
Computers & Operations Research 36 (2009) 260–279
www.elsevier.com/locate/cor

Solving efficiently the 0–1 multi-objective knapsack problem
Cristina Bazgan, Hadrien Hugot, Daniel Vanderpooten∗

LAMSADE, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75 775 Paris Cedex 16, France

Available online 22 September 2007

Abstract

In this paper, we present an approach, based on dynamic programming, for solving the 0–1 multi-objective knapsack problem.
The main idea of the approach relies on the use of several complementary dominance relations to discard partial solutions that cannot
lead to new non-dominated criterion vectors. This way, we obtain an efficient method that outperforms the existing methods both in
terms of CPU time and size of solved instances.

Extensive numerical experiments on various types of instances are reported. A comparison with other exact methods is also
performed. In addition, for the first time to our knowledge, we present experiments in the three-objective case.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Multi-objective knapsack problem; Non-dominated criterion vectors; Efficient solutions; Dynamic programming; Dominance relations;
Combinatorial optimization

1. Introduction

In multi-objective combinatorial optimization, a major challenge is to develop efficient procedures to generate
efficient solutions, that have the property that no improvement on any objective is possible without sacrificing on at
least another objective. The aim is thus to find the efficient set (which consists of all the efficient solutions) or, more
often, a reduced efficient set (which consists of only one solution for each non-dominated criterion vector). A survey
and an annotated bibliography about multi-objective combinatorial optimization can be found in [1] and [2].

This paper deals with a particular multi-objective combinatorial optimization problem: the 0–1 multi-objective
knapsack problem. The single-objective version of this problem has been studied extensively in the literature
(see, e.g., [3,4]). Moreover, in the multi-objective case, many real-world applications are reported dealing with capital
budgeting [5], selection of transportation investment alternatives [6], relocation issues arising in conservation biology
[7], and planning remediation of contaminated lightstation sites [8].

Several exact approaches have been proposed in the literature to find the efficient set or a reduced efficient set for
the multi-objective knapsack problem. We first mention a theoretical work [9], without experimental results, where
several dynamic programming (DP) formulations are presented. Two specific methods, with extensive experimental
results, have been proposed: the two-phase method including a branch and bound algorithm proposed in [10], and the
method of Captivo et al. presented in [11], based on a transformation of the problem into a bi-objective shortest path
problem which is solved using a labeling algorithm. We can also mention the recent work of Silva et al. [12]. All these

∗ Corresponding author. Fax: +33 1 44 05 40 91.
E-mail addresses: bazgan@lamsade.dauphine.fr (C. Bazgan), hugot@lamsade.dauphine.fr (H. Hugot), vdp@lamsade.dauphine.fr

(D. Vanderpooten).

0305-0548/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2007.09.009

http://www.elsevier.com/locate/cor
mailto:bazgan@lamsade.dauphine.fr
mailto:hugot@lamsade.dauphine.fr
mailto:vdp@lamsade.dauphine.fr

C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279 261

methods have been especially designed for the bi-objective case. Besides exact methods investigated in this paper,
approximation algorithms [13] and metaheuristics [14–16] have been proposed.

In this paper, we present a new approach based on DP. The main idea of the approach relies on the use of several
complementary dominance relations to discard partial solutions that cannot lead to new non-dominated criterion vectors.
Using conjointly complementary dominance relations, each of which focuses on specific aspects, make the approach
quite efficient. This way, we obtain a method that outperforms the existing methods both in terms of CPU time and
size of solved instances (up to 4000 items in less than 2 h in the bi-objective case). In our experiments, we compare
our approach with the method proposed in [11], which is the most efficient method currently known, and with an exact
method based on a commercial Integer Programming solver. In addition, for the first time to our knowledge, we present
experiments in the three-objective case.

This paper is organized as follows. In Section 2, we review basic concepts about multi-objective optimization and
formally define the multi-objective knapsack problem. Section 3 presents and establishes the validity of a DP approach
based on several dominance relations. Section 4 is devoted to implementation issues. Computational experiments and
results are reported in Section 5. Conclusions are provided in a final section.

2. Preliminaries

2.1. Multi-objective optimization

Consider a multi-objective optimization problem with p criteria or objectives where X denotes the finite set of
feasible solutions. Each solution x ∈ X is represented in the criterion space by its corresponding criterion vector
f (x)= (f1(x), . . . , fp(x)). We assume in the following that each criterion has to be maximized.

From these p criteria, the dominance relation defined on X, denoted by �, states that a feasible solution x dominates
a feasible solution x′, x�x′, if and only if fi(x)�fi(x

′) for i = 1, . . . , p. We denote by � the asymmetric part of �.
A solution x is efficient if and only if there is no other feasible solution x′ ∈ X such that x′�x, and its corresponding
criterion vector is said to be non-dominated. Thus, the efficient set is defined as E(X)={x ∈ X : ∀x′ ∈ X, not(x′�x)}.
The set of non-dominated criterion vectors, which corresponds to the image of the efficient set in the criterion space, is
denoted by ND. Since the efficient set can contain different solutions corresponding to the same criterion vector, any
subset of E(X) that contains one and only one solution for every non-dominated criterion vector is called a reduced
efficient set. Observe that X′ ⊆ X is a reduced efficient set if and only if it is a covering and independent set of X with
respect to �. We recall that, given � a binary relation defined on a finite set A,

• B ⊆ A is a covering (or dominating) set of A with respect to � if and only if for all a ∈ A\B there exists b ∈ B

such that b�a,
• B ⊆ A is an independent (or stable) set with respect to � if and only if for all b, b′ ∈ B, b �= b′, not (b�b′).

2.2. The 0–1 multi-objective knapsack problem

An instance of the 0–1 multi-objective knapsack problem consists of an integer capacity W > 0 and n items. Each
item k has a positive integer weight wk and p non-negative integer profits vk

1, . . . , vk
p (k=1, . . . , n). A feasible solution

is represented by a vector x = (x1, . . . , xn) of binary decision variables xk , such that xk = 1 if item k is included in the
solution and 0 otherwise, which satisfies the weight constraint

∑n
k=1 wkxk �W . The value of a feasible solution x ∈ X

on the ith objective is fi(x)=∑n
k=1 vk

i xk (i = 1, . . . , p). For any instance of this problem, we aim at determining the
set of non-dominated criterion vectors.

3. DP and dominance relations

We first describe the sequential process used in DP and introduce some basic concepts of DP (Section 3.1). Then,
we present the concept of multiple dominance relations in DP (Section 3.2). Section 3.3 indicates a manner to use
efficiently a dominance relation.

262 C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279

3.1. Sequential process and basic concepts of DP

The sequential process used in DP consists of n phases. At any phase k we generate the set of states Sk which
represents all the feasible solutions made up of items belonging exclusively to the k first items (k = 1, . . . , n). A state
sk = (sk

1 , . . . , sk
p, sk

p+1) ∈ Sk represents a feasible solution of value sk
i on the ith objective (i = 1, . . . , p) and of

weight sk
p+1. Thus, we have Sk = Sk−1 ∪ {(sk−1

1 + vk
1, . . . , sk−1

p + vk
p, sk−1

p+1 + wk) : sk−1
p+1 + wk �W, sk−1 ∈ Sk−1}

for k = 1, . . . , n where the initial set of states S0 contains only the state s0 = (0, . . . , 0) corresponding to the empty
knapsack. In the following, we identify a state and its corresponding feasible solution. As a consequence, relation
� defined on X is also valid on Sk , and we have sk�s̃k if and only if sk

i � s̃k
i , i = 1, . . . , p.

Definition 1 (Completion, extension, restriction). For any state sk ∈ Sk (k < n), a completion of sk is any, possibly
empty, subset J ⊆ {k+ 1, . . . , n} such that sk

p+1+
∑

j∈J wj �W . We assume that any state sn ∈ Sn admits the empty

set as unique completion. A state sn ∈ Sn is an extension of sk ∈ Sk (k�n) if and only if there exists a completion J of
sk such that sn

i = sk
i +

∑
j∈J v

j
i for i = 1, . . . , p and sn

p+1 = sk
p+1 +

∑
j∈J wj . The set of extensions of sk is denoted

by Ext(sk) (k�n). Finally, sk ∈ Sk (k�n) is a restriction at phase k of state sn ∈ Sn if and only if sn is an extension
of sk .

