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Abstract

Many software applications have been developed on client-server and web-based architectures, with client software installed in
numerous clerks’ devices spread over the whole of Taiwan along the hierarchical organization of large-scaled service companies.
The damage for a large-scaled service company would be caused by an inconsistent system, in which client software fails to receive
updated content causing loss of emergency calls and possibility of recovery. Therefore, a reliable content-delivering service is needed
for such a large-scaled service company to ensure system consistency whenever a disaster occurs. This study analyses the error
situations of a proposed content-delivering service that has been implemented in a large-scaled company in Taiwan. Moreover, its
disaster avoidance mechanism provides a reliability model with the waiting-time distribution of disconnected links. The proposed
disaster avoidance mechanism prevents damage from terminating operations of a company caused by disasters, such as earthquakes,
tsunamis, nuclear plant explosions or wars. Empirical results demonstrate that the proposed design run on 19 servers distributes
content with less than 3.4 content-delivery failures per million hours.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Inconsistent systems can be caused by natural disasters, such as earthquakes and tsunamis, or human disasters
such as nuclear plant explosions or wars [1,2]. For content-delivering services, these disasters can cause computers to
crash and disconnect communication of enterprises, thus terminating their operations [3–5]. Restated, disasters could
prevent further activity, including distribution of emergency information, transmission of critical updated contents and
continuing services. In terms of cost, if the services of a large-scaled service-oriented company are interrupted, then
the company is likely to lose hundreds of millions of US dollars a day in revenue. Therefore, a large-scaled service
company needs to employ a specified disaster recovery or disaster avoidance plan to continue content-delivering service
to lower the loss caused by a disaster [6–11].

Companies, particularly those in the large-scaled service sector, regard uninterrupted customer service as one of the
most important operational goals [12]. A typical large-scaled service company has various electronic devices, such as
personal computers (PCs) and personal data agents (PDAs), which are applied by clerks in operation centers to process
business transactions. Every device hosts numerous different client software applications, each linking to a system
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in the back offices. The systems can be devised in client-server and web-based architectures [13,14]. A client-server
architecture stores applications and some data, including promotion, area and customer codes, on the client devices.
With both architectures, web-based systems can also write data to the devices for the references of client software of
other client-server systems [15].

A company requires a feasible approach to sending content along the hierarchy to gain support from all business
units [16]. Disaster avoidance is also important to ensure that failed servers on the distribution routes do not bring the
distribution to a halt [11]. This study describes the experience of a large company in Taiwan, which originally applied
one server to update the contents of all clerks’ devices without a disaster avoidance mechanism, and has since learned
from the experience that disasters can stop the content-delivering service. Therefore, the company has had to develop a
new approach for delivering contents along a physical hierarchy. A content-delivering service called FnFDS (Fire and
Forget Distribution System), which distributes the updated contents of the company, has been presented [11].

However, the content-delivering service in FnFDS might stop without a disaster avoidance mechanism. The disaster
avoidance mechanism in FnFDS comprises an automatic fault tolerance design and failover mechanism to guarantee
that the content-delivering service continues when servers or links fail. This work describes the disaster avoidance
mechanism of the FnFDS derived from experienced error statuses, and illustrates the system reliability and the waiting-
time distribution of disconnected links by analyzing the disaster avoidance mechanism. Additionally, a system fails
if either no server is in operational mode, or all links are disconnected. A server that is functioning correctly and
is reachable is said to be in operational mode. Different disasters cause different levels of damage, which can be
characterized by a utility for measuring reliability, called a six-sigma capable process. The six-sigma capable process
is a helpful quality assurance tool adopted in manufacturing industry, and can be used to measure the reliability of a
software application [17]. Applying the six-sigma capable process to measure the reliability, the FnFDS tolerates a
maximum of 3.4 failures per million hours. Analytical results indicate that 19 servers, with providing the probability of
no service, i.e., 1.90735 occurrences per million hours, are adequate to run FnFDS with a six-sigma capable process,
where the frequency of providing no service is 3.4 occurrences per million hours [18].

