
TRENDS in Parasitology  Vol.18 No.12  December 2002530 OpinionOpinionOpinionOpinion

Plasmodium falciparum malaria takes a life in
Africa every 30 seconds [1], and this rate is
increasing [2]. Strong evidence has accumulated
that the world has warmed by ~0.6°C over the past
century [3], with a range of ecological consequences [4].
Many have concluded that the reported malaria
increases and the re-emergence of other 
vector-borne diseases are likely to be the result of
these climatic changes [5–10]. On the basis of the
sensitivity of vector-borne diseases to climate [11],
and using projections of incomplete biological
models [12,13], widespread increases in global
malaria burden have also been predicted [14–16].
However, there has been considerable dissent by
specialists in malaria epidemiology concerning both
the cause of recent malaria resurgences [17–20] and
to what such climate changes might augur [21,22].
Although reports of malaria increases are not
confined to high-altitude locations [2], this debate
has become focused on the highland regions of Africa [23]
because malaria is limited by low temperatures at
such elevations [24]; hence, these locations are
considered sensitive sentinels to temperature
increases. Furthermore, it is often assumed that
highland populations are immunologically naive
and therefore at particular risk from malaria
resurgences [25], although this assumption about
the immunity status of highland populations has
been questioned [20].

Evidence for possible causes of malaria resurgences

Since the early 1980s, there have been massive
percentage increases in P. falciparum burden at
African highland locations (Fig. 1). Possible causes
are discussed below.

Meteorological changes
Although the world appears to have warmed over the
past 100 years [3], malaria does not respond to
approximated global averages, and the bulk of this
warming trend (and precipitation increases) has
occurred in the northern and, to a lesser extent,
southern temperate and polar latitudes [3,4]. 
When climatic changes were investigated in the
highlands of equatorial Africa [19], the Augmented
Dickey Fuller (ADF) test revealed no evidence for
significant trends in climate at four highland 
sites (Kericho, Kabale, Gikonko and Muhanga)
contemporary with the malaria resurgences. This 
was true for mean, minimum and maximum
temperatures, as well as for rainfall, vapour pressure
and combinations of meteorological variables
necessary for malaria transmission [24]. In essence,
climate and climate variability had not changed, so
could not have caused the malaria resurgences.

Identical ADF analyses have been extended to test
the significance of any trends in the meteorological
variables at Debre Zeit, Amani and Analaroa (Table1).
In common with the other East African sites [19], Amani
revealed no trends in any of the meteorological variables
over any time period. By contrast, Debre Zeit and
Analaroa exhibited significant warming trends during
1970–1995. Interestingly, these two sites lie at the
latitudinal edge of the East African highlands and
suffered the greatest increases in malaria (Fig. 1), but
even here the malaria resurgence cannot be attributed
with any certainty solely to climate change because of
concomitant changes in other factors detailed below.

Drug resistance
Chloroquine (CQ) resistance, first reported in East
Africa in 1978 among non-immune tourists [26], has
now been verified in all tropical African countries [27],
where this drug commonly remains the first-line
treatment for malaria [28]. Although there is a lack of
systematic longitudinal evidence for the onset of
resistance and its evolution in populations, there is
quantitative information that, during the past two
decades, CQ resistance has spread geographically,
increased in prevalence within its range, and intensified
in its severity of clinical failure (from predominantly
RI-type to RII- and RIII-type responses [27,29]).
Among the sites we have highlighted, CQ resistance has
been identified as an important factor in the malaria
resurgence on the Kericho tea estates [30], where
climate, the environment, the human population and its
structure, health care provision and malaria control
measures are known not to have changed [31]. Likewise,
the malaria resurgence in the Usambara mountains has
been linked to the rise in antimalarial drug resistance [32],
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rather than previously postulated local climatic changes
in Amani [33]. At Gikonko, climate was originally asserted
to have caused increases in malaria incidence [34],
although the significance of the trends in the
temperature variables was not tested, and the case for
drug resistance was dismissed on the basis of two local
estimates made just one year apart (1986 and 1987) [35],
even though malaria resurgence was documented
throughout Rwanda. The suggestion that climate
change was responsible for epidemics across the
highlands of Burundi was supported by only four
measures of the mean January temperature, between
1993 and 2001, from one location with no statistical
analyses [36]. This was in the face of unequivocal evidence
of the importance of CQ resistance in the region [37],
whose continued use could have contributed to the
widespread epidemic [38]. Only at Debre Zeit does the
emergence of CQ resistance sometime after 1992 [39]
preclude its being a factor in the malaria increase.

