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Abstract

We propose a metaheuristic procedure based on the scatter search approach for solving two location problems
with few facilities(p�10). The first problem is the well-knownp-center problem. The second one is themaximum
set covering problem(MSCP). This scatter search algorithm incorporates procedures based on different strategies,
such as local search, GRASP, and path relinking. We first designed the algorithm for thep-center problem, and
then modified it for the MSCP. The aim is to solve problems with real data provided by the Health Authorities of
Burgos (northern Spain). Because the authorities have a limited budget, less than 10 facilities can considered in
both problems. A series of computational experiments were also performed. The proposed algorithm gave similar
results to the recently reported methods for thep-center problem but much faster. The quality of the solutions is
also very good for the MSCP (less than 1% deviation from the lower bound). We show its application to the location
of health resources with real data in the province of Burgos.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Thep-center problem is a well-known NP-hard discrete location problem[1]. It consists in locating
p facilities, which are assigned to clients (each facility can serve different numbers of clients) in order
to minimize the maximum distance between them and their closest facility.

Let U = {u1, u2, . . . , um} be a set of users and letV = {v1, v2, . . . , vn} be a set of potential locations
for facilities. Let us considerdij to be the distance between each user-location pair(ui, vj ). The problem
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is to find a subsetX ⊆ V of sizep such that the following expression is minimized

max
i=1..m

{
min
vj∈X

dij

}
.

An integer programming formulation of the problem is the following:

Minimize z

subject to
∑

j=1..n

xij = 1, i = 1..m; (1)

xij �yj , i = 1..m; j = 1..n; (2)
∑

j=1..n

yj = p; (3)

∑
j=1..n

dij xij �z, i = 1..m; (4)

xij , yj ∈ {0,1}, i = 1..m; j = 1..n; (5)

whereyj = 1 means that a facility is located atvj (and 0 otherwise);xij = 1 if userui is assigned to
facility vj (and 0 otherwise).

This model is used, for example, to locate fire stations, police stations or ambulances such that the
distance from the facilities to their farthest allocated client is the minimum. However, in some instances,
such as health services, rather than minimizing the distance of users to the facilities, the key issue is to
maximize the potential number of users able to use the service within a reasonable time (‘threshold time’
or ‘critical time’). For example, let us assume that in a particular region the National Health Service is
interested in opening some centers for diabetic patients. If a patient suffers an insulin shock he/she has
to be attended to in less than 20 min, otherwise damage may be permanent. In this case, it is important
for most people with diabetes to be no further than 20 min from their closest center.

This involves designing a new model that can be expressed as amaximum set covering problemor
MSCP (see[2]). Let us assume thatU ={u1, u2, . . . , um} is now a set of locations within a certain region
or area, each one with a given populationqi , i = 1..m, of potential users of a given service or facility (for
example a center for diabetic patients).V is the location set wherep facilities can be open; the matrix
dij is a time matrix and the maximum time to attend to users should not exceed a period denoted by
t_critical . The objective is

Minimize
∑
i

qi · ri
subject to: (3)

∑
j/dij � t_critical

yj + ri �1, i = 1..m;

yj ∈ {0,1}, j = 1..n;

ri ∈ {0,1}, i = 1..m; (8)
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whereri has a value of 1 if the facility assigned toui is more thant_critical and 0 otherwise. Note that
(8) could be replaced by

ri ∈ (0,1), i = 1..m. (8′)

Although the MSCP is a maximization problem, the objective function is minimized because it consists
in minimizing the number of patients that are not covered.

This work is part of a project aimed at developing a system to find the best locations in which to place
special health resources (geriatric, diabetic care units, etc.) in the provinces of Castilla and León, Spain.
Because the authorities have a limited budget, less than 10 facilities are considered. These economic
conditions prevent the opening of more than 10 units in each province. Two key factors are taken into
account, i.e., the economic factor (determined by the number of units to be opened that has to be less
than 10), and the social factor, determined by several objective functions according to the kind of unit or
service. For example, in an emergency unit, the objective is to minimize the maximum distance a user
has to travel to his/her closest center. On the other hand, in a diabetic care unit, as we pointed out earlier,
the objective is to maximize the number of patients who can reach a unit within a given time.