3.2. Dominance relations in DP

The efficiency of DP depends crucially on the possibility of reducing the set of states at each phase. For this
purpose, dominance relations between states are used to discard states at any phase. A dominance relation is defined as
follows.

Definition 2 (Dominance relation between states). A relation Dk on Sk , k = 1, . . . , n, is a dominance relation, if for
all sk, s̃k ∈ Sk ,

skDks̃k ⇒ ∀s̃n ∈ Ext(s̃k), ∃sn ∈ Ext(sk), sn�s̃n. (1)

Although dominance relations are not transitive by definition, they are usually transitive by construction. This is
the case, indeed, with the three relations used in our implementation (see Section 4.2). Observe also that if Dk is a
dominance relation then its transitive closure D̂k is a dominance relation. Finally, if Dk

i , i = 1, . . . , m, are dominance
relations then Dk =⋃m

i=1 Dk
i is also a dominance relation, which is generally non-transitive even if relations Dk

i are
transitive.

In an efficient implementation of DP, it is desirable to make use of multiple dominance relations Dk
1, . . . , Dk

m (m�1)

at phase k (k = 1, . . . , n) since each dominance relation Dk
i (i = 1, . . . , m) focuses on specific considerations. We

introduce now a way of using multiple dominance relations in Algorithm 1. At each phase k, Algorithm 1 generates
a subset of states Ck ⊆ Sk . This is achieved by first creating from Ck−1 a temporary subset Ck

0 ⊆ Sk . Then, we
apply dominance relations Dk

1, . . . , Dk
m sequentially. This is done by retaining for i = 1, . . . , m, Ck

i which can be any
covering set of Ck

i−1 with respect to Dk
i .

Algorithm 1. DP with multiple dominance relations.
1 C0 ← {(0, . . . , 0)};
2 for k← 1 to n do

3

4

5

⎢⎢⎢⎢⎢⎣
Ck

0 ← Ck−1 ∪ {(sk−1
1 + vk

1, . . . , sk−1
p + vk

p, sk−1
p+1 + wk)|sk−1

p+1 + wk �W : sk−1 ∈ Ck−1};
for i ← 1 to m do determine Ck

i any covering set of Ck
i−1 with respect to Dk

i ;
Ck ← Ck

m;
6 return Cn;

C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279 263

The following result characterizes the set Ck
m obtained at the end of each phase k.

Proposition 1. For any dominance relations Dk
1, . . . , Dk

m (m�1) on Sk , the set Ck
m obtained by Algorithm 1 at each

phase is a covering set of Ck
0 with respect to Dk = ⋃̂m

i=1 Dk
i (k = 1, . . . , n).

Proof. Considering sk ∈ Ck
0\Ck

m, it has been removed when selecting a covering set at an iteration of step 4. Let
i1 ∈ {1, . . . , m} be the iteration of step 4 such that sk ∈ Ck

i1−1\Ck
i1

. Since Ck
i1

is a covering set of Ck
i1−1 with respect

to Dk
i1

, there exists s̃k
(1) ∈ Ck

i1
such that s̃k

(1)D
k
i1
sk . If s̃k

(1) ∈ Ck
m then the covering property holds, since Dk

i1
⊆ Dk .

Otherwise, there exists an iteration i2 > i1, corresponding to the iteration of step 4 such that s̃k
(1) ∈ Ck

i2−1\Ck
i2

. As

before, we establish that there exists s̃k
(2) ∈ Ck

i2
such that s̃k

(2)D
k
i2
s̃k
(1). Since Dk

i2
⊆ Dk , we get that s̃k

(2)D
ks̃k

(1)D
ksk and

by transitivity of Dk , we ensure that s̃k
(2)D

ksk . By repeating this process, we establish the existence of a state s̃k ∈ Ck
m,

such that s̃kDksk . �

We give now conditions under which Algorithm 1 generates the set ND of non-dominated criterion vectors.

Theorem 1. For any family of dominance relations Dk
i (i = 1, . . . , m; k = 1, . . . , n), Algorithm 1 returns Cn which

is a covering set of Sn with respect to �. Moreover, if at phase n we use at least one relation Dn
i = � and impose that

the selected covering set Cn
i is also independent with respect to Dn

i then Cn represents the set ND of non-dominated
criterion vectors.

Proof. Considering s̃n ∈ Sn\Cn, all its restrictions have been removed when retaining a covering set with respect to

Dk = ⋃̂m
i=1D

k
i during phases k�n. Let k1 be the highest phase where C

k1
0 still contains restrictions of s̃n, which will

be removed by applying one of the relations D
k1
i (i = 1, . . . , m). Consider any of these restrictions, denoted by s̃

k1
(n).

Since s̃
k1
(n) ∈ C

k1
0 \Ck1 , we know from Proposition 1, that there exists sk1 ∈ Ck1 such that sk1Dk1 s̃

k1
(n). By (1), since Dk

is a dominance relation, we have that for all extensions of s̃
k1
(n), and in particular for s̃n, there exists sn1 ∈ Ext(sk1) such

that sn1�s̃n. If sn1 ∈ Cn, then the covering property holds. Otherwise, there exists a phase k2 > k1, corresponding to
the highest phase where C

k2
0 still contains restrictions of sn1 , which will be removed by applying one of the relation

D
k2
i (i=1, . . . , m). Consider any of these restrictions, denoted by s

k2
(n1)

. As before, we establish the existence of a state

sk2 ∈ Ck2 such that there exists sn2 ∈ Ext(sk2) such that sn2�sn1 . Transitivity of � ensures that sn2�s̃n. By repeating
this process, we establish the existence of a state sn ∈ Cn,such that sn�s̃n.

In addition, by selecting a set Cn
i that is independent with respect to Dn

i = �, this property remains valid for Cn
m

which is a subset of Cn
i . Thus Cn, which corresponds to a reduced efficient set, represents the set of non-dominated

vectors. �

The previous theorem only requires that one of the n.m covering sets is independent with respect to its corresponding
dominance relation. Even if all other sets Ck

i can be any covering sets, practical efficiency of Algorithm 1 induces to
select covering sets of minimal size.

This can be easily achieved when dominance relations Dk
i are transitive, by selecting, at step 4 of Algorithm

1, covering sets Ck
i that are independent with respect to Dk

i . It is well-known indeed that a covering and inde-
pendent set (i.e. a kernel) with respect to a transitive relation does exist and is a covering set of minimal size
(see, e.g., [17]).

3.3. Generating covering and independent sets

We present now in Algorithm 2 a way of producing Ck
i a covering and independent set of Ck

i−1 with respect to a
transitive relation Dk

i (step 4 of Algorithm 1).

264 C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279

Algorithm 2. Compute Ck
i a covering and independent set of Ck

i−1 with respect to a transitive relation Dk
i .

/* Assume that Ck
i−1 = {sk(1), . . . , sk(r)} ∗/

1 Ck
i ← {sk(1)};

2 for h← 2 to r do

3
4
5

6

7
8
9
10
11

12

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

/ ∗ Assume that Ck
i = {s̃k(1), . . . , s̃k(�h)} ∗/

dominated ← false; dominates ← false; j ← 1;
while j ��h and not(dominated) and not(dominates) do⎢⎢⎢⎣ if s̃k(j)Dk

i s
k(h) then dominated ← true;

else if sk(h)Dk
i s̃

k(j) then Ck
i ← Ck

i \{s̃k(j)}; dominates ← true;
j ← j + 1;

if not(dominated) then⎢⎢⎢⎢⎢⎣
while j ��h do⌊

if sk(h)Dk
i s̃

k(j) then Ck
i ← Ck

i \{s̃k(j)};
j ← j + 1;

Ck
i ← Ck

i ∪ {sk(h)};
13 return Ck;

Proposition 2. For any transitive dominance relation Dk
i on Sk , Algorithm 2 returns Ck

i a covering and independent
set of Ck

i−1 with respect to Dk
i (k = 1, . . . , n; i = 1, . . . , m).