In practice, the company has utilized a system with 40 servers in three layers along the hierarchical organization,
with a no-service frequency of 9.0945 × 10−7 occurrences per million hours. Restated, the reliability of FnFDS using
40 servers is better than that of a six-sigma capable process. This approach is clearly more reliable than a six-sigma
capable process, but is also very costly. Hence, the company is scheduling a plan for cutting cost based on the result of
this study, while using 19 servers.

The rest of this paper is structured as follows. Section 2 describes related works. Section 3 then describes the system
architecture of FnFDS and system status when an error occurs. Next, Section 4 presents the disaster avoidance design
applied by FnFDS. Section 5 discusses the reliability of the FnFDS. Section 6 presents the implementation of the
FnFDS in a company, and the empirical results of the reliability of the FnFDS. Finally, discussions and concluding
remarks are presented in Section 7.

2. Literature review

2.1. Content delivery

Content-delivery methods are generally categorized as push-based and pull-based [19,20]. In a push-based approach,
a sender actively sends items to recipients. In a pull-based approach, the recipient transmits requests to a sender to
retrieve items [21].

However, each approach has limitations for sending content. Push-based methods consume few network resources,
but potentially lose content. A pull-based approach can avoid losing messages through repeated requests for retrieving
contents, but places a heavy drain on network resources [20]. Network resources are important for a large-scaled com-
pany with limited network bandwidth. Therefore, FnFDS applies routing strategies to send content through a modified
pull-based method with fewer requests to a sender than other pull-based methods, thus reducing the consumption of
network resources. In FnFDS, a recipient only sends requests to a sender to retrieve content whenever the sender actively
transmits a notification to inform the receiver that new content is ready for retrieval. Although this method decreases
the consumption of network resources, it potentially stops content-delivering services, since a sender sends no active
notification to a receiver when its server crashes or the network is disconnected [22–24]. Therefore, the FnFDS needs
a fault-tolerant design to prevent failed servers and links from stopping the content-delivery service.
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2.2. Fault-tolerant design

Existing fault-tolerant approaches for delivering content can be classified into two designs. The first approach is
adding information to the content, such as its size, to verify its accuracy. The other approach is utilizing a notification
system to enable senders and receivers to determine the next action [25–30].

These approaches ensure that a destination can continue receiving the entire content. However, the content-delivery
service means that every client device in the operational mode must be able to retrieve updated content successfully
along the hierarchical organization of a large-scaled company. Therefore, a fault-tolerant design must be properly
adopted to continue delivering updated content along the hierarchical organization of a large-scaled company.

3. System description

FnFDS employs a multi-tier architecture comprising of layers of servers which are organized into balanced trees,
meaning the depth of each sub-tree of the root is the same [28]. Fig. 1 shows the hierarchical organization of the servers
which are organized into a balanced tree. The root server is in the first level, and a server has its parent server and
child servers. For instance, Fig. 1 shows that server A is the parent server of server B, and server C is the child server
of server B. The FnFDS adopts a modified pull-based design to transmit updated contents through servers to reduce
network resource consumption. The FnFDS functions as follows. Every server apart from the root server receives
updated contents from a parent server. When the parent server fails to transmit updated content to a child server, it
notifies another child server in the same hierarchy level to pass the notification of the new updated content to the servers
or clients connected to the failed server. If none of the child servers is available, then the parent server notifies all the
servers in the next level to retrieve contents directly.