Therefore, for each unit we are dealing with a 2-criteria problem: economic (number of units) and social
factors. The goal is to develop a system able to provide solutions as close as possible to the efficiency
curve. In this way, decision-makers can choose the most suitable ones from among a set. On the other
hand, the number of units of each type to be added has to be small: never higher than 10 in each area.
Thus, we opted for a system able to solve single-objective problems corresponding to different numbers
of units to be added (fromp = 1 to 10). For this reason, we developed two different algorithms for the
two location models—p-center and ‘maximum set cover’—which correspond to the two social objectives
under consideration. Our aim is to make these algorithms especially efficient for lowp values.

In a recent work, Mladenovi´c et al.[3] adapted several of the more classic heuristics for thep-median
problem to thep-center problem (see[4,5]), as well as several types of neighboring moves and structures
(see[6,7]). They also suggested two algorithms based on thevariable neighborhoodand tabu search
strategies. There exists at least one recent reference to the MSCP as formulated in the present work ([8],
1998).

In this paper, we propose a scatter search (SS) procedure[9–11]for thep-center problem.This algorithm
incorporates different elements based on GRASP strategies[12–14], local search, and path relinking
[15,16]. We test the efficiency of this algorithm for low values ofp and compare it to other recent
strategies. More specifically, we use the instances of the well-known library OR-Lib[17]. Similarly, the
SS algorithm and its elements have been adapted to create another algorithm for the MSCP. In order
to evaluate the efficiency of this new strategy—also for low values ofp—several tests were done with
different adaptations of these instances. The results obtained with our SS strategy were compared to the
lower bounds obtained by executing CPLEX MIP 8.0. In addition, we analyzed a series of instances based
on real data using both models. These data refer to the area of Burgos (northern Spain), and to estimates
regarding the care of diabetics.

The paper is organized as follows: in Section 2 we describe the classic heuristics for thep-center
problem that we use later, as well as more recent metaheuristics. Section 3 describes the scatter search
algorithm proposed as well as its elements. Section 4 shows how the algorithm can be adapted for the
MSCP. In Section 5 we show the computational results from both models with hypothetical instances.
Section 6 shows results with real data and the solutions. Finally, Section 7 is devoted to the conclusions.
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2. Main Heuristics for the p-center problem

Mladenović et al.[3] adapt three classical heuristics of the well-known heuristics of[18] for thep-
median problem to thep-center problem. These three heuristics involve a constructive method (Greedy)
and two improvement procedures (alternateand interchange). We describe them briefly by using a
problem defined bym, n, d, andp (from now on, and for reasons of simplicity,U andV will be directly
identified with the indices, i.e.,U = {1,2, . . . , m} andV = {1,2, . . . , n}), wherem is the number of
users,n is the number of potential locations for facilities,d is the matrix of distances (dij : the distance
between each user and location) andp is the number of facilities that must be located. In addition, we
denoteX as the partial or complete solution at each moment (partial solution if there are less thanp

elements inX, and complete solution otherwise), i.e., locations (indexes) where the facilities are placed,
andf as the value of the objective function corresponding toX. The heuristics can be described as
follows:

Greedy procedure
LetX = �

While|X|<p do

• Determine the locationj∗ that will provide the lowest value of f if a facility is added.
• LetX = X ∪ {j∗}.

Alternate procedure
Repeat

• For each facility j of X, determine the subset of pointsUj ⊂ U that have j as
the closest facility.

• Solve the1-center problem for each subsetUj .
• LetX′ be the set of solutions of these p problems, andf ′ its value.
• If f ′ <f letX = X′ andf = f ′

until no more changes take place inX.

Interchange procedure
Repeat
• For eachj ∈ V –X andk ∈ X calculate the value of the objective functionvjk if
the facility moved from k to j.