Vector control
Many countries in Africa at one time maintained
effective vector-control services. Quantitative

indicators of declines in such services are rarely
published; however, by chance, massive decreases in
previously successful vector-control efforts have been
documented at the two sites mentioned above where
climate has also changed in the past two decades.

In the Debre Zeit sector, the amount of DDT
applied by indoor residual spraying for malaria
control decreased from an average of 26 000 kg
per annum (1965–1979) to only 4000 kg per annum
(1980–1993), coincident with the period of most
marked malaria resurgence [39]. The number of
houses sprayed and the proportion of the population
protected also decreased by a similar magnitude [39].

The history of malaria in the highlands of
Madagascar has also been comprehensively described [40].
In 1878, a severe epidemic swept the Madagascan
highlands following the extensive development of rice
irrigation, and the disease soon became endemic.
In 1949, a malaria eradication programme was
introduced using DDT spraying in combination with
malaria treatment centres. By 1960, the incidence of
malaria was massively reduced and spraying was
terminated in all but three foci. In 1975, spraying in
these foci was also stopped and the treatment centers
were closed four years later. Malaria gradually
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Fig. 1. (a) A digital
elevation model showing
reported malaria
resurgence in high
altitude regions of
East Africa: Debre Zeit,
Ethiopia (A) (A.N. Tulu,
PhD thesis, University of
London, 1996); Kericho,
Kenya (B) [30,31]; Kabale,
Uganda (C) [49,50];
Gikonko, Rwanda (D) [34];
Muhanga, Burundi (E) [51];
Amani, Tanzania (F) [32,33];
and Analaroa,
Madagascar (G) [52]. 
The highland areas
surrounding A–E are
extensive and the sites
are not spatially isolated
‘highland’ islands. F and
G have been included so
as to be comprehensive
regarding cited reports 
of malaria resurgences 
in highland areas.
(b) Percentage change of
incidence of Plasmodium
falciparum malaria
(1980–2000). Data are for
the longest interval that
cases were reported
during this period. Where
possible, a five-year
average annual incidence
was taken at the temporal
extremes of the data.
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Fig. 2. (a) The percentage change in population per hospital bed using
data for 1980 and for 1990 (the only times available). These data were
abstracted from the World Bank Africa Database on CD-ROM [41].
(b) The percentage change in normalized difference vegetation index
(NDVI) derived from the Pathfinder AVHRR Land dataset [53]; the
1981–1985 average is compared with the 1996–2000 average for each
site. (c) The percentage change in the human population – total 
(open bars) and urban (solid bars) – between 1980 and 2000, also
abstracted from the World Bank Africa Database on CD-ROM [41].
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increased over the next decade, culminating in a severe
epidemic in 1988. Since 1993, DDT spraying has been
re-introduced and has successfully and continually
reduced malaria to less than 10% of 1988 levels.
Although there have been small, yet significant,
increases in temperature (Table 1), the stepwise
changes in malaria incidence follow the variation in
control activities much more closely.

Health service provision
Little quantitative information exists on the state of
public and private health service provision in most sub-
Saharan countries, but in East Africa the population
served by each hospital bed increased considerably
between 1980 and 1990 [41] in all countries except
Rwanda, where there was a marginal decrease (Fig. 2a).
The situation at specific sites cannot be inferred from
these national data, but they do provide evidence of a
regional decline in per caput health service provision
coincident with many of the malaria resurgences.

Land-use change
Land cover and land use has a significant impact on
malaria transmission [42]. The normalized difference
vegetation index (NDVI) is a measure of the amount
of photosynthetically active vegetation, and is thus a
proxy for land cover [43]. Many studies have reported
positive associations between the NDVI and malaria
incidence [44,45]. Interestingly, during the period of
malaria resurgence, most sites have greened by a
small amount (<8%), suggesting that conditions

might have become marginally more conducive to
malaria (Fig. 2b). The exceptions are at Debre Zeit
and Analaroa, where decreased NDVI is consistent
with local temperature increases. These NDVI data
are at too coarse a spatial resolution (8 × 8 km) to
indicate the exact nature of the land use changes and
serve only to document the overall change in
vegetation coverage at each of the sites.

