

Commonly, the analytical or numerical approaches were used

to solve the chlorine transport equation. Biswas et al. (1993)

used the separation of variables technique to derive an

analytical solution for the chlorine transport equation under

turbulent flow. However, their solution is laborious to

evaluate straightforwardly since it contains an infinite series

with the roots of eigenfunction expressed in terms of Bessel

functions. Thus, they introduced the concept of fractional

error along with the regression technique to obtain an

approximate solution for the chlorine transport equation.

Their approximate solution was then used to determine the

wall consumption parameter. However, the development of

the approximate solution is not straightforward and the high

accuracy occurs on narrow range of wall decay parameters

due to a simplifying technique. For the numerical approach,

Ozdemir and Ger (1998) applied a finite difference method to

solve the steady-state chlorine transport equation. In addi-

tion, they also developed a numerical model and simu-

lated chlorine decay under laminar and turbulent flow

conditions. Rossman et al. (1994) developed a mass-transfer-

based model that employed a lumped mass-transfer coeffi-

cient to account for the radial transport and estimated the

wall consumption.
The primary objective of this study is to develop a new

approximate solution for the 2-D steady-state chlorine

transport equation under turbulent flow. With the advantages

of simple function form, easy numerical evaluation, and good

accuracy, this approximate solution can simulate chlorine

decay on both field and experiment. In addition, it can also be

employed to estimate transport parameters if coupled with

an optimization approach.
2. Methodology

2.1. Mathematical background

The following are given by Biswas et al. (1993). The 2-D

steady-state equation for describing the concentration of

total free chlorine in the water flowing through a pipe, in the

absence of axial dispersion, is written as (Biswas et al., 1993)

Uf ðrÞ
qc
qx
¼ Dr

1
r

q
qr

r
qc
qr

� �
� kc (1)

where c is the concentration of free available chlorine,

(mg L�1); U is the average flow velocity in the pipe, (m s�1);

f(r) is a flow parameter depending on the flow regime

(e.g., f(r) ¼ 2[1�(r/r0)2] for laminar flow and an approximation

to f(r) ¼ 1 for turbulent flow); r is the radial coordinate; x is the

axial coordinate; Dr is the effective diffusivity of chlorine

solution in the r-direction, (m s�1); and k is the chlorine first-

order decay rate in the bulk water, (s�1).

The left-hand side term of Eq. (1) accounts for the advective

flux in the axial direction while the first term on the right-

hand side (RHS) of Eq. (1) denotes the diffusive flux in the

radial direction and the second term on the RHS represents

the decay of chlorine in the bulk flow.

The boundary conditions for Eq. (1) are as follows (Biswas

et al., 1993):

x ¼ 0; c ¼ c0 at 0prpr0 (2)
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r ¼ 0; qc=qr ¼ 0 at 0pxpL (3)

r ¼ r0; Drqc=qr ¼ �Vdc at 0pxpL (4)

where c0 is the inlet chlorine concentration (mg L�1); L is the

pipe length (m); r0 is the pipe radius (m); and Vd is the pipe

wall surface reaction constant and also referred to ‘‘intrinsic

wall decay constant’’ (m s�1).

Under the turbulent condition, Eq. (1) can then be put in

dimensionless form as (Biswas et al., 1993)

f ðRÞ
qC
qX
¼

A0

R
q
qR

R
qC
qR

� �
� A1C (5)

subject to the following dimensionless boundary conditions

(Biswas et al., 1993):

X ¼ 0; C ¼ 1 at 0pRp1 (6)

R ¼ 0; qC=qR ¼ 0 at 0pXp1 (7)

R ¼ 1; qC=qR ¼ �A2C at 0pXp1 (8)

where C ¼ c/c0, X ¼ x/L, R ¼ r/r0, A0 ¼ LDr/r0
2U, A1 ¼ kL/U,

and A2 ¼ Vdr0/Dr. The dimensionless parameters A0, A1,

and A2 represent the radial effective diffusivity, the chlorine

decay rate constant in the bulk water, and pipe wall

surface reaction constant, respectively. The function F(R)

represents the dimensionless velocity profile and is assumed

to equal one under the turbulent flow or 2[1�R2] under

laminar flow.