That is, devices retrieve content from servers only when they receive the notification of the need to retrieve content
from servers. This modified pull-based method is designed such that at least one server, usually the root server, is in
operational mode. If this server is a device that can connect to other servers and function correctly, all client devices would
successfully retrieve the updated content from this one. Additionally, since client devices retrieve updated contents from
servers, the content-delivering service stops when a communication failure occurs on a server. The potential process
and communication failures for content-delivering service include crashes, general omissions of sent contents and
disconnection [22–24]. A crash indicates that a server or a client device is malfunctioning, and requires time to recover.
A general omission signifies that the server or the client device receives incomplete content. A disconnection means that
the network is disconnected between two communicated devices. The possible error statuses of the content-delivering
service include “servers are malfunctioning” and “network link is disconnected.” Table 1 presents the error statuses.

Server C

Server A

Server B

Child server

Parent server

Root

server

• • • • • •

• • • • • •• • • • • •

Fig. 1. The hierarchical organization with spanned tree schema.
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Table 1
Error statuses

Error type Server Link

Crash General omission Disconnection

Reasons 1. Hardware problems, such as malfunctioned
network adapter, crash database

The server receives incomplete con-
tents owing to transmission error

1. Network equipment is mal-
functioned

2. The server is burned 2. The wire is cut-off
3. The network is congested

The further actions of a malfunctioned server include operator’s intervention and automatic recovery. A crash requires
intervention by an operator. A general omission can be solved automatically, because recipients retrieve incomplete
content later. Partially disconnected cases, including a malfunctioning network router, require intervention by an
operator, as well as time to be fixed. Other cases, such as a network disconnection owing to congested traffic, typically
recover automatically within a specific period. Each error status has various mean times between failures and times
spent for repair. The company assigns specific staff members to repair a malfunctioning server or link. The mean time
between failures and the time spent for repair of a server in the system employed by the company are 1094.4 and 6.4 h,
respectively. The mean time between failures and the time spent for repair of links are 358.6 and 0.8 h, respectively.
The mean times between general omissions and the mean time of restarting a retrieval process are 300 and 1.83 h,
respectively.

4. The disaster avoidance design of FnFDS

The FnFDS has specified a disaster avoidance design comprising fault-tolerant design and failover design for the
above error statuses. The fault avoidance design is described as follows.

The FnFDS ensures that content can be retrieved by sending notifications and preventing the retrieval of incomplete
content by comparing the physical size of delivery content and adding information about content size. The notification
is adopted to inform the receiver; the recipient server and the client device retrieve content, or transmit an error when
failures occur, allowing the receiver to determine the next action. A server or a client re-retrieves content from any
server that has the latest version of the updated content when it recovers from a crash or disconnection. Moreover,
FnFDS includes a management console to help the operator to monitor the status of servers and intervene in time when
failures occur. A server that is not operating is marked on the management console to prevent it from connecting with
clients and other servers. That is, a non-functional server is isolated for repair.

However, a fault-tolerant design has to consider the time sequence of the content-delivering service, as follows:
a sending server sends a notification to a recipient server, which then retrieves the content from the sending server.
For instance, a server that crashes before transmitting a notification to recipient servers is marked with “error” on the
management console to prevent clients from retrieving updated content from it. Meanwhile, the crashed server can be
repaired to recover and provide services. Tables 2 and 3 show the details of the fault tolerance design applied to FnFDS
to deliver content among servers.

The failover design of the FnFDS is described as follows. Whenever a server marked on the management console as
failed needs to be repaired by an operator, other servers are designated to be in charge of sending content to all recipient
servers of the marked server. Furthermore, once failing to link to the original destination, a server must be designated
to link others with the same functions as the original destination. Additionally, a failed link or a malfunctioned server
has a specified repair team to fix it once it is marked on the management console.