Population growth and urbanization
In each of the East African countries investigated,
populations have increased by more than 50% since
1980 (Fig. 2c). Without significant improvements in
health care provision (Fig. 2a), malaria will have
become harder to treat and control, simply because the
susceptible reservoir of humans has expanded.
However, the urban proportion has more than doubled
since 1980 so that, by the year 2000, 26% of the
65 million East Africans were urban dwellers. This is
estimated to increase to 44% by 2030 because virtually
all of the population doubling of the region during this
time will be concentrated in urban areas [46]. The
reduction in malaria risk with increased urbanization
is well known [47]. At 159 sites across Africa where
annual entomological inoculation rates had been
recorded, people in rural areas received on average
146 P. falciparum-infected bites per annum, compared
with 14 for urban residents [42]. In contrast to the high
profile of future climate scenarios, the impact of
urbanization trends on the future malaria burden has
received too little attention.

Table 1. Trend of monthly meteorological variables at three sites in the highlands of East Africa, 1970–1995
a

Debre Zeit, central Ethiopia (8.75 N, 38.99 E; 1490–2200 m)
b

p ADF ββββ t p-value τατατατα Q Sig. Q

Temp min. (°C) 1 −−−−6.73c 0.0133 2.43 0.0156 0.0035 22.5240 0.9611
Temp mean (°C) 2 −−−−5.02 0.0108 2.57 0.0106 0.1532 28.9200 0.7929
Temp max. (°C) 1 −−−−8.20 0.0202 3.17 0.0017 0.1179 33.4282 0.5915
Rainfall (mm) 2 −−−−11.13 0.0603 0.23 0.8209 –0.0645 37.6854 0.3921
Vapour pressure (hPa) 1 −−−−6.52 0.0102 2.44 0.0155 0.0029 24.6356 0.9240

Amani, north–east Tanzania (5.10 S, 38.63 E, 600–1000 m)
b

p ADF ββββ t p–value τατατατα Q Sig. Q

Temp min. (°C) 4 −−−−3.51 0.0032 0.99 0.3223 –0.1605 44.0236 0.1684
Temp mean (°C) 2 −5.95 0.0031 1.01 0.3156 –0.0712 49.0893 0.0716
Temp max. (°C) 1 −−−−8.41 –0.0012 –0.28 0.7782 0.0024 56.8429 0.0149
Rainfall (mm) 6 −−−−5.21 0.3319 0.65 0.5141 0.1973 50.8691 0.0513
Vapour pressure (hPa) 4 −−−−3.59 0.0499 1.01 0.3159 –0.1575 42.8075 0.2021

Analaroa, central plateau Madagascar (18.85 S, 45.49 E, 1500 m)
b

P ADF ββββ t p–value τατατατα Q Sig. Q

Temp min. (°C) 2 −−−−7.22 0.0058 1.47 0.1433 –0.1166 61.0848 0.0056
Temp mean (°C) 1 −−−−8.31 0.0087 2.49 0.0133 –0.0215 67.5492 0.0011
Temp max. (°°C) 6 −−−−4.63 0.0121 2.77 0.0060 –0.0226 42.6762 0.2060
Rainfall (mm) 1 −−−−13.31 0.0262 0.09 0.9288 –0.1257 46.7825 0.1077
Vapour pressure (hPa) 2 −−−−7.18 0.0092 1.67 0.0961 –0.1478 56.0451 0.0177

aMethodological and statistical details for these tests follow the methods outlined in Ref. [19]. p is the number of lagged differenced
dependent variables selected. ADF is the Augmented Dickey Fuller t test for γ = 0. The 5% critical value is −3.45. Exact p-values are not
available for the ADF and τα  statistics. The distribution of the t-statistic for the slope parameter β has the standard t distribution under the
assumption that γ < 0. τα  is the t-statistic for the intercept term in the autoregression without a linear time trend. This is the appropriate
test for a trend if γ = 0. Its 5% critical value is 2.54. The Q statistic is a Portmanteau test for general serial correlation and is distributed as
Chi-square. The significance is shown in the final column (Sig. Q). Figures in bold denote significance at the 5% level.
bInformation in brackets corresponds to the geo-location and elevation range information details for each site.
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The most parsimonious explanation