The analytical solution under turbulent condition to

Eq. (5) with respect to the boundary conditions, Eqs. (6)–(8),

can be obtained based on the method of separation of

variables. The result expressed as the cup-mixing average

concentration at any cross-section of the pipe is (Biswas et al.,

1993)

Cav ¼
X1
n¼1

4A2
2

l2
nðl

2
n þ A2

2Þ
� exp½�ðA1 þ l2

nA0ÞX� (9)

with the corresponding eigenfunction

lnJ1ðlnÞ �A2J0ðlnÞ ¼ 0 (10)

where ln represents the root of Eq. (10). In Eq. (10), the Bessel

functions, J0 and J1, can be evaluated to the seventh decimal

place using the functions given by Press et al. (1986) and ln

can be found by Newton’s method when solving Eq. (10) as a

nonlinear equation. Note that Newton’s method has the

advantage of quadratic convergence in searching the roots

(Yeh, 1987). The concentration Cav at any location in the pipe

can be evaluated by Eq. (9) if the values of ln, A0, A1, and A2 are

available. Biswas et al. (1993) indicated that the estimated

error of Cav is less than 5% as Cav is computed using only the

first term of the infinite series in Eq. (9). Therefore, it may be

appropriate to use the first three terms of the series in Eq. (9)

to compute Cav.

2.2. Biswas et al.’s approximate solution (1993)

In the case of no chlorine consumption at the pipe wall

(i.e., A2 ¼ 0), the cup-mixing average chlorine concentration

can be expressed as (Biswas et al., 1993)

C0av ¼ expð�A1XÞ (11)
A fractional error e was defined to simplify the analytical

solution as (Biswas et al., 1993)

� ¼ ðC0av � CavÞ=Cav (12)

Substituting Eq. (11) into Eq. (12), Cav becomes

Cav ¼
expð�A1XÞ
ð1þ �Þ

(13)

Once e is assigned, the Cav can then be determined by

Eq. (13). Biswas et al. (1993) used the regression technique to

express e in terms of A0 and A2 as

� ¼ 2:4416A0A2 � 0:1559A0A2
2 for 0:01pA2p10 (14)

Eq. (13) along with Eq. (14) was then used to approximate

Eq. (9) in computing the Cav.

2.3. New approximate solution

The Cav may be approximated by retention of the first term

of the infinite series and neglection of higher-order terms in

Eq. (9) as

Cav ¼
4A2

2

l2
1ðl

2
1 þ A2

2Þ
exp½�ðA1 þ l2

1A0ÞX� (15)

For 0plnp12, the Bessel functions J0 and J1 in Eq. (10) can be

respectively written as (Yang and Yeh, 2002)

J0ðlnÞ ¼ 1�
ð1=4Þl2

n

ð1!Þ2
þ
ðð1=4Þl2

nÞ
2

ð2!Þ2
�
ðð1=4Þl2

nÞ
3

ð3!Þ2
þ � � � (16)

and

J1ðlnÞ ¼
ln

2

� �
1�
ð1=4Þl2

n

ð1!Þð2!Þ
þ
ðð1=4Þl2

nÞ
2

ð2!Þð3!Þ
�
ð1=4l2

nÞ
3

ð3!Þð4!Þ
þ � � �

" #
(17)

The value of ln increases with A2, which equals Vdr0/Dr. The

parameter Dr is assumed equal to the eddy diffusivity

suggested as Deddy ¼ 1.233�10�2Ur0 by Edwards et al. (1979).