Proof. Clearly, Ck
i is independent with respect to Dk

i , since we insert a state sk into Ck
i at step 12 only if it is

not dominated by any other state of Ck
i (step 5) and all states dominated by sk have been removed from Ck

i

(steps 6 and 10).
We show now that Ck

i is a covering set of Ck
i−1 with respect to Dk

i . Consider s̃k ∈ Ck
i−1\Ck

i . This occurs either
because it did not pass the test at step 5 or was removed at step 6 or 10. This is due respectively to a state s̄k already
in Ck

i or to be included in Ck
i (at step 12) such that s̄kDk

i s̃
k . It may happen that s̄k will be removed from Ck

i at a later
iteration of the for loop (at step 6 or 10) if there exists a new state ŝk ∈ Ck

i−1 to be included in Ck
i , such that ŝkDk

i s̄
k .

However, transitivity of Dk
i ensures the existence, at the end of phase k, of a state sk ∈ Ck

i such that skDk
i s̃

k . �

Algorithm 2 can be improved since it is usually possible to generate states of Ck
i−1={sk(1), . . . , sk(r)} according to a

dominance preserving order for Dk
i such that for all � < j (1��,j �r) we have either sk(�)Dk

i s
k(j) or not(sk(j)Dk

i s
k(�)).

The following proposition gives a necessary and sufficient condition to establish the existence of a dominance preserving
order for a dominance relation.

Proposition 3. Let Dk be a dominance relation on Sk . There exists a dominance preserving order for Dk if and only
if Dk does not admit cycles in its asymmetric part.

Proof. ⇒ The existence of a cycle in the asymmetric part of Dk would imply the existence of two consecutive states
sk(j) and sk(�) on this cycle with j > �, a contradiction.
⇐ Any topological order based on the asymmetric part of Dk is a dominance preserving order for Dk . �

We give in Section 4.3.1 an example of a dominance preserving order. If states of Ck
i−1 are generated according to a

dominance preserving order for Dk
i , step 6 and loop 9–11 of Algorithm 2 can be omitted.

4. Implementation issues

We first present the order in which we consider items in the sequential process (Section 4.1). Then, we present three
dominance relations that we use in DP (Section 4.2) and the way of applying them (Section 4.3).

C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279 265

4.1. Item order

The order in which items are considered is a crucial implementation issue in DP. In the single-objective knapsack
problem, it is well-known that, in order to obtain a good solution, items should usually be considered in decreasing
order of value to weight ratios vk/wk (assuming that ties are solved arbitrarily) [3,4]. For the multi-objective version,
there is no such a natural order.

We introduce now three orders Osum, Omax, Omin that are derived by aggregating orders Oi induced by the ratios
vk
i /w

k for each criterion (i = 1, . . . , p). Let r�
i be the rank or position of item � in order Oi . Osum denotes an order

according to increasing values of the sum of the ranks of items in the p orders Oi (i = 1, . . . , p). Omax denotes an
order according to the increasing values of the maximum or worst rank of items in the p orders Oi (i = 1, . . . , p),
where the worst rank of item � in the p orders Oi (i = 1, . . . , p) is computed by maxi=1,...,p{r�

i } + (1/pn)
∑p

i=1r
�
i in

order to discriminate items with the same maximum rank. Omin denotes an order according to the increasing values
of the minimum or best rank of items in the p orders Oi (i = 1, . . . , p), where the best rank of item � in the p orders
Oi (i = 1, . . . , p) is computed by mini=1,...,p{r�

i } + (1/pn)
∑p

i=1r
�
i in order to discriminate items with the same

minimum rank.
In the computational experiments, in Section 5.2.1, we show the impact of the order on the efficiency of our

approach.

4.2. Dominance relations

Each dominance relation focuses on specific considerations. It is then desirable to make use of complementary
dominance relations. Moreover, when deciding to use a dominance relation, a tradeoff must be made between its
potential ability of discarding many states and the time it requires to be checked.

We present now the three dominance relations used in our method. The first two relations are very easy to establish
and the last one, although more difficult to establish, is considered owing to its complementarity with the two others.

We first present a dominance relation based on the following observation. When the residual capacity associated to
a state sk of phase k is greater than or equal to the sum of the weights of the remaining items (items k + 1, . . . , n), the
only completion of sk that can possibly lead to an efficient solution is the full completion J = {k+ 1, . . . , n}. Thus, in
this context, it is unnecessary to generate extensions of sk that do not contain all the remaining items. We define thus
the dominance relation Dk

r on Sk for k = 1, . . . , n by

for all sk, s̃k ∈ Sk, skDk
r s̃

k ⇔

⎧⎪⎪⎨⎪⎪⎩
s̃k ∈ Sk−1,

sk = (s̃k
1 + vk

1, . . . , s̃k
p + vk

p, s̃k
p+1 + wk), and

s̃k
p+1 �W −∑n

j=kw
j .

The following proposition shows that Dk
r is indeed a dominance relation and gives additional properties of Dk

r .

Proposition 4 (Relation Dk
r).

(a) Dk
r is a dominance relation.

(b) Dk
r is transitive.

(c) Dk
r admits dominance preserving orders.

Proof. (a) Consider two states sk and s̃k such that skDk
r s̃

k . This implies, that sk�s̃k . Moreover, since sk
p+1 = s̃k

p+1 +
wk �W −∑n

j=k+1w
j , any subset J ⊆ {k + 1, . . . , n} is a completion for s̃k and sk . Thus, for all s̃n ∈ Ext(s̃k), there

exists sn ∈ Ext(sk), based on the same completion as s̃n, such that sn�s̃n. This establishes that Dk
r satisfies condition

(1) of Definition 2.
(b) Obvious.
(c) By Proposition 3, since Dk

r is transitive. �

266 C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279

This dominance relation is rather poor, since at each phase k it can only appear between a state that does not contain
item k and its extension that contains item k. Nevertheless, it is very easy to check since, once the residual capacity
W −∑n

j=kw
j is computed, relation Dk

r requires only one test to be established between two states.

We present now dominance relation Dk
� that is a generalization to the multi-objective case of the dominance relation

usually attributed to Weingartner and Ness [18] and used in the classical Nemhauser and Ullmann’s algorithm [19].
This second dominance relation is defined on Sk for k = 1, . . . , n by

for all sk, s̃k ∈ Sk, skDk
�s̃k ⇔

{
sk�s̃k and
sk
p+1 � s̃k

p+1 if k < n.

Observe that the condition on the weights sk
p+1 and s̃k

p+1 ensures that every completion for s̃k is also a completion for

sk . The following proposition shows that Dk
� is indeed a dominance relation and gives additional properties of Dk

�.

Proposition 5 (Relation Dk
�).

(a) Dk
� is a dominance relation.

(b) Dk
� is transitive.

(c) Dk
� admits dominance preserving orders.

(d) Dn
� = �.

Proof. (a) Consider two states sk and s̃k such that skDk
�s̃k . This implies, that sk�s̃k . Moreover, since sk

p+1 � s̃k
p+1,

any subset J ⊆ {k + 1, . . . , n} that is a completion for s̃k is also a completion for sk . Thus, for all s̃n ∈ Ext(s̃n), there
exists sn ∈ Ext(sn), based on the same completion as s̃n, such that sn�s̃n. This establishes that Dk

� satisfies condition
(1) of Definition 2.

(b) Obvious.
(c) By Proposition 3, since Dk

� is transitive.
(d) By definition. �

Relation Dk
� is a powerful relation since a state can possibly dominate all other states of larger weight. This relation

requires at most p + 1 tests to be established between two states.
The third dominance relation is based on the comparison between specific extensions of a state and an upper bound

of the extensions of another state. An upper bound for a state is defined as follows in our context.

Definition 3 (Upper bound). Criterion vector u= (u1, . . . , up) is an upper bound for a state sk ∈ Sk if and only if for
all sn ∈ Ext(sk) we have ui �sn

i , i = 1, . . . , p.

We can derive a general type of dominance relations as follows: considering two states sk, s̃k ∈ Sk , if there exists a
completion J of sk and an upper bound ũ for s̃k such that sk

i +
∑

j∈J v
j
i � ũi , i = 1, . . . , p, then sk dominates s̃k .

