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Homeostatic niche specification among naı̈ve and activated B cells:
A growing role for the BLyS family of receptors and ligands
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Abstract

B lymphocyte homeostasis encompasses the establishment and maintenance of independently regulated niches, within which cells compete
for viability promoting resources. The BLyS/BLyS receptor family controls the size and composition of these niches, by governing the
selection and survival of most peripheral B cells. Moreover, different receptor-ligand sets from this family dominate the regulation of various
B cell subsets. These observations suggest a model whereby the regulation of BLyS receptors by differentiative and stimulatory cues yield
characteristic BLyS receptor signatures, thus specifying homeostatic niche and competitive advantage.
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. Introduction

The mechanisms governing lymphocyte homeostasis must
alibrate cell numbers to levels that impart protection yet lie
ithin plausible resource consumption limits. This mandate
ields a problem in steady-state cellular dynamics that must
ccommodate multiple, seemingly conflicting factors. First,

he random genetic processes that generate antigen receptors
mpose a need for specificity-based selection to minimize
otential self-reactivity and maximize protective utility. This

mplies that homeostatic regulation must be integrated with
he mechanisms underlying such selection. Second, the co-
xistence of discrete B cell subsets whose sizes, dynamics,
nd repertoires differ suggests that related but independent
omeostatic systems regulate these pools. Finally, alterna-

ive activation outcomes, notably those that yield short-lived
ntibody forming cells (AFCs) versus long-lived progenitors
f memory responses, indicate that the process of activation

ncludes cues that direct cells to alternative, independently
ontrolled homeostatic niches.

The BLyS/BLyS receptor family plays a central role
the integrated homeostatic regulation of peripheral B c
As characterization of this TNF subfamily has unfolde
paradigm for niche-specific regulation has emerged[1], based
on the coupling of BLyS receptor expression to exogen
stimuli that specify differentiation into the various pre- a
post-immune B cell pools. Herein we overview the nature
dynamics of näıve and activated peripheral B cell subs
and discuss the BLyS/BLyS receptor family’s role in th
homoeostatic control. Finally, we propose a model whe
alternative activation signals differentially alter expressio
the three BLyS receptors, thereby specifying the occup
of independently regulated homeostatic niches.

2. Nature and dynamics of pre-immune B
lymphocyte subsets

Näıve B cells and their progenitors can be divided
several phenotypically, functionally, and anatomically
tinct subsets. The sizes, lineage relationships, and dyn
∗ Corresponding author. Tel.: +1 215 898 8067; fax: +1 215 573 2350.
E-mail address:cancro@mail.med.upenn.edu (M.P. Cancro).

of these subsets have undergone intense investigation during
the last decade, and are summarized inTable 1. In normal
adults, pre-immune B cell populations are derived from
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Table 1
Properties of marrow and peripheral B cell subsets

Subset Pool size
(millions)

Turnover rate
(%/day)

Production
rate (106/day)

BLyS receptors
expressed

Primary BLyS
ligand dependence

Marrow pro-B 5 30 1.5 None None
pre-B 50 30 15 None None
Immature 35 30 10–15 BR3? ?

Transitional T1 1.5 30 BCMA? ?
T2 2.0 30 ∼1.5 overall TACI BR3 BLyS
T3 1.0 30 TACI BR3 BLyS

Mature primary FO ∼45 <2 0.5 TACI BR3 BLyS
MZ 5–7 ∼4 Varies BR3? BLyS
B1 1.5 ? ? ? Not via BR3, if any

Post-Ag GC Varies ? Varies ? BLyS, APRIL?
Marrow PCs ? <1? ? BCMA BLyS or APRIL

marrow progenitors that, following lineage commitment and
rearrangement of immunoglobulin genes, express surface
IgM and enter the immature marrow pool (see[2,3] for
reviews). These newly formed B cells leave the marrow
to complete maturation in the periphery, where they pass
through several transitional stages (T1, T2, T3) before
entering one of the resting primary B cell subsets[4–8].
Under normal steady-state conditions, the majority of cells
that complete transitional maturation join the follicular (FO)
pool, which comprises about 80% of adult peripheral B cells.
Alternatively, some newly formed cells may differentiate
to join the marginal zone (MZ) pool, either directly or after
acquiring FO characteristics[9].