However, the server hosts at headquarters controlled by the content-delivering operator require a specific failover
plan. The company prepares backup servers of the server hosts at the headquarters. These backup servers can replace
failed servers immediately. Every server on the second layer can act as a server host at the headquarters to handle the
crash situation. If the server hosts at the headquarters are disconnected from other servers, then the operator can deliver
the updated content to one of the server hosts on the second layer to deploy it. If the server hosts at the headquarters
are disconnected from other servers, then the operator travels to any site of the second layer as quickly as possible to
allow the updated content to be delivered.
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Table 2
Fault tolerance design (FTD) for server

Crash General
omission

Situation Before sending
notification to
recipient
servers

After sending noti-
fication to a recipi-
ent server and be-
fore the recipient
server receives the
content

After recipient
servers re-
ceives content

After receiving
notification
from the recip-
ient server

Before receiv-
ing notification
from the send-
ing server

Before getting
content from
the sending
server

Server
retrieves
incomplete
content

FTD The crashed server
is marked as
“error” on the
management con-
sole, and waits for
repair. This design
prevents client
devices from re-
trieving the wrong
version of updated
content from the
crashed server.
The other servers
on the same layer
as the crashed
server would send
notification to the
recipient servers
of the crashed
server

The recipient
server retrieves
no content from
the crashed server.
The recipient
server retrieves the
updated content
from any other
server with the
latest version of
updated content

No fault-
tolerant design
is needed since
the content
has been de-
livered. The
crashed server
is marked as
“error” on the
management
console, and
waits for repair

Following a fixed time interval, if a recipient server still
retrieves nothing from the sending server, the sending
server sends a notification: “A server XXX retrieved
no content,” to the other recipient servers, which notify
the recipient servers of the crashed server to retrieve
lost contents from them

If updated
content is not
completely
transferred
because of
general
omission,
then the
content is
repeatedly
re-retrieved
until the
transfer is
successful

Table 3
Fault tolerance design (FTD) for link

Disconnection

Situation Before the notification of the updated content is received After the notification of an
updated content is deliv-
ered, and before the up-
dated content is retrieved

After the updated content
is delivered

FTD If the sending server fails to resend notification to the recipient
server 10 times, then it marks the recipient server as “error” on the
management console and waits for repair. This design can prevent
clients from retrieving the incorrect version of an update from the
crashed server. The sending server sends the notification, “The
server has retrieved no content,” to the other recipient servers to
ensure that the recipient servers of the disconnected server receive
content from the other servers that retrieve contents successfully

If the recipient server fails
to retrieve updated con-
tent from the disconnected
sending server, then it
retrieves updated content
from any other server with
the latest version of up-
dated content

No fault-tolerant design is
necessary, since the con-
tent has been delivered

With the above disaster avoidance design, the FnFDS ensures that a client retrieves updated contents whenever it
is notified from a server in the same business region. A client device that is disconnected from the server in the same
business region can still be notified that the new content is ready for retrieval from any other servers. Additionally,
a client device that retrieves no updated content from a crashed server within a business region retrieves the updated
content from another server.

Finally, the two following theorems can be obtained from the above design.
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Theorem 1. The content-delivering service can be continued whenever a server is in the error status.

Proof. In the design described in Table 2, if a parent server crashes, the other parent servers on the same layer
would send notification to the child servers of the crashed server. Hence, the child servers can receive notification and
retrieve updated contents from other servers, but the clients would retrieve no updated content from the crashed one.
Additionally, if the recipient servers are crashed, then they would be marked as a crashed state on the management
console throughout other servers. A server that receives incomplete content retrieves it again from the server that is
transmitting the content. When a server is disconnected from other servers, other servers can provide content-delivering
service to the servers and client devices that were originally connected to the disconnected server. Servers with errors
are marked on the management console to prevent other servers and clients from connecting to them. A server with an
error resumes providing content-delivering services as soon as it becomes operable again, enabling it to send the latest
updated contents. �

Theorem 2. If at least the root server is in the operational mode, client devices can retrieve updated contents success-
fully.

Proof. In this fault-tolerant and failover design, every server except for the root server receives updated contents from
a parent server. A parent server that fails to send updated contents to a child server notifies another child server in the
same hierarchy level to pass the notification of the new update contents to the servers or clients connected to the failed
server. If no child server is available, then the parent server notifies all servers in the next level to retrieve contents
directly.