This type of dominance relations can be implemented only for specific completions and upper bounds. In our
experiments, we just consider two specific completions J ′ and J ′′ obtained by a simple greedy algorithm as follows.
After relabeling items k + 1, . . . , n according to order Osum (respectively, Omax), completion J ′ (respectively, J ′′)
is obtained by inserting sequentially the remaining items into the solution provided that the capacity constraint is
respected.

To compute u, we use the upper bound presented in [3] for each criterion value. Let us first define W(sk)=W − sk
p+1

the residual capacity associated to state sk ∈ Sk . We denote by ci =min{�i ∈ {k + 1, . . . , n} :∑�i

j=k+1w
j > W(sk)}

the position of the first item that cannot be added to state sk ∈ Sk when items k + 1, . . . , n are relabeled according to

C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279 267

order Oi . Thus, according to [3, Theorem 2.2], when items k + 1, . . . , n are relabeled according to order Oi , an upper
bound on the ith criterion value of sk ∈ Sk is for i = 1, . . . , p:

ui = sk
i +

ci−1∑
j=k+1

v
j
i +max

{⌊
W(sk)

v
ci+1
i

wci+1

⌋
,

⌊
v

ci

i − (wci −W(sk))
v

ci−1
i

wci−1

⌋}
. (2)

Finally, we define Dk
b a particular dominance relation of this general type for k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
b s̃

k ⇔
⎧⎨⎩ sk

i +
∑

j∈J ′v
j
i � ũi , i = 1, . . . , p

or
sk
i +

∑
j∈J ′′v

j
i � ũi , i = 1, . . . , p,

where ũ= (ũ1, . . . , ũp) is the upper bound for s̃k computed according to (2).
The following proposition shows that Dk

b is indeed a dominance relation and gives additional properties of Dk
b .

Proposition 6 (Relation Dk
b).

(a) Dk
b is a dominance relation.

(b) Dk
b is transitive.

(c) Dk
b admits dominance preserving orders.

(d) Dn
b = �.

Proof. (a) Consider states sk and s̃k such that skDk
b s̃

k . This implies that there exists J ∈ {J ′, J ′′} leading to an
extension sn of sk such that sn�ũ. Moreover, since ũ is an upper bound of s̃k , we have ũ�s̃n, for all s̃n ∈ Ext(s̃k).
Thus, by transitivity of �, we get sn�s̃n, which establishes that Dk

b satisfies condition (1) of Definition 2.
(b) Consider states sk , s̃k , and s̄k such that skDk

b s̃
k and s̃kDk

b s̄
k . This implies that, on the one hand, there exists

J1 ∈ {J ′, J ′′} such that sk
i +

∑
j∈J1

v
j
i � ũi (i = 1, . . . , p), and on the other hand, there exists J2 ∈ {J ′, J ′′} such that

s̃k
i +

∑
j∈J2

v
j
i � ūi (i = 1, . . . , p). Since ũ is an upper bound for s̃k we have ũi � s̃k

i +
∑

j∈J2
v

j
i (i = 1, . . . , p). Thus

we get skDk
b s̄

k .
(c) By Proposition 3, since Dk

b is transitive.
(d) By definition. �

Dk
b is harder to check than relations Dk

r and Dk
� since it requires much more tests and state-dependent information.

Obviously, relation Dk
b would have been richer if we had used additional completions (according to other orders)

for sk and computed instead of one upper bound u, an upper bound set using, e.g., the techniques presented in [20].
Nevertheless, in our context since we have to check Dk

b for many states, enriching Dk
b in this way would be extremely

time consuming.

4.3. Implementing with multiple dominance relations

In order to be efficient, we will use the three dominance relations presented in Section 4.2 at each phase. As underlined
in the previous subsection, dominance relations require more or less computational effort to be checked. Moreover,
even if they are partly complementary, it often happens that several relations are valid for a same pair of states. It is
thus natural to apply first dominance relations which can be checked easily (such as Dk

r and Dk
�) and then test on a

reduced set of states dominance relations requiring a larger computation time (such as Dk
b).

We describe now the details of the implementation of these dominance relations. Algorithm 3, which computes, at
each phase k, the subset of candidates Ck from subset Ck−1 (k = 1, . . . , n), replaces step 3 to step 4 of Algorithm 1.

The use of relation Dk
r and Dk

� is first described (steps 1–8) and then the use of relation Dk
b (steps 9–24). This

algorithm uses two subprocedures: procedure MaintainNonDominated, which removes states Dk
�-dominated,

and procedure KeepNonDominated, which is used during the application of relation Dk
b .

268 C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279

Fig. 1. Extensions of Ck−1 (sorted according to � lex).

4.3.1. Generation of Ck
0 and dominating preserving order

Generating a priori Ck
0 and, then, trimming it using dominance relations in order to produce Ck would be inefficient.

Instead, we generate and trim Ck
0 progressively, which requires generating new states of Ck

0 according to a dominance
preserving order for Dk

�.

Let relation �lex denote the lexicographic relation defined on Sk by: for all sk, s̃k ∈ Sk, sk�lexs̃
k ⇔ sk

j > s̃k
j where

j =min{i ∈ {1, . . . , p} : sk
i �= s̃k

i } or sk
j = s̃k

j , j = 1, . . . , p. Its asymmetric part is denoted by �lex. Let relation � lex

denote the lexicographic relation defined on Sk by: for all sk, s̃k ∈ Sk, sk � lexs̃
k ⇔ sk

p+1 < s̃k
p+1or (sk

p+1 = s̃k
p+1 and

sk�lexs̃
k). Its asymmetric part is denoted by >lex.

Proposition 7. The decreasing order with respect to � lex is a dominance preserving order for Dk
�.

Proof. Consider a set H = {sk(1), . . . , sk(h)} ⊆ Sk ordered according to decreasing order with respect to � lex, i.e.
such that sk(i) � lexs

k(j) for all i < j (1� i, j �h). Suppose that H is not ordered according to a dominance preserving
order for Dk

�. There exists thus sk(i), sk(j) ∈ H (i < j, 1� i, j �h) such that sk(j)Dk
�sk(i) and not(sk(i)Dk

�sk(j)).Then,

we have either s
k(j)

p+1 < s
k(i)
p+1 or (s

k(j)

p+1= s
k(i)
p+1 and sk(j)�lexs

k(i)). This implies that sk(j)>lexs
k(i), which contradicts that

H is ordered according to decreasing order with respect to � lex. �

Observe also that � lex is trivially a dominance preserving order for Dk
r .

Our implementation maintains set Ck , k = 1, . . . , n, sorted according to decreasing order with respect to � lex.
Considering indeed that, at phase k, Ck−1 is sorted according to decreasing order with respect to � lex, we generate
progressively states of Ck

0 according to this dominance preserving order, and thus maintain Ck sorted according to the
same order.

4.3.2. Application of the three relations
We present now a detailed description of the application of each dominance relation Dk

r , Dk
�, and Dk

b . Generating

Ck
1 from Ck

0 using Dk
r , then reducing Ck

1 to Ck
2 using Dk

�, and finally reducing Ck
2 to Ck

3 using Dk
b would not be

computationally efficient. Instead, since Dk
r -dominated states can be identified in Ck−1, we generate directly Ck

2 using
Dk

� and reduce Ck
2 to Ck

3 using Dk
b . In the following, we shall not distinguish sets Ck

i , i = 0, . . . , 3, but instead refer to

a current set Ck which is progressively reduced.
Application of relationDk

r : The order of states inCk−1 allows us to find easily j, the index of the first state that is notDk
r -

dominated (step 2). Thus, it is unnecessary to generate the extension without item k for all states sk−1(1), . . . , sk−1(j−1)

since they are Dk
r -dominated by their respective extensions with item k. Fig. 1 shows the extensions generated for each

state of Ck−1, due to Dk
r on the one hand, and to infeasibility on the other hand.

Application of relation Dk
�: Since states are generated progressively according to a dominance preserving order for

Dk
�, we never remove states from Ck . Indeed, by definition of a dominance preserving order, a state candidate to be

added in Ck cannot Dk
�-dominate states already included in Ck .