• Calculatevj∗k∗ = min{vjk/j ∈ V –X and k ∈ X}.
• If vj∗k∗ <f then, letX = X − {k∗}, X = X ∪ {j∗} and f = vj∗k∗
until no further improvement,

wherevjk is the value of the objective function if the facility moved fromk to j . In these algorithms,
as occurs in the one we describe below, there is a fundamental auxiliary variable,cI(i), which indicates
the location of the closest facility in the current solution for each useri, i = 1..m. Mladenović et al.[3]
also make use in this last procedure of the following property: “leti∗ be the user who defines the value
of f ; that is,di∗cI (i∗) = f , (‘critical user’), then any move defined byj ∈ V –X andk ∈ X, able to reduce
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the value of the objective function(vjk < f ), has to verify thatdi∗j < di∗cI (i∗)”. In this way, the search is
reduced at each iteration and the procedure accelerates.

Mladenović et al.[3] also define two heuristics based on tabu search (TS) and variable neighborhood
search (VNS).

In the tabu search procedure two tabu lists are used that correspond to the elements have just entered
the solution(Lin) and those that have just left(Lout). Notice that the concept of critical client is used
when a good path is found (improvement of the best solution). The TS procedure is briefly described
below.

Tabu search
Read initial solutionX, f , and letX_best = X, f _best = f , improve=TRUE
Initialize tabu lists, Lin = �, Lout = �

Repeat
• Calculate the critical clienti∗ corresponding toX.
• LetJ = {j ∈ V \X\Lout/di∗j < f }.
• If (J = �) or (no improve) thenJ = {j ∈ V \X\Lout }.
• ∀k ∈ X\Lin andj ∈ J calculatevjk.
• Calculatevj∗k∗ = min{vjk/j ∈ V \X and k ∈ X}.
• LetX = X − {k∗}, X = X ∪ {j∗} and f = vj∗k∗ .
• If f <f _best , then letf _best = f,X_best = X, improve = T RUE;
elseimprove = FALSE.

• Update tabu lists: Lin andLout

until a stopping condition is reached.

VNS is a recent metaheuristic for solving optimization problems, whose basic idea is systematic change
of neighborhood within a local search[19,20]. Two recent tutorials are Hansen and Mladenovic[21,22].
More information is available athttp:vnsheuristic.ull.es.

The VNS procedure is as follows:

Variable neighbor search procedure
Read initial solutionX_best, f _best
Repeat

k = 1
Repeat
• X = X_best, f = f _best
• ∀j = 1..k

Calculate the critical clienti∗ corresponding to X
TakeLin ∈ V \X/d(i∗, Lin)<f randomly

TakeLout ∈ X randomly
LetX = X − {Lout }, X = X ∪ {Lin} and update f

• Apply the procedure interchange to X and f
• If f <f _best thenX_best = X, f _best = f andk = 1;

otherwisek = k + 1
until k = kmax

Until a stopping condition is reached.

http:vnsheuristic.ull.es
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In both algorithms the stopping condition is a series of iterations without improvement inf _best or a
maximum computation time.

3. Scatter search algorithm

The solution approach we have developed is an adaptation of the scatter search methodology. SS is
an instance of the so-called evolutionary methods, with the distinction (compared to other evolutionary
methods) that its mechanism for searching is not based solely on randomization. More about the origins
and multiple applications of scatter search can be found in[9–11,16].

SS is characterized by the use of aReference Set(RefSet) of solutions. At each step reference solutions
are combined to generate new solutions and update the current Reference Set according to some systematic
rules.