Rossman et al. (1994) used the EPANET program to simulate

chlorine residual in the network in New Haven, Connecticut,

in which the value of A2 ranged from 7.3�10�4 to 7.0�10�2

under turbulent flow. Biswas et al. (1993) also studied this

network and had the value of A2 ranging from 1.49�10�5 to

1.3�10�2. Additionally, experimental studies for chlorine

decay (Ozdemir and Ger, 1998; Rossman et al., 2001; Rossman,

2006) indicate that the value of A2 is from about 2.49�10�4 to

3.48�10�3 under turbulent flow. Accordingly, the value of A2

is considered smaller than 0.1. The first root l1 is less than 0.5

when A2o0.1. Therefore, the third and higher-order terms in

Eq. (16) and the second and higher-order terms in Eq. (17) are

relatively small and negligible. Accordingly, based on Eq. (10),

l1 becomes

l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2

2þ A2

s
(18)

Eq. (15) can then be expressed as

Cav ¼ 1þ
2A2

4þ 2A2 þA2
2

 !
exp � A1 þ

4A0A2

2þ A2

� �
X

� �
(19)

As an approximate solution to Eq. (1), Eq. (19) is very simple

and easy to use to compute the Cav. When A2 is smaller than

0.1, the second term on the RHS of Eq. (19) is much less than 1.
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Thus, the approximate solution is further simplified to

Cav ¼ exp � A1 þ
4A0A2

2þ A2

� �
X

� �
(20)

3. Results and discussion

3.1. Accuracy comparisons

The present approximate solution is compared with both the

analytical and approximate solutions given in Biswas et al.
Fig. 1 – The curves of outlet chlorine concentration computed bas

and Biswas et al.’s approximate solution (1993) against A2 at (a
(1993). Three figures are plotted to investigate the effect of the

parameters A0, A1, and A2 on the corresponding predicted

chlorine concentration. Figs. 1(a)–(c) show the curves for the

chlorine concentration distribution, Cav, at the outlet (X ¼ 1)

versus the dimensionless wall decay rate (A2) with different

values of dimensionless radial diffusivity (A0) for the dimen-

sionless water decay rate (A1) equal to 0.001, 0.1, and 1. The

solid line, dotted line, and dashed line represent the

analytical solution, present approximate solution, and Biswas

et al.’s approximate solution (1993), respectively.

As indicated in Figs. 1(a)–(c) for different A1, the Cav value

based on Biswas et al.’s approximate solution (1993) starts to
ed on the analytical solution, present approximate solution,

) A1 ¼ 0.001; (b) A1 ¼ 0.1; and (c) A1 ¼ 1.
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Table 1 – Values of k1 at different A2

A2 Newton’s
method

Approximate
method

Relative
error (%)

0.001 0.04472 0.04471 �0.02

0.01 0.01412 0.01411 �0.07

0.1 0.44168 0.43644 �1.19

0.5 0.94077 0.89443 �4.93
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deviate from the analytical solution for A2 at 0.003, 0.03, and

0.3 when A0 ¼ 100, 10, and 1, respectively. The present

approximate solution is in good agreement with the analy-

tical solution for A1 ranging from 0.001 to 1 with A0 equal to

100, 10, and 1 except in the region where A240.5 and A0 ¼ 1.

Those results indicate that the parameters of A0 and A2 have

an apparent influence on the accuracy of those two approx-

imate solutions. In addition, the present approximate solu-

tion generally gives better prediction for the chlorine

concentration than that of Biswas et al.’s approximate

solution (1993).

The poor accuracy of Biswas et al.’s approximate solution

(1993) stems from the fact that the expressions of fractional

factor, e, in terms of A0 and A2 were developed using the

regression techniques as shown in Eq. (14). On the other

hand, the error of the present approximate solution is made

mainly by neglecting the higher-order terms of the Bessel

functions in Eqs. (16) and (17). If the first eigenvalue l1 is

small, the errors of neglecting the higher-order terms in the

Bessel functions of Eqs. (16) and (17) will be very small.