A client retrieves updated contents after receiving the notification, and can retrieve updated contents from any other
server in operational mode, mainly in the same business region. If a client device is disconnected from the server in the
same business region, then the client device can still be notified from any other servers. Additionally, a client device
that retrieves no updated content from a crashed server within a business region retrieves the updated content from
another server.

Therefore, a client device can always receive updated contents as long as the root server is in operational mode. �

Through the above design, the FnFDS can provide a disaster avoidance content-delivering service.

5. Reliability

To understand the reliability of FnFDS, this study obtains the FnFDS queueing model and analyzes it [31–34]. This
investigation assumes s�1 servers in the system for sending downward messages, which have independent identically
distributed (i.i.d.) exponential lifetimes. According to the architecture of the proposed method, FnFDS has x links in
the system to connect servers, where x�1. Additionally, the lifetimes of these links may be interdependent.

5.1. Measure of system reliability

This investigation calculates the probability that no server is in operational mode, using the following procedure. The
notations 1/�c and 1/�G denote the mean time from regular operation to the crash state, and to the general omission
state for each server, respectively. This study assumes that the times taken by each server to reach the crash state and
the general omission state follow i.i.d. exponential distributions. A crashed server needs a mean repair time of 1/�c.
Moreover, repairing a failed server with general omission takes a mean repair time 1/�G. These two repair times are
assumed to be i.i.d. random variables with exponential distributions.

The state transition rate diagram (Fig. 2) is a Markovian system with period 2, signifying that future behavior is a
function only of the present, and not of the past. This study indicates the steady state probability as follows:

� = (�0, �C, �G),

where �0, �C, and �G denote limiting probabilities of the regular operation, crash, and general omission states. The
interpretation of �j is the probability of finding the Markov process in state j after the process has been in operation for
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Fig. 2. The state transition rate diagram.

a long duration. In addition, the interpretation of �j could be described as the long run mean transitions of time that
the process spends in state j [35]. A transition probability matrix is derived,

T =
[0 pG pC

1 0 0
1 0 0

]
,

where pG = �G/(�G + �C) and pC = �C/(�G + �C). The transition probability matrix leads to the following two
transition probability matrices:

Teven = T (2n) =
[1 0 0

0 pG pC
0 pG pC

]
for n = 1, 2, . . .

and

Todd = T (2n−1) =
[0 pG pC

1 0 0
1 0 0

]
for n = 1, 2, . . . .

Using Teven and Todd, the stationary probabilities indicate:

�0 = 1
2 , (1)

�G = �G

2(�G + �C)
, (2)

�C = �C

2(�G + �C)
. (3)

With modern technology, the operation time of a server should far exceed the down time. To make a conservative
calculation, we then assume that the servers spend the same amount of time in each of the three states after each
transition. �0, �C, and �G therefore denote the average time spent in each corresponding state in the worst case. Under
this assumption, FnFDS has the following limiting probability of no server in operational mode in the system:

Pr{no server in operational mode} = (�C + �G)s =
(

1

2

)s

. (4)

Additionally, this study computes the limiting probability that all links are disconnected. The procedure for finding
the limiting probability that links are disconnected is described as follows. The term 1/�d denotes the mean time from
the connected state to the disconnected state for each link. Repairing a disconnected link has a mean repair time of
1/�d. This investigation assumes that lifetime and repair time follow exponential distributions, with r repair teams
existing for repairing disconnected links.