For this problem, we have developed a version of scatter search that uses a static update of the Reference
Set. The following pseudocode gives a general description of our scatter search implementation:

Static scatter search procedure
1. Generate an initial set P of PSize solutions with a Diversification-Generation Method
2. Improve these solutions by an Improvement Method
3. With these solutions build an initial RefSet
4. Repeat

4.1. Obtain all subsets of pairs of solutions from RefSet
4.2. Apply a Combination Method to these subsets and obtain new solutions
4.3. Improve these solutions by the Improvement Method
4.4. Update RefSet considering these news solutions
until RefSet is stable(i.e. no new solutions have been included)

5. If max_iter iterations(steps1–4)elapse without improvement stop
else return step1

The size ofP is denoted byPSize(step 1).
In order to build the initial Reference Set (step 3) we start by selecting the bestb1 solutions inP

according to the objective function value. Then, in order to add the remainingb2 elements toRefSet, we
measure the “diversity” of a candidate solutionx in relation to those elements already inRefSet:

Difmin(x,RefSet) = min{dif (x, x′)/x′ ∈ RefSet};
wheredif (x, x′) = |x − x′|. We then select the candidate solutionx that maximizesDifmin(x,RefSet).

In addition,b = b1 + b2 denotes the size ofRefSet.
The updating ofRefSet(step 4.4.) is carried out by taking into account only the quality of the solutions.

In other words, a new trial(x) solution that improves the objective function of the worst reference solution
(xb) is included inRefSet. Since the Reference Set is ordered according to solution quality, the worst
reference solution is always the last one (denoted byxb). As improvement method we use the Alternate
and Interchange procedures in this order, which has been chosen after performing different tests. We now
provide descriptions of the diversification and combination methods.
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3.1. Diversification method

Our diversification method is based on GRASP constructions. GRASP, or Greedy Randomized
Adaptive Search Procedure, is a heuristic that usually applies a randomized greedy constructive heuristic.
Most GRASP implementations also include a local search that is used to improve upon the solutions
generated with the randomized greedy function. GRASP was originally proposed in the context of a set
covering problem[12]. Details of the methodology and a survey of applications can be found in[13,14].

In this case, the greedy function�j is, in each iteration, the value of the objective function if location
j was added to the solution. The diversification method consists of the following steps.

Random-greedy procedure
LetX = �

While|X|<p do
• Calculate�j∀j ∈ V \X
• Calculate�_max = max{�j /j ∈ V \L} and�_min = min{�j /j ∈ V \L}
• DefineL = {j ∈ V \L/�j ���_min + (1 − �) · �_max}
• Choosej∗ ∈ L randomly
• LetX = X ∪ {j∗}.

The� parameter(0���1) controls the level of randomization for the greedy selections. Randomization
decreases as the value of� increases. This controlled randomization results in a sampling procedure where
the best solution found (referring to the constructive algorithm) is typically better than the one found by
setting� = 1. A judicious selection of the value of� provides a balance between diversification and
solution quality.

The first time that the diversification method is employed (step 1), there is no history associated with
the number of times each locationj has belonged to solutions inRefSet. However, this information is
valuable when the method is applied to re-start the process. The information is stored in the following
array:

freq(j) = number of times each locationj ∈ V has belonged to solutions inRefSet.

The information accumulated infreq(j) is used to modify the�j values in the application of diversi-
fication method. The modified evaluation is

�′
j = �j − ��_max

freq(j)

freqmax

,

wherefreqmax = max{freq(j) : ∀i}. The modified�′
j values are used to calculate�′_maxand�′_min

and execute the diversification method. When� = 0, this modified diversification method is the original
diversification method. Large values of� encourage the selection of locations that have not frequently
belonged to solutions inRefSet. The use of frequency information within a diversification method is
inspired by[23,24].

3.2. Combination method

New solutions are generated from combining pairs of reference solutions (step 4.2). The number
of solutions generated from each combination depends on the relative quality of the solutions being
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x1 x2

xp xq

x* x**

Improvement

Fig. 1. Generation of new solutions by using path relinking.

combined. Letxp andxq be two reference solutions being combined, wherep <q. Assume, as before,
that the Reference Set is ordered in a way thatx1 is the best solution andxb is the worst. Then, the number
of solutions generated from each combination is:

3 if p�b1 andq�b1

2 if p = b1 andq >b1

1 if p >b1 andq >b1.