Fig. 2 shows the plots of the true and approximate values of

l1 against A2. The solid line represents the true l1 obtained

from Eq. (10) by Newton’s method and the dashed line denotes

the approximate l1 calculated from Eq. (18). This figure

indicates that both the value of l1 and the difference in l1

increase with A2. In addition, Table 1 shows the relative errors

of the approximate l1 to the true l1 for A2 ranging from 0.001 to

0.5 and the relative error is about 1.2% at A2 ¼ 0.1. Accordingly,

the present approximate solution gives accurate results when

A2o0.1 and is thus appropriate for most field cases.

3.2. Two case studies

The first-order reaction kinetics is usually used to represent

the chlorine decay in the bulk liquid of the pipe and at the
Fig. 2 – Plots of the true and approximate values of k1

against A2.
pipe wall. The decay parameters can be determined based on

an appropriate mathematical model and measured chlorine

concentration data. Two cases are chosen to demonstrate the

application of the present approximate solution. The wall

surface reaction constant estimated based on the approx-

imate solution is compared with those obtained from Biswas

et al. (1993) and Rossman (2006) in Case 1 and from the South

Central Connecticut Regional Water Authority (Clark et al.,

1991) in Case 2.

3.2.1. Case 1
Rossman (2006) used a distribution system simulator, which

consisted of a 27 m long loop with a 0.15 m diameter unlined

ductile iron pipe, a recirculation pump, and a heat exchanger

cooling system. An experiment was made to measure the

reaction rate of chlorine in a simulated pipe for water treated

by different forms of advanced treatment at US EPA’s Test and

Evaluation Facility in Cincinnati, Ohio. In Case 1, the present

approximate solution is used to determine the pipe wall

surface reaction constants Vd for water applied by three

different treatments. The initial chlorine was about 6 mg L�1

and the values of k shown in the second column of Table 2

(Rossman, 2006) for lab-tested water under different treat-

ments were determined based on the analysis of the kinetic

test data. The wall surface reaction constants, Vd, for three

sorts of lab-tested water can then be determined from the

experiment-observed data based on the present approximate

solution. In the experiment, the flow velocity was maintained

constant, so a steady-state flow condition was considered.

Note that the axial distance from the inlet along the pipe, x, is

equal to the flow velocity multiplied by the flow time in the

pipe. Under the turbulent condition, the eddy diffusion is

greater than the molecular diffusion. Thus, the effective

diffusivity in the radial direction, Dr, is only considered to

the eddy diffusivity, which can be expressed as Ded-

dy ¼ 1.233� 10
�2Ur0 (Edwards et al., 1979) because of turbulent

flow. With the known values of pipe radius, pipe length, flow

velocity, and chlorine bulk decay constant, Vd can be

determined based on the present approximate solution,

Eq. (20), when minimizing the objective function defined as

the sum of square errors between the observed and predicted

chlorine concentrations. In order to determine the optimal

value of Vd for three sorts of lab-tested water, simulated

annealing (SA) is applied. The SA is a generic probabilistic

meta-algorithm for the global optimization problem based on

the annealing concept, namely locating a good approximation

to the global optimum of a objective function in a large search

space. The initial temperature of the SA is chosen as 100 and
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Fig. 3 – The experimental observation (Rossman, 2006) and

simulated results of the present approximate solution and

Biswas et al.’s approximate solution for three sorts of lab-

tested water.

Table 2 – Values of k and Vd for three sorts of lab-tested water

Treatment k (s�1) Vd (m s�1)

First-order reaction model
(Rossman, 2006)

Present approximate
solution

Biswas et al.’s approximate
solution (1993)

RO 8.10� 10�8 4.66� 10�7 4.50� 10�7 4.20�10�7

CON 1.09� 10�7 6.73� 10�7 6.52� 10�7 6.43�10�7

O3 5.56� 10�7 1.30� 10�6 1.33� 10�6 1.53�10�6
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the temperature is decreased by the temperature reduction

factor (0.85) after 8100 calculations. The annealing process

will be terminated if the absolute differences between two

successive objective function values are all less than 10�10

within 20 iterations or the number of evaluations is greater

than 107. The SA has been successfully applied in forecasting

THM Species (Lin and Yeh, 2005), parameter estimations

(e.g., Yeh and Chen, 2007; Yeh et al., 2007a), and source

identifications (e.g., Lin and Yeh, 2007; Yeh et al., 2007b).

