Immunity Correspondence

The NLR Gene Family: A Standard Nomenclature

Jenny P.-Y. Ting,^{1,21} Ruth C. Lovering,^{2,21,22} Emad S. Alnemri,³ John Bertin,⁴ Jeremy M. Boss,⁵ Beckley K. Davis,¹ Richard A. Flavell,⁶ Stephen E. Girardin,⁷ Adam Godzik,⁸ Jonathan A. Harton,⁹ Hal M. Hoffman,¹⁰ Jean-Pierre Hugot,¹¹ Naohiro Inohara,¹² Alex MacKenzie,¹³ Lois J. Maltais,¹⁴ Gabriel Nunez,¹² Yasunori Ogura,¹⁵ Luc A. Otten,¹⁶ Dana Philpott,¹⁷ John C. Reed,⁸ Walter Reith,¹⁸ Stefan Schreiber,¹⁹ Viktor Steimle,²⁰ and Peter A. Ward¹² ¹Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA ²HUGO Gene Nomenclature Committee, The Galton Laboratory, University College London, London NW1 2HE, UK

³Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA

⁴Synta Pharmaceuticals, Lexington, MA 02421, USA

⁵Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA

⁶Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8011, USA

⁷Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada

⁸The Burnham Institute for Medical Research, La Jolla, CA 92037, USA

⁹Center for Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA

¹⁰University of California at San Diego, Department of Pediatrics, La Jolla, CA 92093-0635, USA

¹¹INSERM U843, Faculté de médecine Paris Diderot, Hôpital Robert Debré, 48 Bd Sérurier, 75019 Paris, France

¹²Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA

¹³Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada

- ¹⁴Mouse Genomic Nomenclature Committee, Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, ME 04860, USA
- ¹⁵Yale University School of Medicine, Section of Immunobiology, New Haven, CT 06520-8011, USA

¹⁶Département de Biochimie, Faculté de biologie et médecine, Université de Lausanne, 1066 Epalinges, Switzerland

¹⁷Department of Immunology, MSB Room 4366, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada

¹⁸Department of Pathology and Immunology, University of Geneva Medical School, Geneva 4, Switzerland

¹⁹Institute for Clinical Molecular Biology, Christian-Albrechts-University, Schittenhelmstrasse 12, 24105 Kiel, Germany

²⁰Departement de Biologie, Universite de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada

²¹These authors contributed equally to this work.

²²Present address: Centre for Cardiovascular Genetics, Department of Medicine, University College London, Rayne Institute,

5 University Street, London WC1E 6JF, UK.

DOI 10.1016/j.immuni.2008.02.005

Immune regulatory proteins such as CIITA, NAIP, IPAF, NOD1, NOD2, NALP1, and cryopyrin (also known as NALP3) are members of a family characterized by the presence of a NACHT nucleotide-binding domain (NBD) and leucine-rich repeats (LRRs). Members of this gene family encode a protein structure similar to the NB-LRR subgroup of disease-resistance genes in plants and are involved in the sensing of pathogenic products and the regulation of cell signaling and death. Currently, a variety of different names are used to describe the products encoded by the NBD and LRR containing gene family, its subfamilies, and individual genes, including CATERPILLER (CLR), NOD-LRR, NACHT-LRR, NOD-like receptor, CARD, NALP, NOD, PAN, and PYPAF. This lack of consistency has led to a pressing need to unify the nomenclature for this gene family. Consequently, we propose a standardized nomenclature, NLR, which stands for the nucleotide-binding domain and leucine-rich repeat containing gene family.

The NLR family includes several subfamilies distinguishable by their N-terminal effector domains. There are four recognizable NLR N-terminal domains: acidic transactivation domain, pyrin domain, caspase recruitment domain (CARD), and baculoviral inhibitory repeat (BIR)-like domains (see Table 1 for the human NLR genes). These N-terminal domains have been used by several groups to subdivide the NLR gene family, and there are now multiple names for each subfamily: the largest pyrin-containing subfamily has been named PAN, NALP, and PYPAF; members of the CARD-containing subfamily have been named CARDs or NODs; the BIR-containing subfamily has been named NAIP or BIRC.

In consultation with over 100 scientists, through a stepwise voting process organized by the Human Genome Organisation (HUGO) Gene Nomenclature Committee (HGNC) and conducted via email and updated web pages, a new nomenclature system for human and mouse NLR genes has been agreed upon (see Table S1 available online for human and mouse NLR genes). It was agreed that the family name "nucleotide-binding domain and leucine-rich repeat containing" should be used to highlight these two evolutionarily conserved domains and to reflect the similarity of the NLR family to

the plant NB-LRR proteins. Furthermore. the consensus of opinion was that a subfamily-derived nomenclature system based on the N-terminal effector domains should be implemented. Consequently, four subfamily designations have been approved: NLRA, NLR family, acidic domain containing; NLRB, NLR family, BIR domain containing; NLRC, NLR family, CARD domain containing; NLRP, NLR family, pyrin domain containing; NLRX, NLR family with no strong homology to the N-terminal domain of any other NLR subfamily member (Table 1). Each member within a subfamily is given a number, e.g., NLRP1. Four members of the NLR family, CIITA, NAIP, NOD1, and NOD2, have not been renamed. These four genes are associated with a large volume of literature, and it was agreed that renaming these would cause confusion in the literature. However, each of these genes has been given a subfamily alias to enable electronic data-retrieval systems to link these four genes to the NLR gene family. Clearly related genes, such as NLRP10 and Naip3-6, that do not encode NBD and/or LRR are included for completeness and historic reasons.