Each pair of reference solutions is combined to generate new solutions. The combination method is based
on a strategy called path relinking, which was originally proposed in the context of tabu search[15] and
has also been used in scatter search[16] as well as GRASP[25,26]. The underlying idea is that in the
path between two good solutions other solutions of similar quality (and perhaps better) may be found. It
consists in building a path to join the two solutions: an initiating solution and a guiding solution. This path
contains a number of intermediate points (solutions). In our implementation, the intermediate solutions
are chosen so as to be as equidistant as possible from each other and the extremes. The improvement
method is then applied to these intermediate solutions.Fig. 1depicts this idea.

From every pair of solutions of the Reference Set, in figurexp andxq , a path to join them is built.
Solutions in these intermediate preselected positions within the path, in figurex1 andx2, are improved.
In this way new solutions are generated, denoted asx∗ andx∗∗ in Fig. 1.

The path that joinsxp andxq is built as follows: initially we setx = xp. In the next iterations we add
to x an element ofxq\x and then we remove fromx an element ofx\xq . In this way, the intermediate
solutionx in each iteration moves closer toxq . At each iteration the best possible swap is selected, that
is, the best pair of elements.

4. Adaptations for the MSCP

The SS algorithm for the MSCP shares the same basic structure and design as the SS algorithm described
by thep-center. The same procedures were applied with small modifications. These modifications only
refer to the way the objective function is calculated.

Note that in all the procedures we can call upon (alternate, interchange, random-greedy or path relink-
ing) it is better to use the auxiliary variablecI(i), which shows for each useri, i = 1..m the location of
the closest facility in the current solution, whether this is partial or complete. In this way, the objective
functionf in thep-center problem is calculated as follows:

f = max{dicI (i)/i = 1..m}
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and in the case of MSCP:

f =
∑

i/dicI (i)>t_critical

.

For example, in the Random–Greedy process,�j values, i.e., the value off if j was added toX, can be
easily calculated with the following code forp-center problems:

• �j = 0
• For i = 1..m let:

dist= min{dij , dicI (i)}
�j = max{�j ,dist}; (∗)

For the MSCP we would only have to replace instruction(∗) by

If dist> t_critical then�j = �j + qi .

In short, the adaptation only requires changing very few lines of code.

5. Computational results

In order to assess the efficiency of the strategy suggested for both problems, a series of tests were
carried out which are described in Sections 5 and 6. These tests were done with a Pentium 3, 600 MHz.
The implementation of the algorithms (the ones proposed in Mladenovi´c et al.[3] and our scatter search)
was done in Pascal, with the Delphi 5.0 compiler. In this section, we use artificial instances, whereas
Section 6 includes results with real instances.

5.1. Tests for thep-center problem

We performed a final preliminary experiment to determine the best values for the parameters in the
scatter search procedure. The tables for this experiment are not presented at this point. The parameter
combination that yielded the best results wasPsize= 12,b1 = b2 = 3; � = � = 0,8 andmax_iter = 5.

Next, we compare the results of our scatter search algorithm (SS) with those obtained for the algorithms
suggested by Mladenovi´c et al.[3]: VNS, TS-II (tabu search with two tabu lists,Lin andLout). To this
end, we have used instances from the OR-Lib for thep-median problem corresponding to valuesp�10.
The reason is that this work is aimed at solving problems with real data. This real data comes from a
province named Burgos located in the north of Spain. The health authorities in this area cannot consider
more than 10 new units due to budget restrictions. In these examplesU =V , which means that the facility
locations match users. The results are given inTable 1.

Columns (T.B.VNS) and (T.B.TS) show the computational time (in seconds) until the best solution
is found by VNS and TS, respectively. The total computational time for these strategies was limited to
400 s. The last column (T.Total) shows the total computational time (in seconds) used by SS. The second
to last (T.Best) column shows the computational time (in seconds) until the best solution is found by SS.
For each instance the strategy with the best result is shown in bold, or the fastest when there is tie.