As suggested by Rossman (2006), a first-order reaction

model for describing the first-order decay of chlorine in bulk

flow and at the pipe wall was expressed as

qc
qt
¼ � kþ

Vd

rh

� �
c (21)

where rh is hydraulic radius of pipe. Table 2 lists the Vd’s

estimated by the present approximate solution, the first-order

reaction model (Rossman, 2006), and Biswas et al.’s approx-

imate solution (1993) for three sorts of lab-tested water. The

table shows that the values of Vd estimated by these three

models are close for the same lab-tested water. Note that the

first-order reaction model neglects the radial diffusion and

thus the estimated Vd slightly differs from those given by the

other two solutions. Fig. 3 shows the experiment-observed

data (Rossman, 2006) and the simulated results by the present

approximate solution and Biswas et al.’s approximate solu-

tion (1993). The solid line represents the result of the present

approximate solution and the dashed line represents the

result of Biswas et al.’s approximate solution (1993). The

symbols of circle, rhombus, and triangle displayed in Fig. 3

denote experiment-observed values for lab-tested water

treated by reverse osmosis, conventional treatment, and

ozonation, respectively. This figure indicates the simulated

results of the present approximate solution are in good

agreement with experiment-observed values from Rossman

(2006). In contrast, the simulated results of Biswas et al.’s

approximate solution (1993) are discordant in the case of the

lab-tested water treated by ozonation with greater Vd value.

This problem may be attributed to the fact that the chlorine

concentration is inversely proportional to the quadratic of

wall decay constant in Biswas et al.’s approximate solution as

expressed in Eqs. (13) and (14). Chlorine concentration is

considered to decay exponentially with increasing retention

time as indicted in Eq. (21) and thus the chlorine concentra-

tion is inversely proportional to the exponent of k and Vd. The

present approximate solution expressed as Eq. (20) conforms
to the form of the first-order decay reaction. This may be the

reason why the simulated results of the present approximate

solution are better than those of Biswas et al.’s approximate

solution (1993) when Vd is large.

3.2.2. Case 2
In Case 2, the present approximate solution is employed to

determine the Vd in a field test conducted by the South

Central Connecticut Regional Water Authority (Clark et al.,

1991). This network in New Haven, Connecticut, has been

used many times in the past to test water quality models. The

network shown in Fig. 4 is composed of eight main branch

pipes. Seven sampling sites including the sites at the

treatment plant and storage tank were established. The

sampling results of chlorine concentration at the inlet and

outlet points of these pipe segments are presented in the

second and third columns of Table 3 (Biswas et al., 1993). The

geometrical and flow parameter including pipe length, pipe

radius, flow velocity (Biswas et al., 1993) and diffusion

coefficients for all the pipes are listed in Table 4. The diffusion

coefficients were determined by the eddy diffusivity given by

Edwards et al., 1979. In addition, the chlorine bulk decay

constant, k, was 6.4�10�6 (s�1) (Biswas et al., 1993) obtained
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Fig. 4 – Water network at New Haven, Connecticut (Clark

et al., 1991). Open circles represent pipe nodes, solid circles

represent chlorine measurement locations, and numbers

represent pipe numbers.

Table 3 – Chlorine concentrations at the inlet and outlet
of various segments

Pipe in
segment

Chlorine concentration at segment

Cin (Biswas
et al., 1993)

Cout (Biswas
et al., 1993)

Cout/
Cin

Cav

1,3 1.08 1.00 0.926 0.926

5, 6, 7 1.00 0.98 0.980 0.975

5, 15, 16 1.00 0.32 0.320 0.319

5–14 1.00 0.94 0.940 0.940

8, 9, 17,

18

0.98 0.16 0.163 0.161

8–14 0.98 0.94 0.959 0.964
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by bench kinetic tests performed with the water sample taken

at the inlet to the network.