In order to test efficiently Dk
�-dominance within Ck , we maintain Mk ⊆ Ck , the subset of non-dominated states of

Ck with respect to profit values only. Indeed, since states are generated according to a dominance preserving order for

C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279 269

Dk
�, a new state sk can be Dk

�-dominated in Ck if and only if there exists a state in the current set Mk that �-dominates

sk considering that all states already generated have smaller or equal weight than sk . This property is useful since Mk

is much smaller than Ck (in the worst case, cardinality of Ck is in O(|Mk| ×W)). We impose that set Mk is sorted
according to decreasing order with respect to �lex. The order of Mk is maintained easily by updating the sorted structure
at each insertion.

Algorithm 3. Computing Ck from Ck−1 at each phase k (k = 1, . . . , n).
In: Ck−1 = {sk−1(1), . . . , sk−1(r)} such that sk−1(i) � lexs

k−1(j) for all i < j(1� i, j �r)

Out: Ck in which states are sorted according to decreasing preference with respect to � lex

1 /*Application of relations Dk
r and Dk

� */

Ck ← ∅ ; Mk ← ∅ ; i ← 1 ; j ← 1 ;
/*Identification of j, index of the first state that is not Dk

r -dominated */

2 while j �r and s
k−1(j)

p+1 +∑n
�=kw

� �W do j ← j + 1;

3 while i�r and s
k−1(i)
p+1 + wk �W do

4

5

6

7

⎢⎢⎢⎢⎢⎢⎣
sk ← (s

k−1(i)
1 + vk

1, . . . , s
k−1(i)
p + vk

p, s
k−1(i)
p+1 + wk);

while j �r and sk−1(j) � lexs
k do

�MaintainNonDominated (sk−1(j), Mk, Ck); j ← j + 1;
MaintainNonDominated (sk, Mk, Ck); i ← i + 1;

8 while j �r do MaintainNonDominated(sk−1(j), Mk , Ck); j ← j + 1;
/* Application of relation Dk

b on Mk × Ck */
9 if k = n then Cn← Mn

10 else

11

12

13

14

15

16

17

18

19

20

21

22

23

24

⎢⎢⎢⎣

F ← ∅;
/ ∗ Generation of extensions J ′ and J ′′ for each state of Mk ∗ /

for order O in {Osum, Omax} do⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for each sk ∈ Mk do⎢⎢⎢⎢⎢⎢⎢⎣
Relabel items k + 1, . . . , n according to order O; sn← sk;
for j ← k + 1 to n do⌊

if sn
p+1 + wj �W then sn← (sn

1 + v
j

1 , . . . , sn
p + v

j
p, sn

p+1 + wj);
F ← KeepNonDominated(sn, F);

/ ∗ Assuming that Ck = {sk(1), . . . , sk(c)} and that Fn = {sn(1), . . . , sn(h)} such that

sn(i)�lexs
n(j) for all i < j (1� i, j �h) ∗ /

i ← 1; remove ← true;
while i�c and remove do⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Compute an upper bound u for sk(i) according to (2);
j ← 1; remove← false;
while j �h and sn(j)�lexu and not(remove) do

� if sn(j)�u then remove ← true else j ← j + 1;
if remove then Ck ← Ck\{sk(i)}; i ← i + 1;

25 return Ck;

270 C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279

Algorithm 4. Procedure MaintainNonDominated(sk ,Mk ,Ck).
/∗ Assume that Mk = {s̃k(1), . . . , s̃k(�)} such that s̃k(i)�lexs̃

k(j) for all i < j (1� i, j ��) ∗/
1 i ← 1; dominated← false;
2 while i�� and s̃k(i)�lexs

k and not(dominated) do
3 � if s̃k(i)�sk then dominated←true else i ← i + 1;
4 if not(dominated) then;
5
6
7
8
9

⎢⎢⎢⎢⎢⎢⎢⎣
Ck ← Ck ∪ {sk}; //Insertion at the end of Ck

Mk ← Mk ∪ {sk}; //Insertion at the ith position in Mk

while i�� do⌊
if sk�s̃k(i) then Mk ← Mk\{s̃k(i)};
i ← i + 1;

In the bi-objective case, based on the idea of [21], using an AVL tree for storing states of Mk also leads to a significant
improvement of the running time. The AVL tree allows us to perform each search, insertion or deletion in O(log |Mk|).
With this structure the while loop 2–3 of procedure MaintainNonDominated reduces to the search of the largest
value i� ∈ {1, . . . , �} such that s̃

k(i�)
1 �sk

1 . Then variable dominated is false if and only if s̃
k(i�)
2 < sk

2 . Moreover, the
while loop 7–9 of procedure MaintainNonDominated (Algorithm 4) reduces to removing, from Mk , state s̃k(i�)

if s̃
k(i�)
1 = sk

1 and states with index i� + 1 to j� − 1 where j� ∈ {i�, . . . , �} is the smallest value such that s̃
k(j�)

2 > sk
2 .

Thus, in the bi-objective case, the running time of procedure MaintainNonDominated can be bounded by
O(z× log |Ck

0 |) where z represents the number of states that have to be removed from Mk . For p > 2, a linked list has to
be used for storing Mk and the running time can be bounded by O(|Ck

0 |) only. Since in the worst case at most |Ck
0 | states

have to be inserted in Mk and at most |Ck
0 | − 1 states have to be deleted from Mk in the entire execution of Algorithm

3, the execution time of all calls of procedure MaintainNonDominated, during phase k, is in O(|Ck
0 | log |Ck

0 |) for
p = 2 and in O(|Ck

0 |2) for p > 2.
Application of relation Dk

b : Relation Dk
b is applied after relations Dk

r and Dk
� to reduce the set Ck . The purpose

of using this relation is to remove states of Ck with small weight since Dk
r and Dk

� are not efficient to remove these

states (for instance using Dk
� we will never remove the empty knapsack). Thus, we test if states of small weight

are Dk
b-dominated. We apply relation Dk

b between states of Mk , which contains states with non-dominated criterion
vectors, and the current Ck . A state sk(i) of Ck is removed if there exists a state sk �= sk(i) in Mk such that skDk

bs
k(i).

To do that, we generate two extensions for all states of Mk with respect to orders Osum and Omax and keep only the
non-dominated extensions in F. This is done by procedure KeepNonDominated that is not detailed here since it is
just a simplified version of procedure MaintainNonDominated where F replaces Mk and step 5 is removed. Then
sk(i) is Dk

b-dominated by a state of Mk , if there exists sn ∈ F such that sn�u, where u is the upper bound associated
to sk(i). Since computing the upper bound for each state is time consuming, we stop checking relation Dk

b as soon as
we identify a state of Ck that is not Dk

b-dominated by a state of Mk .
Special case of phase n: First observe that, since Dn

� =Dn
b = �, it is unnecessary to apply both relations. Thus, due

to the order of application of these relations (Dk
� followed by Dk

b), we do not apply relation Dk
b at phase n.

Second, at phase n it should be noticed that Mn corresponds to the non-dominated criterion vectors of Sn and thus
we take Cn equal to Mn (step 9).

5. Computational experiments and results

5.1. Experimental design

All experiments presented here were performed on a bi-Xeon 3.4 GHz with 3072 Mb RAM. All algorithms are
written in C++. In the bi-objective case (p = 2), the following types of instances were considered:

(A) Random instances: vk
1∈R[1, 1000], vk

2∈R[1, 1000] and wk∈R[1, 1000].

C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279 271

1000

900

800

700

600

500

400

300

200

0

0

100

100 200 300 400 500 600 700 800 900 1000

Criterion 1

C
ri

te
ri

o
n

 2

1000

900

800

700

500

600

400

300

0

0

100

200

100 200 300 400 500 600 700 800 900 1000

Criterion 1

C
ri

te
ri

o
n

 2

1000

900

800

700

500

600

400

300

200

0

0

100

100 200 300 400 500 600 700 800 900 1000

Criterion 1

C
ri

te
ri

o
n

 2

Instance of type A (2A40) Instance of type B (2B40)

Instance of type C or type D (2C40 or 2D40)

Fig. 2. Repartition in the criterion space of values of items for one instance of each type.