In Table 1we can observe that scatter search in all cases finds the best solution, and matches the
previous best known solution reported in Mladenovi´c et al. [3]. Scatter search is the best strategy in
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Table 1
Results for the instances of OR-Lib, withp�10 (p-center problem)

OR Lib file n p VNS T.B.VNS TS-II T.B.TS SS T.Best T.Total

Pmed1 100 5 127 0.48 127 0.08 127 0.11 6.20
Pmed2 100 10 98 197.40 98 1.48 98 1.26 7.96
Pmed3 100 10 93 8.72 94 27.28 93 0.49 7.91
Pmed6 200 5 84 2.92 84 0.12 84 0.06 17.91
Pmed7 200 10 65 5.16 64 45.80 64 16.31 37.73
Pmed11 300 5 59 2.36 59 0.76 59 7.96 41.85
Pmed12 300 10 51 114.4 51 28.28 51 4.29 46.03
Pmed16 400 5 47 0.72 47 0.76 47 2.42 59.21
Pmed17 400 10 39 203.08 40 6.44 39 10.49 81.95
Pmed21 500 5 40 1.56 40 34.68 40 2.91 84.42
Pmed22 500 10 39 94.76 39 9.24 38 81.12 192.95
Pmed26 600 5 38 3.88 38 6.04 38 4.50 131.11
Pmed27 600 10 33 102.48 33 81.32 32 78.60 256.83
Pmed31 700 5 30 63.32 30 1.80 30 2.25 158.51
Pmed32 700 10 29 67.04 29 374.2 29 21.42 224.21
Pmed35 800 5 30 3.0 30 387.6 30 4.88 212.50
Pmed36 800 10 28 3.08 28 30.84 27 26.47 302.74
Pmed38 900 5 29 7.40 29 13.24 29 11.32 284.24
Pmed39 900 10 23 142.64 24 38.68 23 35.54 352.51

Table 2
Results for north of Spain instances withp�10 (p-center problem)

m N P VNS TB.VNS TS TB.TS SS T.Best T.Total

Avila 248 156 5 36 4.12 36 0.08 36 0.08 139.84
248 156 10 25 106.4 23 10.24 23 3.72 191.16

Leon 211 184 5 47 13.4 47 1.44 47 2.84 139.36
211 184 10 33 4.64 33 9.16 33 4.44 172.92

Salamanca 362 150 5 45 0.8 45 17.48 45 0.36 226.96
362 150 10 31 227.68 31 118.32 31 5.68 296.12

Segovia 209 119 5 31 35.4 31 0.6 31 1 111
209 119 10 22 87.88 22 8 22 2 120.48

11 of 19 cases, (marked in bold inTable 1), VNS in 5 cases and TS in 3 cases. Therefore, we can conclude
that SS finds solutions of same quality and performs faster than other strategies.

We have run more test problems to show that SS is faster than the other strategies proposed in
Mladenović et al. [3] with few facilities (p�10). The instances refer to other provinces in the north
of Spain: Avila, León, Salamanca and Segovia. In these instancesU �= V . The values ofm andn for
each one and the results are shown inTable 2.These results lead to the same conclusions derived from
Table 1.
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Table 3
Results for the instances of OR-Lib, withp�10 (MSCP)

OR Lib file n P CPLEX SS

LB Value Pop.Out LBdv T.Best Total T.