Immunity Correspondence

NLR Family	HGNC-Approved Symbol	Approved Name	Other Names and Aliases	Domain Organization	Protein Sequence
NLRA	CIITA	class II, major histocompatibility complex, transactivator	NLRA; MHC2TA; C2TA	(CARD)-AD-NACHT-NAD- LRR	NP_000237
NLRB	NAIP	NLR family, apoptosis inhibitory protein	NLRB1; BIRC1; CLR5.1	BIR3x-NACHT-LRR	NP_004527
NLRC	NOD1	nucleotide-binding oligomerization domain containing 1	NLRC1; CARD4; CLR7.1	CARD-NACHT-NAD-LRR	NP_006083
NLRC	NOD2	nucleotide-binding oligomerization domain containing 2	NLRC2; CARD15; CD; BLAU; IBD1; PSORAS1; CLR16.3	CARD2x-NACHT-NAD-LRR	NP_071445
NLRC	NLRC3	NLR family, CARD domain containing 3	NOD3; CLR16.2	CARD-NACHT-NAD-LRR	NP_849172
NLRC	NLRC4	NLR family, CARD domain containing 4	CARD12; CLAN; CLR2.1; IPAF	CARD-NACHT-NAD-LRR	NP_067032
NLRC	NLRC5	NLR family, CARD domain containing 5	NOD27; CLR16.1	CARD-NACHT-NAD-LRR	NP_115582
NLRP	NLRP1	NLR family, pyrin domain containing 1	NALP1; DEFCAP; NAC; CARD7; CLR17.1	PYD-NACHT-NAD-LRR- FIIND-CARD	NP_127497
NLRP	NLRP2	NLR family, pyrin domain containing 2	NALP2; PYPAF2; NBS1; PAN1; CLR19.9	PYD-NACHT-NAD-LRR	NP_060322
NLRP	NLRP3	NLR family, pyrin domain containing 3	CIAS1; PYPAF1; Cryopyrin; CLR1.1; NALP3	PYD-NACHT-NAD-LRR	NP_004886
NLRP	NLRP4	NLR family, pyrin domain containing 4	NALP4; PYPAF4; PAN2; RNH2; CLR19.5	PYD-NACHT-NAD-LRR	NP_604393
NLRP	NLRP5	NLR family, pyrin domain containing 5	NALP5; PYPAF8; MATER; PAN11; CLR19.8	PYD-NACHT-NAD-LRR	NP_703148
NLRP	NLRP6	NLR family, pyrin domain containing 6	NALP6; PYPAF5; PAN3; CLR11.4	PYD-NACHT-NAD-LRR	NP_612202
NLRP	NLRP7	NLR family, pyrin domain containing 7	NALP7; PYPAF3; NOD12; PAN7; CLR19.4	PYD-NACHT-NAD-LRR	NP_996611
NLRP	NLRP8	NLR family, pyrin domain containing 8	NALP8; PAN4; NOD16; CLR19.2	PYD-NACHT-NAD-LRR	NP_789781
NLRP	NLRP9	NLR family, pyrin domain containing 9	NALP9; NOD6; PAN12; CLR19.1	PYD-NACHT-NAD-LRR	NP_789790
NLRP	NLRP10	NLR family, pyrin domain containing 10	NALP10; PAN5; NOD8; PYNOD; CLR11.1	PYD-NACHT-NAD	NP_789791
NLRP	NLRP11	NLR family, pyrin domain containing 11	NALP11; PYPAF6; NOD17; PAN10; CLR19.6	PYD-NACHT-NAD-LRR	NP_659444
NLRP	NLRP12	NLR family, pyrin domain containing 12	NALP12; PYPAF7; Monarch1; RNO2; PAN6; CLR19.3	PYD-NACHT-NAD-LRR	NP_653288
NLRP	NLRP13	NLR family, pyrin domain containing 13	NALP13; NOD14; PAN13; CLR19.7	PYD-NACHT-NAD-LRR	NP_789780
NLRP	NLRP14	NLR family, pyrin domain containing 14	NALP14; NOD5; PAN8; CLR11.2	PYD-NACHT-NAD-LRR	NP_789792
NLRX	NLRX1	NLR family member X1	NOD9; CLR11.3	X-NACHT-NAD-LRR	NP_078894

The following abbreviations are used: AD, acidic activation domain CARD, caspase activating and recruitment domain; LRR, leucine-rich repeat; NACHT, domain present in *NAIP*, *CIITA*, *HET-E*, and *TP-1*; BIR, baculovirus inhibitor of apoptosis repeat; PYD, pyrin domain; and NAD, NACHT-associated domain.

To distinguish between human and mouse NLR genes, the human genes are written in upper case, whereas murine orthologs are distinguished from the human genes by the use of uppercase for the first letter only, followed by lowercase (Table S1). Although several human NLR genes have multiple murine paralogs, some human NLR genes do not appear to have any murine counterparts, reflecting the dynamic evolutionary contraction and expansion of this family.

Immunity Correspondence

The nomenclature described in this paper has been approved by the HGNC and the Mouse Genomic Nomenclature Committee. Concerted use of this unified nomenclature will reduce confusion and disparity and promote the transparency of this important field. We urge all investigators to adopt the approved nomenclature in future publications and presentations.

SUPPLEMENTAL DATA

A table of human and mouse NLR genes is available at http://www.immunity.com/cgi/content/full/ 28/3/285/DC1/.

ACKNOWLEDGMENTS

We would like to thank all of the scientists who have taken part in the discussions leading to the approved nomenclature for this gene family. We also would like to thank the HGNC (http://www. genenames.org) for the time they have spent discussing the issues surrounding the nomenclature of this gene family.