At time t, Nx,r (t) indicates the number of disconnected links in this Content-Delivering Service system, which
comprises x links and r repair teams. The repair teams exist for fixing disconnected links in time. This investigation
assumes that x�r �1. This study considers {Nx,r (t), t �0} as a birth and death process on state space {0, 1, . . . , x}



34 C.-C. Liang et al. / Computers & Operations Research 36 (2009) 27–39

with birth parameter �d and death parameter �d. The equation Pn(x, r)= limt→∞ Pr{Nx,r (t)=n} denotes the limiting
probability that n disconnected links exist in a system with x links and r repair teams. This investigation obtains the
limiting probability by formulating it as a M/M/r queueing system with finite population x. The limiting distribution
is calculated from the following theorems (see Kleinrock [36]):

Theorem 3. Let Nx,r (t) represent the number of disconnected links at time t, in a system that contains x links and r
repair teams. If

Pn(x, r) = lim
t→∞ Pr{Nx,r (t) = n}, 0�n�x,

then,

Pn(x, r) =

⎧⎪⎨
⎪⎩

x!
(x − n)!n!

(
�d

�d

)n

P0(x, r) for n = 1, . . . , r − 1,

x!
(x − n)!r!rn−r

(
�d

�d

)n

P0(x, r) for n = r, . . . , x,

(5)

where,

P0(x, r) =
[

r−1∑
n=0

x!
(x − n)!n!

(
�d

�d

)n

+
x∑

n=r

x!
(x − n)!r!rn−r

(
�d

�d

)n
]−1

. (6)

The term L(x, r) represents the expected number of disconnected links in the system of x links and r repair teams,
which are in the steady state. Using the limiting probability described in Theorem 3, the expected value is determined
as

L(x, r) =
x∑

n=0

nP n(x, r). (7)

Little’s law indicates that the average number of customers in a queueing system equals the arrival rate of customers
reaching that system multiplied by the average time spent in it [37]. This study adopts Little’s Law to find relations
among the expected number of disconnected links, expected repair time of each disconnected link and disconnection
rate.

Theorem 4. Let W(x, r) represent the expected time taken to repair a disconnected link in a system with x links and
r repair teams in steady state, where �d indicates the disconnection rate of a link. This value is computed as follows:

W(x, r) = L(x, r)

�d(x − L(x, r))
. (8)

Proof. The expected time, W(x, r), is derived using Little’s Law with the effective disconnection rate
∑x

n=0(x −
n)�dPn(x, r). �

This investigation calculates the probability that all links are disconnected from the result of Theorem 3.

Pr{all links are disconnected} = Px(x, r) = x!
r!rx−r

(
�d

�d

)x
[

r−1∑
n=0

x!
(x − n)!n!

(
�d

�d

)n

+
x∑

n=r

x!
(x − n)!r!rn−r

(
�d

�d

)n
]−1

. (9)
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The term Px(x, r) denotes the period of time when all links are disconnected in the long run. The probability that a
system is down is determined from the results of (4) and (9), as follows:

Pr{system is down} = Pr{no server in operational mode} + Pr{all links are disconnected}

=
(

1

2

)s

+ x!
r!rx−r

(
�d

�d

)x
[

r−1∑
n=0

x!
(x − n)!n!

(
�d

�d

)n

+
x∑

n=r

x!
(x − n)!r!rn−r

(
�d

�d

)n
]−1

. (10)

Eq. (10) obtains the probability that the content-delivering service system will be down through assigned numbers of
servers and links s and x, respectively. The result of Eq. (10) could be used to compare with a six-sigma capable process.
Restated, if the result shows that the number of occurrences of the status ‘system is down’, providing no service, is
below 3.4 occurrences per million unit time, then the system is better than a six-sigma capable process. Additionally,
the time that a disconnected link waits for repair is unknown. To understand these issues, the waiting-time measurement
is discussed in Section 5.2.

5.2. Waiting-time distributions of repairing disconnected links

A disconnected link takes time to begin to be fixed by a repair team. The probability distribution for the waiting-time
of the repair team to fix disconnected links must be calculated. Every disconnected link has an individual waiting-time.
This investigation assumes that the queue discipline is first-in-first-out. The waiting-time is a random variable that is
partially discrete and partially continuous. The waiting-time is a continuous random variable, except when the waiting-
time is zero, because there is a non-zero probability that there is no delay. Restated, there is a non-zero probability that
a link is repaired as soon as it is disconnected.