Pmed1 100 5 965 967 19.62 0.2 0.03 0.88
Pmed2 100 10 845 845 17.14 0 0.13 1.75
Pmed3 100 10 878 880 17.86 0.22 0.01 1.69
Pmed6 200 5 1399 1406 14.28 0.49 0.33 6.58
Pmed7 200 10 1274 1283 13.03 0.70 0.22 11.8
Pmed11 300 5 1780 1780 12.3 0 0.11 87.84
Pmed12 300 10 1474 1474 10.18 0 0.16 41.36
Pmed16 400 5 2251 2263 11.33 0.53 0.21 65.52
Pmed17 400 10 2599 2609 13.07 0.38 5.63 29.82
Pmed21 500 5 3289 3318 13.36 0.88 5.70 43.13
Pmed22 500 10 3316 3322 13.38 0.18 3.24 34.61
Pmed26 600 5 2982 2987 9.95 0.17 0.83 389.15
Pmed27 600 10 3919 3941 13.13 0.56 0.85 207.14
Pmed31 700 5 5536 5576 15.78 0.72 1.05 195.7
Pmed32 700 10 4901 4943 13.99 0.86 5.80 111.12
Pmed35 800 5 2897 2910 7.28 0.45 19.62 178.13
Pmed36 800 10 4657 4702 11.76 0.96 26.22 222.48
Pmed38 900 5 3046 3075 6.85 0.95 3.24 399.84
Pmed39 900 10 5739 5780 12.88 0.71 2.14 315.01

5.2. Tests for the maximum set covering problem

In order to measure the quality of solutions obtained by our SS algorithm, a lower bound for each
problem is obtained by executing CPLEX MIP 8.0 for 2 h for each instance. Since there are no libraries
available for this model, we have used the instances used in Section 5.1., definingt_critical in the
following way: t_critical = Round(P .B.Kn/1.5); whereP.B.Kn is the best known solution for thep-
center problem, andRoundis the function that rounds to the closest integer. On the other hand,qi is
generated randomly for values ranging from 1 to 100, (these values are available to interested readers).

In this case, the scatter search procedure has used the same parameter values as for thep-center
problem:Psize= 12,b1 = b2 = 3; � = � = 0.8 andmax_iter = 5. Table 3shows the following results:
the lower bound obtained by CPLEX MIP 8.0, the value of the solution (value), the percentage of the
population that is left out (Pop.Out); the percentage deviation from the best lower bound (LBDev), the
computational time till the best solution is found, (T.Best) and the total computational time (Total T.) for
the SS algorithm (the latter two in seconds).

The quality of scatter search solutions is acceptable because the average deviation with respect to the
lower bound is (on average) less than 1%. In addition, note that only in one case does SS exceed 20 s
computational time before finding the best solution (26.22 s forn = 800, p = 10).

In the same way as thep-center problem, we have run more test problems to reaffirm the conclusions
obtained with the instances of Or-Lib with few facilities(p�10). These instances are the same as in
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Table 4
Results for north of Spain instances withp�10 (MSCP)

M n P CPLEX SS

LB Value Pop.Out LBdv T.Best Total T.

Avila 248 156 5 3746 3750 32.76 0.1 0.12 120.04
248 156 10 1469 1474 12.87 0.34 3.6 61.68

Leon 211 184 5 9741 9753 28.50 0.12 0.8 120.08
211 184 10 5320 5320 15.54 0 7.28 103

Salamanca 362 150 5 6015 6027 24.90 0.2 0.2 120.04
362 150 10 3941 3941 16.28 0 6.36 115.08

Segovia 209 119 5 2454 2464 23.82 0.4 0.16 120
209 119 10 662 662 6.40 0 2.72 37.16

Table 2(files with the description of these instances are available to interested readers). In this case
t_critical = 15. The results are shown inTable 4.

6. Results with real data

In this section we show the results obtained from the tests performed with actual problems using the
objective function of both models. The data refer to the area of Burgos (northern Spain). The objective is
to analyze the best locations for a series of diabetes units that are chosen from a set of potentially suitable
towns.

Initially, 452 locations with at least one known case of diabetes in the town were taken into account
within the area. In fact, the data are estimations as we were not provided with exact data for each
town, although we believe these estimates are close enough to reality as these data were supplied by the
Local Public Health Authorities (http:/www.jcyl.es). Among these towns a subset of 152 locations were
considered suitable for the project (they already had some kind of facility that could serve this purpose).

A time matrix (in minutes) was created with the 452 source locations, and the 152 that could potentially
host the diabetes services (destination). To calculate traveling times, we used road data provided by the
Spanish Center of Geographical Information (CNIG), and we estimated different speeds depending on
the kind of road (national, regional, local roads, etc.). The road network data was used to calculate the
time matrix using Djikstra’s algorithm. The data employed (source and destination towns, time matrix,
diabetes cases per location, etc.) are available to readers upon request.