(B) Unconflicting instances, where vk
1 is positively correlated with vk

2: vk
1∈R[111, 1000] and vk

2∈R[vk
1−100, vk

1+100],
and wk∈R[1, 1000].

(C) Conflicting instances, where vk
1 and vk

2 are negatively correlated: vk
1∈R[1, 1000], vk

2∈R[max{900 − vk
1; 1},

min{1100− vk
1; 1000}], and wk∈R[1, 1000].

(D) Conflicting instances with correlated weight, where vk
1 and vk

2 are negatively correlated, and wk is positively
correlated with vk

1 and vk
2: vk

1∈R[1, 1000],vk
2∈R[max{900− vk

1; 1}, min{1100− vk
1; 1000}], and wk∈R[vk

1 + vk
2 −

200; vk
1 + vk

2 + 200],

where ∈R[a, b] denotes uniformly random generated in [a, b]. For all these instances, we set W = �1/2
∑n

k=1 wk�.
Most of the time in the literature, experiments are only made on instances of type A. Sometimes, other instances such

as those of type B, which were introduced in [11], are studied. However, instances of type B should be viewed as quasi
single-criterion instances since they involve two non conflicting criteria. This aspect can be seen in Fig. 2. Nevertheless,
in a bi-objective context, considering conflicting criteria is a more appropriate way of modeling real-world situations.
For this reason, we introduced instances of types C and D for which criterion values of items are conflicting. In this case,
items are located around the line y =−x + 1000. In instances of type D, wk is positively correlated with vk

1, vk
2. These

instances were introduced in order to verify if positively correlated instances are harder than uncorrelated instances as
in the single-criterion context [4].

272 C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279

Table 1
Impact of different orders of items in our approach (average CPU time in seconds)

Type n Omax Osum Omin Random

A 300 84.001 (−53%) 100.280 (−44%) 94.598 (−47%) 178.722
B 600 1.141 (−99%) 1.084 (−99%) 1.403 (−98%) 77.699
C 200 59.986 (−44%) 60.061 (−44%) 85.851 (−20%) 107.973
D 90 20.795 (−34%) 23.687 (−25%) 35.426 (+12%) 31.659

The increase or the decrease (expressed in percent) of CPU time compared to the CPU time obtained when items are selected randomly is given in
brackets.

For three-objective experiments, we considered the generalization of random instances of type A wherevk
i ∈R[1, 1000]

for i = 1, . . . , 3 and wk∈R[1, 1000] and the generalization of conflicting instances of type C where vk
1∈R[1, 1000],

vk
2∈R[1, 1001− vk

1], and vk
3∈R[max{900− vk

1 − vk
2; 1}, min{1100− vk

1 − vk
2; 1001− vk

1}], and wk∈R[1, 1000].
For each type of instances and each value of n presented in this study, 10 different instances were generated. In the

following, we denote by pTn a p criteria instance of type T with n items. For example 2A100 denotes a bi-objective
instance of type A with 100 items.

5.2. Results in the bi-objective case

The goals of the experiments in the bi-objective case are:

(a) to determine the best order to sort items in our approach (Section 5.2.1),
(b) to evaluate the cardinality of the set of non-dominated criterion vectors on different types of instances

(Section 5.2.2),
(c) to analyze the impact of using dominance relations Dk

�, Dk
b , and Dk

r (Section 5.2.3),
(d) to analyze the performance of our approach on large size instances (Section 5.2.4),
(e) to compare our approach with other exact methods (Section 5.2.5).

5.2.1. Item order
The way of ordering items has a dramatic impact on the CPU time, has shown in Table 1. We compare, on 10

instances of each type, the results obtained using the three orders presented in Section 4.1 (Omax, Osum, and Omin)
and results obtained with a random order of objects. Table 1 shows clearly that order Omax is significantly better for
all types of instances. Thus, in the following, items are sorted and labeled according to Omax.

5.2.2. Cardinality of the set of non-dominated criterion vectors
Fig. 3 shows the evolution of the average cardinality of the set of non-dominated criterion vectors for 10 instances

of each type. As expected, instances of type B are quasi single-objective instances and have very few non-dominated
criterion vectors. Even if instances of type A have more non-dominated criterion vectors than instances of type B, the
conflicting instances (type C and D) have many more non-dominated criterion vectors than the other types of instances.

5.2.3. Impact of each dominance relation
We compare, in Table 2, the average CPU time obtained using dominance relation Dk

� alone, relations Dk
r and Dk

�,

relations Dk
� and Dk

b , and finally relations Dk
r , Dk

�, and Dk
b all together. Table 2 shows clearly that it is always better to

use these three relations together, due to their complementarity. Thus, in the following experiments, we always apply
these three relations together.

To illustrate further the impact and complementarity of each dominance relation, we indicate, in Table 3 , the number
of states, respectively, removed by relations Dk

r , Dk
�, and Dk

b for one instance (with p = 2, and n= 20) of each type.

In addition, the number of non-feasible states obtained at each phase and the cardinality of Ck is given. For instance
2B20, the most efficient relation in terms of removed states is relation Dk

b . This is not surprising, since the values of

C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279 273

1800

1600

1400

1200

1000

800

600

400

200

0

A
v
e
ra

g
e
 c

a
rd

in
a
li
ty

 o
f

th
e
 n

o
n

-d
o

m
in

a
te

d
 s

e
t

2010 30 40 50 60 70 80 90 10
0

4.6

159.3
103.9

4.14.2

9489.4

4.3
3.3

63.943.429.318.5

81.7
35.8

124.3

251.3

31.6
11.2

1.3 2.52.1

125.3

3

176.4

453.3

233

581.6

733.6

922.9

1262.2

1421.2

1765.4

351.6 356.4

450 558.2

Type A

Type B

Type C

Type D

number of items (n)

Fig. 3. Average cardinality of the set of non-dominated criterion vectors as a function of n.

Table 2
Complementarity of dominance relations Dk

r , Dk
�, and Dk

b in our approach (average CPU time in seconds)

Type n Dk
� Dk

r and Dk
� Dk

� and Dk
b Dk

r , Dk
�, and Dk

b

A 300 272.628 157.139 (−42.4%) 85.076 (−68.8%) 84.001 (−69.2%)

B 600 230.908 174.015 (−24.6%) 1.188 (−99.5%) 1.141 (−99.5%)

C 200 122.706 63.557 (−48.2%) 61.696 (−49.7%) 59.986 (−51.1%)

D 90 46.137 24.314 (−47.3%) 23.820 (−48.4%) 20.795 (−54.9%)

The decrease (expressed in percent) of CPU time compared to the CPU time obtained when using only relation Dk
� in our approach is given in

brackets.

the non-dominated extensions of a state sk are not spread, and thus the upper bound for sk , which is an upper bound on
the ideal point associated to the extensions of sk , is very close to the values of the extensions of sk . However, even if
this relation removes many states in all others instances, the most efficient relation, for the others instances, is relation
Dk

�. It removes up to 4609 states in instance 2D20, whereas relations Dk
r and Dk

b remove, respectively, 504 and 1990

states, that is less states than the feasibility condition. For all instances, relation Dk
r is the least efficient. Nevertheless,

this relation is extremely unexpensive in terms of CPU time. For instances of type C and D, even if relations Dk
� and

Dk
b remove the majority of the states, relation Dk

r removes a non negligible number of the states.

5.2.4. Results on large size instances
We present, in Table 4, results of our approach on large size instances of each type. The largest instances solved

here are those of type B with 4000 items and the instances with the largest number of non-dominated criterion vectors
are those of type D with 250 items for which the cardinality of the set of non-dominated criterion vectors is in average
of 8154.7. We can observe that the results of Fig. 3 concerning the size of the set of non-dominated criterion vectors
are confirmed on large instances. The average maximum cardinality of Ck , which is a good indicator of the memory
storage needed to solve the instances, can be very huge. This explains why we can only solve instances of type D up
to 250 items.