The absolute and relative sizes of the transitional, FO, and
MZ subsets remain relatively constant throughout life, sug-
gesting stringent homeostatic controls over the generation
and maintenance of these pre-immune pools. Since the two
primary determinants of a population’s size are the rate at
which cells enter the population and the residence time of
cells within the population, in vivo labeling strategies have
been employed to investigate the dynamics of bone marrow
and peripheral B cell pools[4,6,10–12]. These studies have
revealed two fundamental properties of these populations that
must be accommodated by models forwarded to explain their
homeostatic regulation. First, residence times in the imma-
t t, as
e
c sub-
s
a nces
i re
B ong
t er,
t die
d on in
t ols.

rface
r sitive
s esses
i tive

clonotypes[13–24], as well as the differentiative failure of
cells whose BCR fails to meet a minimum level of signal-
ing strength ([25–27], reviewed in[28,29]). In addition to
mediating the successful differentiation of newly formed B
cells, BCR signaling is also critical to the survival of mature
B cells. This is evidenced by the rapid death of mature B cells
within established FO pools following conditional BCR ab-
lation[30], as well as the perturbed lifespan of FO and MZ B
cells in various transgenic or BCR signaling defective strains
[30–33].

An increasingly appreciated aspect of BCR-mediated se-
lection within transitional and mature primary pools is that
the propensity for survival conferred by BCR specificity is
relative, rather than absolute. Thus, the degree of differen-
tiative success and longevity within these pools is ultimately
determined by the competing cohort. This principle has been
amply demonstrated by experiments in which clonotypes that
can successfully mature in an oligoclonal environment fail
when differentiating in a competing milieu of normal BCR
diversity [31,34–37]. These observations indicate that naı̈ve
B cells compete for limited, viability promoting resources.
Moreover, they suggest that the level of these resources de-
fines a set-point for pre-immune pool size. Finally, subsets
with differing capacities and requisites for resource capture
exist within the overall pre-immune pool, as evidenced by the
s O B
c ons
(
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a ome-
o eting
ure marrow and transitional pools are relatively shor
videnced by the 3-day turnover times in both cases[4,6]. In
ontrast, residency times in the FO and MZ pools are
tantially longer, with average turnover times of∼80–100
nd∼30 days, respectively. Second, based on the differe

n production rates (Table 1), fewer than 5% of the immatu
cells generated in the marrow can be accounted for am

he cells entering naı̈ve mature peripheral pools. Togeth
hese findings suggest that most newly formed B cells
uring the differentiation stages spanning BCR expressi

he marrow and entrance to the mature pre-immune po
Pronounced cell losses at the marrow-periphery inte

eflect a composite of specificity-based negative and po
election imposed upon emerging B cells. These proc
nclude the elimination or editing of potentially autoreac
elective preservation, expansion, or loss of MZ versus F
ells under lymphopenic or cytokine deprivation conditi
[38]; Srivastava et al., this volume).

. Activation induces divergence into homeostatically
ndependent niches

The contrasting lifespan characteristics of naı̈ve versus
ntigen-experienced cells suggests that activation rel
ells from homeostatic constraints operative in pre-imm
opulations and fosters divergence into niches under alt

ive homeostatic control. Further, both the mode of activa
nd the origin of the responding clones determines the h
static niche targeted for occupation and hence the comp
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cohort. For example, among FO B cells, BCR engagement
in conjunction with CD40 ligation leads to the initiation of
germinal center (GC) reaction, affinity maturation, isotype-
switching, and the formation of relatively long-lived memory
populations. In contrast, stimulation of MZ cells, or stimula-
tion of FO B cells in a manner characteristic of T-independent
responses, generally yields rapid expansion and differentia-
tion to relatively short-lived AFC clones.