In this network (Fig. 4), those pipes numbered 3, 16 and 18

are dead-end pipes while the other numbered pipes are main

branch and chlorine concentrations were measured at the

nodes denoted as solid circles. The present approximate

solution expressed in Eq. (20) is used to determine the wall

surface reaction constant, Vd, in this network. The average
value of Vd for the main pipes such as 5–14 in this network

can be determined first. Assume that the wall surface

reaction constant for the main pipes are all the same because

those pipes were made by the same material. Based on

Eq. (20), the dimensionless average concentrations at X ¼ 1,

the outlet of pipe 5, can be expressed as

C5
av ¼ exp � A5

1 þ
4A5

0A5
2

2þ A7
2

 !" #
(22)

The superscript in each variable represents the pipe

number. The dimensionless average concentrations at the

outlet of other main pipes can be expressed in a similar

manner. The chlorine concentrations are only measured at

the inlet and outlet nodes of the segment and a segment

usually contains several pipes. The Cav is the dimensionless

concentration which is defined as the concentration at the

pipe outlet divided by that at the pipe inlet. The outlet

concentration of a pipe is in fact the inlet concentration of the

next pipe. Thus, the dimensionless concentration Cav at the

outlet of a segment is equal to the product of Cav of each pipe

within the segment. The dimensionless concentration at the

outlet of pipe 14 in the segment containing pipes 5–14 can be

written as

Y14

i¼5

Ci
av ¼ C14

out=C
5
in (23)

Furthermore, Eq. (23) can be simplified and expressed in

term of A2 as

X14

i¼5

4Ai
0Ai

2

2þ Ai
2

¼ � lnðC11
out=C

7
inÞ þ

X14

i¼5

Ai
1

" #
(24)

where A0 and A1 are known dimensionless parameters and A2

is a function of Vd. Note that Vd equals A2Dr/r0 and is the only

unknown in Eq. (24). Solving Eq. (24) by Newton’s method, the

average value of Vd for the main branches from pipe 5 to pipe

14 is obtained as 3.47�10�7 (m s�1). This value presents the

average wall surface reaction constant in the main branch.

The same approach and the main branch Vd are then

employed to further evaluate the Vd for the dead-end pipes

3, 16, and 18 as shown in Fig. 4. The estimated results for the

Vd’s for the numbered pipes in the network fall between

3.47�10�7 and 1.01�10�5 (m s�1) and are listed in the last

column of Table 4. Note that the value of Vd ranges from 0 to

7.06�10�5 (m s�1) reported from field and experimental

studies (Biswas et al., 1993; Rossman et al., 1994; Vasconcelos

et al., 1997; Ozdemir and Ger, 1998; Munavalli and Kumar,

2006; Rossman, 2006). With the known geometrical and flow

parameters and the estimated values of Vd, the dimension-

less concentration Cav for all the segments in this network

predicted by the analytical solution of Eq. (9) are listed in the

fifth column of Table 3.

The sampled concentrations in the inlet and outlet of

segments in the network are listed in the second and third

columns of Table 3, respectively. In addition, the dimension-

less sampled concentration at each segment is listed in the

fourth column. The segments of pipes 5–7 and 8–14 consist of

the main branch. Table 3 lists the Cav predicted based on the

analytical solution and the measured concentration given in

Biswas et al. (1993) at some inlets and outlets of the pipe
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Table 4 – Parameters for different pipes in the network

Pipe Length (m) Radius (m) Flow velocity (m s�1) Diffusion coefficient (m2 s�1) Vd (m s�1)