274 C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279

Table 3
Impact of Dk

r , Dk
�, and Dk

b on one instance of type A, B, C and D for n= 20

Phase # States

Removed by nonfeasible in Ck

Dk
r Dk

� Dk
b

One instance 2A20 where |ND| = 21
1 0 0 0 0 2
2 0 0 0 0 4
3 0 0 2 0 6
4 0 0 1 0 11
5 0 3 5 0 14
6 0 10 1 0 17
7 0 6 3 0 25
8 0 16 3 0 31
9 0 22 3 0 37

10 0 22 0 0 52
11 0 36 0 0 68
12 0 37 0 0 99
13 0 75 0 4 119
14 0 29 25 12 172
15 0 128 7 36 173
16 5 67 63 33 178
17 0 88 32 51 185
18 0 80 44 82 164
19 5 38 112 108 65
20 14 3 – 51 21

Total 24 660 301 377 –

One instance 2B20 where |ND| = 1
1 0 0 1 0 1
2 0 0 1 0 1
3 0 0 1 0 1
4 0 0 1 0 1
5 0 0 1 0 1
6 0 0 1 0 1
7 0 0 0 0 2
8 0 0 2 0 2
9 0 0 2 0 2

10 0 0 1 0 3
11 0 0 0 0 6
12 0 3 0 2 7
13 0 0 2 2 10
14 0 0 7 6 7
15 0 2 2 3 7
16 0 0 4 7 3
17 0 0 0 3 3
18 0 0 0 3 3
19 0 0 2 3 1
20 0 0 – 1 1

Total 0 5 28 30 –

One instance 2C20 where |ND| = 31
1 0 0 0 0 2
2 0 0 0 0 4
3 0 1 0 0 7
4 0 3 1 0 11
5 0 4 1 0 16
6 0 8 3 0 22
7 0 16 0 0 27

C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279 275

Table 3 (continued).

Phase # States

Removed by nonfeasible in Ck

Dk
r Dk

� Dk
b

8 0 19 2 0 34
9 0 16 3 0 51

10 0 32 1 0 66
11 0 36 0 0 93
12 0 67 3 0 116
13 0 77 0 10 144
14 5 85 39 23 170
15 29 83 20 18 189
16 21 88 19 54 189
17 30 143 30 32 166
18 31 46 66 71 145
19 47 64 111 35 108
20 50 36 – 58 31

Total 213 824 299 301 –

One instance 2D20 where |ND| = 189
1 0 0 0 0 2
2 0 0 0 0 4
3 0 0 0 0 8
4 0 0 0 0 16
5 0 10 0 0 22
6 0 3 0 0 41
7 0 9 0 0 73
8 0 51 0 0 95
9 0 24 0 0 166

10 0 46 0 1 285
11 1 66 1 7 495
12 8 243 0 13 726
13 29 356 67 59 941
14 16 415 60 84 1307
15 60 575 241 180 1558
16 19 1157 198 269 1473
17 131 699 412 379 1325
18 59 599 425 508 1059
19 113 308 586 446 665
20 68 48 – 597 189

Total 504 4609 1990 2543 –

5.2.5. Comparison with other exact methods
The results of a comparative study, in the bi-objective case, between the exact method of Captivo et al. [11], an

exact method based on a commercial Integer Programming (IP) solver, and our approach using Dk
r , Dk

�, and Dk
b are

presented in Table 5.
The Labeling Approach (LA) of Captivo et al. [11] was selected since it is the most efficient method currently known.

An exact method, of the �-constraint type [22], using a commercial IP solver was also considered for two major reasons.
First, it is relatively easy to implement. Second, it has much less storage problems than the two other methods, since
each efficient solution is found by solving one new 0–1 linear program. This �-constraint method basically consists of
optimizing the first criterion while moving iteratively a constraint on the second criterion. More precisely, in order to
eliminate weakly efficient solutions, a slightly perturbed objective function is used relying on the fact that the criterion
vectors are integer valued (see Algorithm 5). Cplex 9.0 is used as an IP solver in Algorithm 5 which is written in C++.

276 C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279

Table 4
Results of our approach on large size instances

Type n Time (s) |ND| Avg

Min Avg Max Min Avg Max maxk{|Ck |}
A 100 0.152 0.328 0.600 98 159.3 251 17 134.7

200 6.768 12.065 21.025 416 529.0 729 209 198.9
300 57.475 84.001 101.354 905 1130.7 1651 898 524.7
400 243.215 307.093 369.999 1308 1713.3 2101 2 230 069.4
500 677.398 889.347 1198.190 2034 2537.5 2997 5 120 514.7
600 1833.080 2253.421 3116.670 2792 3593.9 4746 9 983 975.8
700 4046.450 5447.921 7250.530 3768 4814.8 5939 18 959 181.7

B 1000 4.328 8.812 15.100 105 157.0 218 134 107.2
2000 139.836 251.056 394.104 333 477.7 630 1 595 436.1
3000 1192.190 1624.517 2180.860 800 966.9 1140 6 578 947.2
4000 4172.530 6773.264 8328.280 1304 1542.3 1752 18 642 759.0

C 100 1.564 2.869 4.636 406 558.2 737 103 921.5
200 43.834 59.986 93.541 1357 1612.8 2018 918 162.6
300 311.995 373.097 470.429 2510 2893.6 3297 3 481 238.4
400 1069.290 1390.786 1670.500 3763 4631.8 5087 9 400 565.3
500 2433.320 4547.978 6481.970 5111 7112.1 9029 21 282 280.5

D 100 36.450 40.866 54.267 1591 1765.4 2030 1 129 490.3
150 235.634 265.058 338.121 2985 3418.5 3892 4 274 973.9
200 974.528 1145.922 1497.700 4862 5464.0 6639 12 450 615.5
250 2798.040 3383.545 3871.240 7245 8154.7 8742 26 999 714.8

Table 5
Comparison between the Labeling Approach (LA) of Captivo et al. [11], �-constraint method and our approach

Type n Avg time (s) Avg

LA �-constraint Our approach |ND|
A 100 2.476 5.343 (+116%) 0.328 (−87%) 159.3

200 37.745 57.722 (+53%) 12.065 (−68%) 529.0
300 163.787 285.406 (+74%) 84.001 (−49%) 1130.7

B 600 27.694 27.543 (−1%) 1.141 (−96%) 74.3
700 47.527 29.701 (−38%) 2.299 (−95%) 78.6
800 75.384 68.453 (−9%) 5.280 (−93%) 118.1

C 100 12.763 208.936 (+1537%) 2.869 (−78%) 558.2
200 114.171 6584.012 (+5667%) 59.986 (−47%) 1612.8

D 100 127.911 23126.926 (+17980%) 40.866 (−68%) 1765.4

The decrease or increase (expressed in percent) of CPU time compared to the CPU time obtained with the Labeling Approach (LA) of Captivo et al.
[11] is given in brackets.

Algorithm 5. �-constraint.
1 Generate y one optimal solution of maxx∈Xf1(x); Generate z one optimal solution of maxx∈Xf2(x);
2 Generate x1 one optimal solution of max{f2(x) : x ∈ X, f1(x)�f1(y)};
3 X∗ ← X∗ ∪ {x1}; j ← 1;
4 while f2(x

j) < f2(z) do

5

6

⎢⎢⎢⎢⎢⎢⎣
/ ∗ optimize the function associated to the line passing through (f1(x

j), f2(x
j))

and(f1(x
j)− 1, f2(z)) subject to a restriction on the second objective ∗ /

Generate xj+1 one optimal solution of
max{(f2(z)− f2(x

j))f1(x)+ f2(x) : x ∈ X, f2(x)�f2(x
j)+ 1};

X∗ ← X∗ ∪ {xj+1}; j ← j + 1;
7 return X∗;

C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279 277

7000

6000

5000

4000

3000

2000

1000

0

0 20 40 60 80 10
0

12
0 10 20 30 40 50 60

233176.4125.3

1538.9

649.1
300.2

81.7

35.812.5

17.7

0

0

2000

4000

6000

8000

10000

12000
6398.3

4020.3

1384.4

540.6

112.9
8.3 63.9 94 103.9 167.6

11.2 29.3

number of items (n) number of items (n)

A
v
e

ra
g

e
 c

a
rd

in
a
li
ty

 o
f

th
e
 n

o
n

-d
o

m
in

a
te

d
 s

e
t

A
v
e
ra

g
e
 c

a
rd

in
a
li
ty

 o
f

th
e
 n

o
n

-d
o

m
in

a
te

d
 s

e
t

Instance of type A Instance of type C

3650.9

9647.9
Three-objective case

Bi-objective case

Three-objective case

Bi-objective case

Fig. 4. Evolution of the average cardinality of the set of non-dominated criterion vectors for instances of type A and C in the bi-objective and
three-objective cases in function of n.