The independent regulation of pre-immune versus acti-
vated and/or antigen-experienced B cell subsets is evidenced
by the constancy of naı̈ve pool sizes despite expansion of the
responding, antigen-specific clonotypes during primary re-
sponses. Conversely, depleting memory plasma cells through
ablation of a receptor crucial for their survival has little influ-
ence on the size of the FO pool, providing further evidence
that the pre- and post-immune pools are controlled indepen-
dently [39]. Accordingly, the mediators of peripheral B cell
homeostasis must not only allow coordinated control over
the size and composition of pre- and post-immune pools, but
must also afford a means whereby the differentiative events
associated with activation can channel responding cells into
independent homeostatic niches.

4. Members of the BLyS/BLyS receptor family are
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increasing the proportion of cells completing differentiation
and joining the mature FO cell compartment[54]. Finally, the
deletion of BLyS or the administration of competing soluble
receptors in vivo yielded profound but reversible reductions
in the number of resting mature B cells[55]. Together,
these observations clearly established a role for BLyS in the
homeostatic regulation of naı̈ve peripheral B cells[49,50,56].

The role of APRIL in B cell homeostasis remains less
clearly delineated, probably due to the receptor binding
redundancy of BLyS, as well as the lack of any known
receptors uniquely reactive with APRIL. Thus, when APRIL
is either deleted or overexpressed, neither the differentiation
of transitional B cells nor the magnitude of the FO and MZ
compartments is altered. However, APRIL transgenic mice
exhibit enhanced TI-2 responses[57], and APRIL knockout
mice produce increased antibody titers to T-dependent
(TD) and T-independent-type 1 (TI-1) stimuli[58,59].
Together these data suggest that while APRIL’s influence on
pre-immune B cells is largely ancillary to those of the BLyS-
BR3 axis, it likely plays a role in the control of activated
B cells.

Further evidence supporting different roles for the two
ligands comes from analyses of the three BLyS family re-
ceptors. Perhaps most importantly, BLyS is the only known
ligand for BR3, whereas TACI and BCMA are bound by
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he molecular mediators of näıve and activated
eripheral B cell homeostasis

During the last 5 years, the BLyS family of TNF hom
ogues has emerged as a pivotal determinant of periphe
ell survival and homeostasis, prompting extensive re
nd commentary[40–48]. The BLyS family includes tw

igands, BLyS and APRIL, as well as three receptors, B
ACI, and BCMA. Mounting evidence indicates that t
amily of ligands and receptors influences virtually al
ineage subsets subsequent to the immature marrow
urther, BLyS and APRIL influence the various B c
ools differently, based in part on disparate expressio

he three receptors within each subset. The ligands, B
nd APRIL, share 50% homology at the protein level
xhibit several other similarities. Both are synthesize
ype II transmembrane proteins, secreted as homotr
fter proteolytic cleavage, and are thought to be active

n their soluble forms. An important distinction is that BL
nd APRIL differ in their binding capacity for the vario
LyS family receptors (see below).
BLyS was simultaneously described by several lab

ories, and therefore, appears under several names
iterature, including BLyS[49], BAFF [50], TALL-1 [51],
nd THANK [52]. Many of the biological effects mediat
y BLyS reflect the modulation of survival. Initial stud
howed dramatic increases in FO and MZ B cell numbers
owing either exogenous BLyS administration or BLyS ov
xpression[49,50,53]. Additionally, in vivo BrdU labeling
tudies of transitional cells showed that exogenous BLyS
inistration promotes survival in the late transitional po
.

oth BLyS and APRIL. Accordingly, B cells that expre
R3 are disposed to unique effects of BLyS, and ample

dence indicates that BLyS-BR3 interactions are key to
urvival of näıve peripheral B cells. Whereas TACI is a
xpressed on pre-immune B cells, its exact role remain
cure. A negative regulatory role for TACI has been infe
rom observations with TACI knockout mice, which sh
ncreased peripheral B cell numbers, enhanced antibod
ponses to TD and TI-1 responses, and hallmarks of hum
utoimmunity. However, the production of antibodies res

ng from TI-2 stimuli appears impaired in these mice[60,61],
uggesting the role of TACI may be more complex. BC
oes not seem to be expressed at high levels on cells w
re-immune pools and its deletion has little effect on th
opulations. In contrast, BCMA is necessary for the surv
f at least some post-immune compartments, as evide
y the loss of long-lived bone marrow plasma cells in
CMA knockout mouse[39,62].