Let T denote the time spent waiting in the queue for the repair team. The term FT (t) represents the cumulative
probability distribution of the time spent waiting for repair. The equation T = 0 indicates no waiting-time, which
means that a disconnected link can be repaired (enter service) immediately. This case arises only when the number of
disconnected links in the system, n, is strictly below the number of repair teams r. Therefore, Pr{T =0}=∑r−1

n=0Pn(x, r).
The term Pn(x, r) represents the limiting probability that there are n disconnected links when there are x links and r
repair teams. This work demonstrates that

FT (0) = Pr{T �0} = Pr{T = 0} =
r−1∑
n=0

Pn(x, r)

= x!
(

(�d + �d/�d)
x

�(1 + x)
− (�d/�d)

r
2F1(1, r − x; 1 + r; −(�d/�d))

�(1 + r)�(1 − r + x)

)
P0(x, r), (11)

where �(y) = ∫ ∞
0 zy−1 e−z dz represents the gamma function, and

2F1(a, b; p; q) = �(p)

�(b)�(p − b)

∫ 1

0
zb−1(1 − z)p−b−1(1 − qz)−a dz, (12)

indicates the hypergeometric function. The value of FT (t) then needs to be found for t > 0.
If the system has n disconnected links when a disconnection arises, then all n disconnected links must have been

repaired by time t for the repair of the disconnected link to begin at a time between 0 and t. Since the service distribution
is exponential and thus has no memory, the distribution of the time required for n completions is independent of the time
of the current disconnection, and is the convolution of n exponential random variables. As noted by Kleinrock [36],
the sum of n i.i.d. random variables with an exponential distribution, has the Erlang-n distribution, and this applies to
the time for n repair completions. Additionally, since the arrival distribution of disconnection events follows a Poisson
distribution, the arrival points under a fixed numbers of events are uniformly distributed [35]. Therefore, the probability
that an arrival encounters n in the system is identical to the stationary distribution of system size. Hence, the time
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distribution of waiting for repair is derived

FT (t) = Pr{T � t} = FT (0)

+
x∑

n=r

[Pn(x, r) · Pr{(n − r + 1) completions by time t |arrival found n in system}]

=
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for t > 0.
However, the total time that a link is disconnected comprises various repair processes, including waiting-time and the

time spent repairing the disconnected link. This investigation denotes the total time by U, and its cumulative probability
distribution by FU(t). The expression could be presented as follows:

FU(t) = Pr{U � t}

=
x∑

n=r

[Pn(x, r) · Pr{(n − r + 2) completions by time t |arrival found n in system}]

=
x∑

n=r

[
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for t > 0.

6. Implementation

6.1. FnFDS in a large-scaled company

In a large-scaled company in Taiwan, to build the FnFDS to fit with the hierarchical organization, one server is set up
at the headquarters in the first layer, while other servers connect to the server in the headquarters in the administrative
regional centers in the second layer. When the FnFDS starts, the system checks the availability of contents in the
dispatching server of headquarters, and then notifies the dispatching servers in the administrative regional centers to
fetch the data from it. After the data arrive at the regional administrative centers, the system then requests dispatching
servers in the regional centers to fetch the contents from their corresponding dispatching servers in the regional
administrative centers. Additionally, if a client is disconnected from the network when contents are distributed, then it
can contact the dispatching server in the corresponding regional administrative center after reconnecting to the network.
Fig. 3 shows the transmission schema for the company [11]. The number of disposed servers in the transmission schema
is based on the number of layers. The company sends contents through 40 servers spread over three layers. The 40
servers comprise one dispatching server at HQ, three dispatching servers in regional administrative centers and 36
dispatching servers in regional centers. In the company, the Node HQ in the first layer comprises the dispatching server
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Fig. 3. The 4-tier architecture of FnFDS.

located at headquarters of the organization. RAC1, RAC2 and RAC3 in the second layer include dispatching servers
in the three regional administrative centers located in the corresponding Business Groups. All of the other 36 regional
centers in the third layer contain dispatching servers. The fourth layer comprises the client devices that are the final
destinations of the updated contents [11].