The three methods have been used on the same instances and the same computer. For LA, we used the source code,
in C, obtained from the authors. Table 5 presents results, in the bi-objective case, for instances of type A, B, C, and
D for increasing size of n while LA can solve all instances of the series considered. Due to storage requirements, LA
can only solve instances of type A up to 300 items, of type B up to 800 items, of type C up to 200 items, and of type
D up to 100 items. As a comparison, we recall (see Table 4) that our approach can solve much larger size instances,
respectively, up to 700, 4000, 500, and 250 items.

Considering CPU time, we can conclude that our approach is always faster than LA and �-constraint on the considered
instances. Moreover, when the number of non-dominated criterion vectors increases, CPU time becomes prohibitive
for �-constraint (about 6.5 h in average for instances 2D100), while storage limitations become restrictive for LA.

5.3. Results in the three-objective case

The goals of the experiments in the three-objective case are:

(a) to evaluate the size of the set of non-dominated criterion vectors (see Fig. 4 and Table 6),
(b) to analyze the performance of our approach on large instances (see Table 6).

We compare, in Fig. 4, the evolution of the cardinality of the set of non-dominated criterion vectors in the bi-objective
case and in the three-objective case for instances of type A and C. We can observe that the addition of one criterion
leads to an explosion of the average cardinality of the set of non-dominated criterion vectors for both types of instances.
For example, for n=50 the increase is about a factor 8.5 for instances of type A and about 20.5 for instances of type C.

We present, in Table 6, results of our approach concerning large size instances of types A and C in the three-objective
case. Observe that the number of non-dominated criterion vectors varies a lot. This explains the variation of the CPU time
which is strongly related with the number of non-dominated criterion vectors. Table 6 confirms for the three-objective
case that instances of type A are easier to solve than instances of type C, as in the bi-objective case.

6. Conclusions

The purpose of this work has been to develop and experiment a new DP algorithm to solve the 0–1 multi-objective
knapsack problem. We showed that by using several complementary dominance relations, we obtain a method which

278 C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279

Table 6
Results of our approach on instances of types A and C in the three-objective case

Type n Time (s) |ND| Avg

Min Avg Max Min Avg Max maxk{|Ck |}
A 10 < 1 ms < 1 ms < 1 ms 4 8.3 18 20.9

30 < 1 ms 0.012 0.028 31 112.9 193 1213.2
50 0.112 0.611 1.436 266 540.6 930 12146.5
70 4.204 16.837 44.858 810 1384.4 2145 64535.4
90 80.469 538.768 2236.230 2503 4020.3 6770 285252.1

110 273.597 3326.587 11572.700 3265 6398.3 9394 601784.6

C 10 < 1 ms < 1 ms 0.004 5 17.7 32 53.4
20 0.004 0.030 0.184 80 300.2 1270 1557.8
30 0.016 0.431 2.076 72 649.1 2064 6861.1
40 1.008 3.684 12.336 1167 1538.9 2740 23837.0
50 4.840 83.594 316.811 1282 3650.9 6566 92155.4
60 73.704 2572.981 13607.100 3698 9647.9 22713 328238.8

outperforms experimentally the existing methods. In addition, our method is extremely efficient with regard to the
other methods on the conflicting instances that model real-world applications. Lastly, this method is the first one to our
knowledge that can be applied for knapsack problems with more than two objectives and the results in the three-objective
case are satisfactory.

While we focused in this paper on the 0–1 multi-objective knapsack problem, we could envisage in future research to
apply dominance relations based on similar ideas to other multi-objective problems, admitting a direct DP formulation,
such as the multi-objective shortest path problem or some multi-objective scheduling problems.

References

[1] Ehrgott M, Gandibleux X. A survey and annoted bibliography of multiobjective combinatorial optimization. OR Spektrum 2000;22(4):
425–60.

[2] Ehrgott M. Multicriteria optimization. LNEMS 491. Berlin: Springer; 2005.
[3] Martello S, Toth P. Knapsack problems. New York: Wiley; 1990.
[4] Kellerer H, Pferschy U, Pisinger D. Knapsack problems. Berlin: Springer; 2004.
[5] Rosenblatt MJ, Sinuany-Stern Z. Generating the discrete efficient frontier to the capital budgeting problem. Operations Research 1989;37(3):

384–94.
[6] Teng J, Tzeng G. A multiobjective programming approach for selecting non-independent transportation investment alternatives. Transportation

Research-B 1996;30(4):201–307.
[7] Kostreva MM, Ogryczak W, Tonkyn DW. Relocation problems arising in conservation biology. Computers and Mathematics with Applications

1999;37(4–5):135–50.
[8] Jenkins L. A bicriteria knapsack program for planning remediation of contaminated lightstation sites. European Journal of Operational Research

2002;140(2):427–33.
[9] Klamroth K, Wiecek M. Dynamic programming approaches to the multiple criteria knapsack problem. Naval Research Logistics 2000;47(1):

57–76.
[10] Visée M, Teghem J, Pirlot M, Ulungu EL. Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem.

Journal of Global Optimization 1998;12(2):139–55.
[11] Captivo ME, Clímaco JCN, Figueira JR, Martins EQV, Santos JL. Solving bicriteria 0–1 knapsack problems using a labeling algorithm.

Computers and Operations Research 2003;30(12):1865–86.
[12] Da Silva CG, Clímaco JCN, Figueira JR. Core problems in the bi-criteria {0, 1} knapsack: new developments. Research Report 12, INESC-

Coimbra, 2005.
[13] Erlebach T, Kellerer H, Pferschy U. Approximating multiobjective knapsack problems. Management Science 2002;48(12):1603–12.
[14] Gandibleux X, Freville A. Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: the two objectives case. Journal

of Heuristics 2000;6(3):361–83.
[15] Da Silva CG, Clímaco JCN, Figueira JR. A scatter search method for bi-criteria {0.1}-knapsack problems. European Journal of Operational

Research 2006;169(2):373–91.
[16] DaSilva CG, Clímaco JCN, Figueira JR. Integrating partial optimization with scatter search for solving bi-criteria {0.1}-knapsack problems.

European Journal of Operational Research 2007;177(3):1656–77.
[17] Berge C. Graphs. Amsterdam: North-Holland; 1985.

C. Bazgan et al. / Computers & Operations Research 36 (2009) 260–279 279

[18] Weignartner HM, Ness DN. Methods for the solution of the multi-dimensional 0/1 knapsack problem. Operations Research 1967;15(1):
83–103.

[19] Nemhauser GL, Ullmann Z. Discrete dynamic programming and capital allocation. Management Science 1969;15(9):494–505.
[20] Ehrgott M, Gandibleux X. Bound sets for biobjective combinatorial optimization problems. Computers and Operations Research

2007;34(9):2674–94.
[21] Kung HT, Luccio F, Preparata FP. On finding the maxima of set of vectors. Journal of the Association for Computing Machinery 1975;22(4):

469–76.
[22] Chankong V, Haimes YY. Multiobjective Decision Making. New York, USA: Elsevier Science Publishing; 1983.

	Solving efficiently the 0--1 multi-objective knapsack problem
	Introduction
	Preliminaries
	Multi-objective optimization
	The 0--1 multi-objective knapsack problem

	DP and dominance relations
	Sequential process and basic concepts of DP
	Dominance relations in DP
	Generating covering and independent sets

	Implementation issues
	Item order
	Dominance relations
	Implementing with multiple dominance relations
	Generation of C0k and dominating preserving order
	Application of the three relations

	Computational experiments and results
	Experimental design
	Results in the bi-objective case
	Item order
	Cardinality of the set of non-dominated criterion vectors
	Impact of each dominance relation
	Results on large size instances
	Comparison with other exact methods

	Results in the three-objective case

	Conclusions
	References