. Competition for BLyS signaling via BR3
odulates the survival and selection of näıve
eripheral B cells

Signaling via BR3 is the primary determinant of BLy
ediated positive regulatory effects in pre-immune per
ral pools. The expression of BLyS receptors shifts as n

ormed B cells pass through the transitional stages and
he FO B cell pool in a manner consistent with increa
eliance on BR3 (Table 1; [54]). The critical role of BR3
s evident from the compromised transitional differentiat
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decreased FO B cell lifespan, and lack of MZ cells observed in
the BR3 mutant A/WySnJ mouse, as well as in BLyS and BR3
knockouts[55,63–66]. The lack of perturbed pre-immune
compartments in BCMA or APRIL knockouts[61] further
attests to the dominant role of BLyS-BR3 signaling in these
compartments.

Further experiments using the A/WySnJ strain revealed
that mature B lymphocytes continuously compete for BLyS
signaling through BR3[67]. These experiments showed
that in (A/WySnJ X BALB/c)F1 individuals, the FO B cell
turnover rate is intermediate between normal and A/WySnJ,
indicating that continuous capture of BLyS-BR3 signals
mediates FO B cell lifespan. Moreover, mature A/WySnJ-
derived FO B cells competed poorly with BR3-sufficient cells
in mixed marrow chimeras, indicating that the relative levels
of functional BR3 establish competitive fitness. Subsequent
studies using BR3 knockout mice have confirmed the domi-
nant role of BLyS-BR3 signaling for the maintenance of FO
and MZ B cells[68].

The thresholds for both positive and negative selection
within transitional subsets are linked to BLyS availability.
Early evidence for this included the observations that
exogenous BLyS administration enhanced the success
of transitional differentiation and that BLyS transgenic
mice displayed B cell hyperplasia and humoral autoimmune
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6. The mediators of BLyS family signaling shift
during B cell activation and memory

In addition to their profound influence on the selection,
formation, and longevity of primary B cells, members of the
BLyS-BLyS receptor family also play an important role in
the antigen-driven activation of mature B cells, as well as the
generation and maintenance of memory populations. Early
studies in the A/WySnJ mouse revealed normal primary IgM
responses for both TI and TD antigens, but poor secondary
humoral responses and low IgG levels[86]. Moreover, while
rudimentary germinal centers form following immunization
in these mice, they fail to evolve normally; consistent
with more recent reports indicating compromised germinal
center formation when BLyS signaling is impeded[78,87].
Evidence that BLyS has a role in the appropriate evolution
of primary humoral responses also comes from findings that
suggest both BLyS and APRIL may influence isotype switch-
ing either directly, or indirectly by extending survival[59,88].

A direct link between the BLyS/BLyS receptor family and
antigen-experienced pools was forged through detailed anal-
yses of the BCMA knockout, which revealed a lack of long-
lived marrow plasma cells and truncated memory responses
in these mice. Inasmuch as T dependent costimulation and
germinal center formation are requisites for establishing hu-
m to
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anifestations. More recent studies using the HEL/anti-
ransgenic model, where B cells reactive with soluble
ntigen escape deletion until the late transitional st

23], have directly demonstrated that excess available B
an rescue the differentiation of autoreactive cells[69,70].
oreover, under excess BLyS conditions, the absenc

nterclonal competition allowed MZ differentiation of a
oreactive cells, whereas intermediate levels of compe
fforded only FO differentiation.