The evidence that climate change is the most
significant factor in recent malaria resurgences in
the highlands of East Africa is at best equivocal, at
worst unfounded. At five of the seven sites (Kericho,
Kabale, Gikonko, Muhanga and Amani), climate has
not changed significantly. At the two other sites,
where malaria up-surges were most marked
(Debre Zeit and Analaroa), temperatures have shown
significant long-term increases; however, the
collapse of vector control at these sites shows equally
good, if not better, matches to changes in malaria
incidence, especially at Analaroa where malaria
declined again rapidly on the resumption of house
spraying. The role of the spread and intensification of
antimalarial drug resistance, particularly to CQ, is
also particularly persuasive because it explains both
increased transmission (increased number of 
drug-suppressed infections producing gametocytes)
and increased severity of the disease (treatment
failure owing to lack of affordable, effective drugs).
However, it should be emphasized that such changes
are occurring against a site-specific background of
decreases in vector control, decreasing per caput

health service provision, a greening of the landscape
and massive increase in population.

Policy considerations

The threat from climate change is not a top priority for
African nations faced with a contemporary resurgence
in malaria. Our hope is that the research reviewed
here might help focus attention on the real and
immediate causes of these malaria resurgences,
rather than fuel further speculation on the future
epidemiological impacts of climate change. Although
predictions of the impact of forecast climate surfaces
[e.g. the high scenario from the HadCM2 experiment
described on the Intergovernmental Panel on Climate
Change website (http://ipcc-ddc.cru.uea.ac.uk)]
do show parts of the highlands of East Africa and
Ethiopia becoming newly suitable for malaria by 
2050 [22], reversing, or even delaying, such global
climate change will not address the problems faced by
Africans at risk from malaria today. By comparison,
addressing the need for effective and affordable drug
treatments [48] for a disease that is both preventable
and treatable offers a direct route by which the
international community can act now to save lives.
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There can be no question that tsetse and
trypanosomiasis constitute one of the greatest
constraints on African rural development. Their
removal would bring untold benefits in terms of
increased cattle production, which would contribute to
agricultural consolidation and expansion that the
continent so sorely needs. Cattle provide meat, milk,
draught power and manure for low fertility soils, and
increases in livestock production decrease the average
poverty levels of rural communities. Healthy,
well-managed cattle populations within the carrying
capacity of their rural environments are as much a
right of the African farmer as they are for anybody else.

Human trypanosomiasis, once controlled, is on the
increase again. This dreadful disease so shocked
colonial administrators when they first encountered

it that a disproportionate amount (~25%) of colonial
research funding in Africa went to trypanosomiasis,
despite the greater human losses due to more familiar
diseases such as malaria.

So, why not aim to eradicate both human and
animal trypanosomiasis from Africa? Both the title of
the Pan African Tsetse and Trypanosomiasis
Eradication Campaign (PATTEC) and the quotation
from the 36th Organization of African Unity (OAU)
summit in John Kabayo’s article [1] indicate that the
aim of this new project is nothing less than the
eradication of tsetse from the entire continent of
Africa. Other supporting studies stop short of
discussing pan-African eradication and instead talk
of ‘area-wide tsetse and trypanosomiasis eradication’
(also referred to as ‘elimination’, i.e. local, but not
global, eradication) [2]. Central to both objectives is
the use of the sterile insect technique (SIT) which is
considered to be the sine qua non of tsetse eradication,
both locally and globally. Thus, traditional tsetse and
trypanosomiasis control measures will be used
initially to reduce the burden of trypanosomiasis in
any area, and releases of sterilized insects will then
drive the residual populations to extinction. Also
central to both objectives is the use of barriers against
re-invasion of flies from untreated areas. In the
pan-African campaign, these barriers will be temporary,
until the areas beyond are also incorporated into the
eradication zone; for any area-wide elimination, the
barriers would need to be permanent fixtures.

Learning from past experience

In our view, PATTEC’s proposals ignore the lessons of
history, deny certain undeniable ecological facts,
require a degree of coordination that seems unlikely,
and will surely lead to increasing foreign exchange
debt with very little to show for it. Failure of any
eradication attempt is much more serious than
failure of control because failure to eradicate has no
fallback position. Whereas 50% of success in a control
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An ambitious plan to eradicate tsetse, and therefore tsetse-transmitted

trypanosomiases, from Africa was launched at the 36th Organization of

African Unity summit meeting (Togo, July 2000) in a bold attempt to re-focus

attention on one of Africa’s greatest scourges. This plan involves the use of the

sterile insect technique to achieve final eradication in areas where the fly is

suppressed by more conventional methods (such as traps and targets). In this

article, the current aims of this project are questioned on historical, ecological,

logistical and financial grounds.
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