Fig. 2 shows a map with the locations in the Burgos area that included cases of diabetes (grey), and
those that were suitable for hosting the diabetes service (black).

For both models we used three values ofp, p = 5,7, and 10. For the maximum set covering model we
used two values oft_critical,

t_critical = Round(p-center solution/1.5)

and

t_critical = Round(p-center solution/2),

http:/www.jcyl.es
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Fig. 2. Towns in the province of Burgos with cases of diabetes (grey), and towns that can host special diabetes units (black).

Table 5
Results for real instances for thep-center problem

P VNS SS

↓ Value Time to best Value Time to best

5 61 0.22 61 0.05
7 46 10.86 46 0.48
10 41 7.20 41 0.05

wherep-center solutionis the value of the best solution for thep-centerproblem. Therefore, we have
three instances for thep-centerproblem, and six for the MSCP. We executed our SS algorithm and our
implementation of the VNS algorithm for thep-center problem, and our SS algorithm and CPLEX for
the ‘maximum set covering problem’. A computational time ofn (152) s was considered as the stopping
condition for SS and VNS, and 2 h for CPLEX. The results (value) for both models as well as the
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Table 6
Results for real instances for the MSCP

P T _critical CPLEX SS

↓ Lower bound Value LB dev Time to best

5 41 119 121 1.68 0.22
31 595 595 0 0.77

7 31 260 262 0.77 4.28
23 768 768 0 0.17

10 27 204 206 0.98 0.6
21 621 622 0.16 1.05

Fig. 3. Map showing (in white) the solutions provided by the SS algorithm for thep-center problem. The locations (in grey) are
linked to the allocated facility by a line. The critical client is shown in black (maximum time to the closest facility).

computational time to obtain the best solution (Time to Best) by each algorithm are shown inTables 5
andTable 6. In Table 6the percentage deviation from the best lower bound (LBDev) is shown.

As is the case with the OR-Lib instances for thep-center problem, SS matches the solutions obtained
by VNS faster. In addition, for the MSCP, the solution quality obtained by SS is perfectly acceptable
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Fig. 4. Map showing (in white) the solutions given by the SS algorithm to the MSCP. The locations further away from its closest
facility are in black(t_critical = 21 min).

because the average deviation from the lower bound obtained with CPLEX is less than 1%.Fig. 3shows
a plan with the solutions obtained using SS(p = 10) for thep-center problem.

Finally,Fig. 4shows a map with the best SS solution for the MSCP problem(p = 10 andt_critical=21).

7. Conclusions

Our research was motivated by the need to find solutions to the problem of allocating health resources
throughout the area of Burgos, in the north of Spain. This is a rural area with a very dispersed population.
Therefore, it was essential to design a method to provide good solutions with a low number of new
facilities. This paper has dealt with two problems: minimizing the maximum distance between users and
facilities (p-center), and minimizing the population further away from its closest available facility than
a previously fixed time (‘maximum set covering’). Both problems were solved by a procedure based on
the scatter search strategy and the results were analyzed using both actual and artificial data. Real data
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refer to the estimation of diabetes cases in the Burgos area. According to our results, our algorithm for
thep-center problem provides similar quality solutions as other recently developed strategies, but in less
computational time. With the MSCP, the quality of the solutions obtained is very high level (deviation
from lower bound less than 1%).

Finally, this SS procedure has been used to solve other problems (with the necessary changes): clustering
[27], logistics[28], labor scheduling[29] and school bus routing[30].

References

[1] Kariv O, Hakami SL. An algorithmic approach to network location problems. Part I: thep-center problem. SIAM Journal
of Applied Mathematics 1979;37:513–38.

[2] Love RF, Morris JG, Wesolowsky GO. Facilities location: models and methods. Amsterdam: North-Holland; 1988.
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