The molecular processes through which BR3 signa
romotes viability among naı̈ve B cells are the subject of i

ense investigation. Accumulating evidence suggests a
etween BLyS signaling and Bcl-2 family member exp
ion via NF�-B signaling pathways[71–79]. Thus, ectopi
xpression of BLyS leads to increased levels of se
nti-apoptotic Bcl-2 family members among periphera
ells [53], and the addition of BLyS to FO B cells in vit
pregulates Bcl-2 family members including Bcl-xl, A
nd others[54,72,80]. Further, some but not all of the d

ects in the BR3 mutant A/WySnJ or TACI-Ig transge
ice are repaired through introduction of Bcl-2 or Bcl

78,81,82]. Finally, the expression of pro-apoptotic ge
ay be lessened or attenuated by BLyS signaling via

83] and recent analyses have suggested that BLyS s
ng may prevent the pro-apoptotic activities of molecu
uch as nuclear PKC-� [84]. More recently, a connectio
etween cell cycle control and BLyS-mediated signa
as emerged, suggesting a potential relationship bet
ell cycle control systems and the homeostatic ma
ance of peripheral pools ([85]; Woodland and Schmidt, th
olume).
oral memory, it seems likely that the switch from BR3
CMA follows from these events. However, the detailed

ng and inducers of this shift await further investigation.

. Does the BLyS family receptor phenotype of a B
ell define its functional niche of independent
omeostatic regulation?

The conversion from a BR3- to a BCMA-centered surv
ystem indicates that, unlike their pre-immune counterp
emory plasma cells can use either APRIL or BLyS

urvival. This switch thus provides a means for indepen
omeostatic control of antigen-experienced B cells, as w
competitive advantage over primary FO and MZ pools.

ending this principle suggests a mechanism of homeo
ompartmentalization whereby a B cell’s niche is determ
y the spectrum of BLyS receptors expressed. Since
LyS receptor array will specify the possible resources

he balance of negative versus positive signals; both
iological “space” for which a cell competes, as well as
elative fitness within that space, could be established
his mechanism (schematized inFig. 1). This model furthe
uggests that the activation signals directing cells into pa
lar niches may act, at least in part, by specifying the ov
attern and extent of BLyS receptor expression. For exam
timulation that yields transient AFC responses might ta
esponding clones to short-lived fates determined by
rray of BLyS receptors; whereas stimuli engendering m
ry cell formation would specify BLyS receptor express
atterns commensurate with enhanced fitness and long
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Fig. 1. Schematic representation of a model for niche specification by differential BLyS receptor expression. In this model, the reservoirs of available BLyS
and APRIL define independent but partially overlapping homeostatic niches. The differential expression of the three BLyS family receptors (TACI, BCMA, and
BR3) determines the niche a cell is able to occupy, as well as its relative ability to compete within that niche. Both maturation and activation are accompanied
by shifts in BLyS receptor expression, with niche specification and alternative fates being determined by the quality of exogenous cues driving theseprocesses.

8. Innate and adaptive receptors can mediate
differential BLyS receptor regulation

We previously showed that anti-IgM mediated BCR cross-
linking induces increased BLyS binding capacity through the
upregulation of BR3[89], consistent with the notion that
exogenous stimuli can vary the levels of BLyS receptors.
Whether activation via alternative receptor systems might
yield contrasting changes in BLyS receptor expression re-
mains unexplored. One category of such alternative stimuli
are the Toll like receptor (TLR) ligands. Murine FO B cells
respond to several TLR ligands, including unmethylated CpG
DNA sequences that act via TLR9[90,91]. B cells respond-
ing in vivo to CpG stimulation proliferate and secrete IgM,
yielding transient protection from otherwise lethal challenge
with certain bacteria[92,93]. Accordingly, we have begun
initial characterization of BLyS binding capacity and recep-
tor expression following CpG stimulation. Following CpG
stimulation, mature FO B cells increase BLyS binding in a
dose-dependent fashion to an equal or greater extent than
after BCR stimulation alone. Interestingly, this increase in
BLyS binding primarily reflects increased TACI expression.
Given the current view that TACI serves a negative regula-
tory role in the BLyS family, it is tempting to speculate that
elevated TACI—either alone or in the absence of sustained
o cify
a the
c ver-
a vels
o by
v ptor

phenotype that specifies both competitive niche and survival
probability.
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