1 731.5 0.152 0.546 1.02� 10�3 3.47�10�7

3 396.2 0.102 0.195 2.45� 10�4 1.24�10�6

5 822.9 0.152 0.512 9.60� 10�4 3.47�10�7

6 121.9 0.152 0.494 9.26� 10�4 3.47�10�7

7 213.4 0.152 0.485 9.09� 10�4 3.47�10�7

8 579.1 0.152 0.457 8.56� 10�4 3.47�10�7

9 182.9 0.152 0.445 8.34� 10�4 3.47�10�7

10 121.9 0.152 0.372 6.97� 10�4 3.47�10�7

11 91.4 0.152 0.329 6.17� 10�4 3.47�10�7

12 76.2 0.152 0.338 6.33� 10�4 3.47�10�7

13 182.9 0.152 0.329 6.17� 10�4 3.47�10�7

14 91.4 0.152 0.323 6.05� 10�4 3.47�10�7

15 365.8 0.152 0.014 2.62� 10�5 3.47�10�7

16 304.8 0.102 0.014 1.76� 10�5 1.64�10�6

17 457.2 0.102 0.168 2.11� 10�4 3.47�10�7

18 426.7 0.102 0.049 6.16� 10�5 1.01�10�5

WAT E R R E S E A R C H 4 2 ( 2 0 0 8 ) 2 7 8 7 – 2 7 9 52794
segments. Table 3 indicates that the predicted Cav for the

segments containing dead-end pipe agrees with the dimen-

sionless measured concentration (Cout/Cin) for the same

segment. This demonstrates that the present approximate

solution can be applied to determine Vd for the field

application problem. Table 4 indicates that the Vd’s in the

dead-end pipes 3, 16, and 18 are much greater than those in

the main branch pipes. High value of Vd denotes that wall

decay is significant. Biswas et al. (1993) also mentioned that

significant biofilm growth occurs in the dead-end pipe where

the flow velocity is relatively low if compared with that in

main branch pipe. Low water flow velocity causes more

retention time in the pipe, and consequently, yields lower

chlorine concentration due to the bulk decay reaction. Once

the chlorine concentration is lowered, the microorganisms

formed as biofilm on the pipe wall are then increased.

Consequently, the high values of pipe wall surface reaction

result in large values of Vd for the dead-end pipes 3, 16, and 18

as demonstrated in the last column of Table 4.
4. Concluding remarks

An analytical solution for predicting the chlorine decay in the

bulk water and at the pipe wall was presented in Biswas et al.

(1993) and developed based on the 2-D steady-state chlorine

transport with the first-order decay kinetics. This study

develops a new approximate solution for describing the

average chlorine concentration in the pipe by mainly

neglecting the high order terms in the analytical solution

(Biswas et al., 1993) and Bessel functions. The present

approximate solution is expressed as an exponential form

and in terms of three non-dimensional parameters, which

physically represent the mechanisms of radial diffusion, first-

order chlorine bulk decay, and chlorine wall decay. Generally,

this approximate solution provides a better prediction for a

wide range of the parameters except when the dimensionless

wall decay rate is greater than 0.1. In short, this approximate
solution has been shown to have merits of easy evaluation

and good accuracy if compared with Biswas et al.’s approx-

imate solution (1993).

This approximate solution can be used either to predict the

chlorine decay in pipes or to determine the wall decay

parameter if coupled with an optimization algorithm such as

SA. Two cases are chosen to demonstrate the application of the

present approximate solution. In the first case, the approxi-

mate solution coupled with the algorithm of SA is used to

determine the wall surface reaction constants for water treated

by the methods of reverse osmosis, conventional treatment,

and ozonation held at US EPA’s Test and Evaluation Facility in

Cincinnati, Ohio (Rossman, 2006). The simulated concentra-

tions obtained by the present approximate solution are in good

agreement with the experiment-observed solution for lab-

tested water applied by those three treatments.

In the second case, the present approximate solution is also

used to determine the wall surface reaction constant of the

dead-end pipes in a field test conducted by the South Central

Connecticut Regional Water Authority (Clark et al., 1991). The

high values of wall surface reaction constant in the dead-end

pipes determined by the present approximate solution may

indicate the growth of biofilm on the wall pipe and thus lower

the chlorine concentration.
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