6.2. Results

The reliability is calculated using Eq. (10) with real data and assigned variables. In this case, every malfunctioned
situation has a specific staff member to repair it, and every server has links to connect other servers. The mean failure
time (1/�c) and the mean repair time (1/�c) of a server in the system employed by the company are 1094.4 and 6.4 h,
respectively. The mean failure time (1/�d) and the mean repair time (1/�d) of links are 358.6 and 0.8 h, respectively.
The mean times between general omissions (1/�G) and the mean time of restarting a retrieval process (1/�G) are 300
and 1.83 h, respectively.

The six-sigma capable process is originally used in manufactory industry to measure and improve the quality of goods.
Recently, the methodology has been utilized in the service industry to gauge and improve service level. According
to the standard of six-sigma, the FnFDS cannot be out of service for more than 3.4 times in a period of one million
hours. The out of service rate is computed by expression (10), which can be reduced to ( 1

2 )s , where s is the number
of servers. This is because that the case company has a pre-assigned repair team to maintain each link (each link has
its own specified repair team), the number of links is equal to the number of repair teams, the parameter n is equal to
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r. In addition, since the number of links is equal to the number of disconnected links in the worse case, the parameter
n is equal to x. In this case study, due to each link of being maintained by a pre-assigned repair team, the number of
links is equal to the number of repair teams, x = r when all links are broken down, implying the system is down. The
out of service occurrences are 3.8149 times per million hours and 1.97035 times per million hours, for s = 18 and 19,
respectively. Therefore, the ideal configuration should contain 19 servers since its rate is below 3.4 times per million
hours.

However, before the analysis is completed, 40 servers have been deployed to serve customers. Obviously, the
reliability of adopting 40 servers (9.0945 × 10−7 occurrences times per million hours) is far better than adopting 19
servers. However, the cost of the former approach is a lot higher than the latter one. Therefore, a plan for reducing the
cost of providing service is launched currently [17].

7. Conclusions

Content distribution must be considered by service-oriented companies with fast-evolving intranet environments and
many client installation bases. Restated, the same version of the updated contents needs to arrive at all on-line client
devices before a required deadline to allow companies to upgrade corresponding client software and business processes.
Hence, service-oriented companies without a content-delivering service with a disaster avoidance mechanism are likely
to lose revenue, customers and even goodwill.

This study proposes a disaster avoidance mechanism designed for an effective content-delivering service implemented
in a large-scaled company with multiple layers along a hierarchical organization. To analyze the error statuses and
solutions, this study derives a reliability model and waiting-time distribution of disconnected links for such a content-
delivering service. However, due to the lack of a utility function associated with the waiting-time of repairing failed
links, the acceptable repair time for failed links will be discussed in a further study.

Disasters cause different levels of damage that can be characterized using a reliable six-sigma capable process. This
investigation found that a company running at least 19 servers could ensure a working content-delivering service, with
1.90735 service stoppages per million hours. That is, the reliability of FnFDS using 19 servers is better than that of
a six-sigma capable process. However, the number of deployed servers has to be along the hierarchical organization
with a balanced tree. The practical result demonstrates that the frequency of service stoppages when using 40 servers
of three layers, as in the case study, is 9.0945 × 10−7 times per million hours, which is better than the case of only
employing 19 servers. This approach is clearly more reliable than a six-sigma capable process, but is also very costly.
Hence, the company is scheduling a plan for cutting cost based on the results of this study, while using 19 servers.
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